Astro 597A - X-ray Investigations of Active Galaxies: Exploring the Environments of Supermassive Black Holes

X-rays from the First AGN in the Universe

Manodeep Sinha November 03, 2004

Outline

- Hierarchical Structure Formation
 - growth of first BH
 - feedback to the environment
- Observational Signature
 - xrays (of course)
 - ionisation of IGM
- Multi-mission surveys
 - detect and observe in different bands

Conclusions

Motivation

Structure formation

- Reionisation epoch
 - WMAP & Gunn Peterson trough
 - Primary source of ionising photons
- Growth of SMBH
 - Accretion mode, rate?
 - $-t_E = \sigma_T c/4\pi G m_p \sim 50 \text{ Myrs}$
- Star formation rate
 - Peak at lower redshift than QSO activity?

- SDSS probes high end of QSO LF.
- 6 Q50s with z >5.7
- Faint QSO at z > 4 are too faint

- 60005 field
 - HST B, V, I, z band data
 - Chandra 0.5 8 keV (S/N = 5)
 - flux limits 10 -16 & 10 -15 erg/s/cm² (0.5-2.0 & 2-8 keV)
- detection in z using SExtractor
 - 22.45 < z₈₅₀ < 25.25
 - optical candidates matched with Chandra (3σ)
 - -z>4
- 11 in CDFS & 6 in HDFN

NOTE: z > 3.5 xray sources in GOODS must be AGN

- 3 QSOs with z>4
- Q5O ρ_N reduces by 3.5/z (from 2QZ)
- reduction factor 2.1 -4.3 (SDSS, Fan et al 2001)
- PLE fails at > 3\sigma level
- PDE predicts 2.9 QSOs
- MIN model
 - Q50s in new halos
 - const $\varepsilon = M_{bh}/M_{DM}$
 - Eddington accretion rate

- MIN model overpredicts N_{QSO} z>4 (151 QSOs)
- delay in QSO activity after DM formation resolves
- Expected QSOs ~ 3.2 for z>4
- z > 4 QSOs with $M_{1450} \sim -23$ lower than theoretical predictions
- feeding/formation of SMBH hindered at high z

Stacking Analysis

- Sources from other surveys
- Cell of variable size surrounding source
- Variable aperture size
 - positioned randomly around source cell
 - repeated Monte-Carlo simulations
- simulate with different aperture, cell size (one)
- Iterate till S/N maximises
- Estimate background for each individual source

Stacking Analysis

- Stack numerous similar sources
- Extract mean information statistically
- 5/N~ (S-B)/B^{0.5}
- Effective exposure times of ~ Gs!!

- phase lag in star formation
 - peak between z
 1.5-3 ?
 - evolution of L_X/L_B
 with z
- Why LBGs?
 - for z > 2.5, LBGs
 are U-dropouts
 - photometric z
 - higher z leads to B-dropouts

- GOODS survey
 - SPITZER, Hubble, Chandra
 - 320 sq arcmin in HDFN & CDFS
 - HST data in B₄₃₅,
 V₆₀₆, i₇₇₅ & Z₈₅₀
 - U band data from KPNO

- color magnitude selection
 - galaxies with z ~ 3, 3.8, 4.9 & 5.74
 - error bars in z grow with z
 - $-t_L = 11.5$ Gyrs for U dropouts
- $L_X = 4\pi d_L^2 f_X (1+z)^{\Gamma-2} \text{ erg/s}$ $\Gamma = 2$

449 U-dropouts with an effective exposure 0.7 Gs. Circle represents 1.5" aperture

393 bright B-dropouts with an effective exposure 0.5 Gs

- L_X/L_B evolves with z
 - maxima at z ~ 2
 - L_x from HMXB

LX/LB increases with Lx

- 449, 1734, 629, 247 LBGs in U, B, V, I dropouts
- average $L_x \sim 10^{41}$ erg/s
- Modelling SFR as

$$SFR(\ge 0.1 \ M_{\odot}) = \frac{L_{2-10}^{\text{HMXB}}}{10^{39} \ \text{erg s}^{-1}} \ M_{\odot} \ \text{yr}^{-1}$$

 $- SFR: 85 - 240 M_{sun}/yr$

- "Do early BHs feed and grow the same way as local ones?"
 - QSO number density changes by 100
 - gas fraction for accretion
- Observables
 - number density
 - luminosity
 - photon index

2-3 photons at a known location of a source is a significant Chandra detection

- xray & optical flux correlated
- scatter in xray flux
- L_x (2-10 keV) ~
 10⁴³ 10⁴⁷ erg/s
- $a_{ox} = 0.384 \log(f_2)$ $keV/f_{2500} \text{ A}$
- -1.74 for RQQ (z>4)
- -1.56 for low z
- luminosity or redshift effect ?

NO significant dependence on z.

 α_{ox} anti-correlated with luminosity

Gravitational Lensing is an issue – changes the luminosity effect

- joint spectral fitting of Chandra & DPOSS
 - $\Gamma \sim 1.98 (z = 4.09 4.51)$
 - consistent with 0<z<3 samples of RQQs
 - $-N_H < 8.8 \times 10^{21}$ cm $^{-2}$
- joint spectral fitting of Chandra & SDSS
 - $-\Gamma \sim 1.84$ (z = 4.81 6.28) with galactic absorption
- · individual sources do not change much with z
- variability not studied
 - deepest exposures are ~ 20 mins in Q50 rest-frame

- AGN at z = 4-6 & 0-3 are similar
 - photon index ~ 2.0
 - $-\alpha_{OX} \sim -1.5$
- Similar Xray emission => similar accretion mechanism
- Local SED of AGN can be used for high z AGNs
- No intrinsic absorption in nascent AGNs

Discussion

- z >4 LLQSOs not numerous enough
 - QSO LF flattens at low L
 - confirmed by low counts of lensing events in SDSS
 - radiative feedback in small DM halos'? or photoionization by UV background?
- High z AGNs show similar Xray properties as local AGN
 - use to estimate mass of SMBH in AGN
 - reionisation ?
- LBGs are modest AGNs
 - $L < 7 \times 10^{41} \text{ erg/s for } z=6$
 - SFR: 85 240 M_{SUN}/yr
 - L_x/L_B ratio of LBG similar to local starbursts (stacked)