

Credit: NASA/CXC/A.Siemiginowska(CfA)/J.Bechtold(U.Arizona)

Outline

- Before Chandra
- Physics of Jets · What we expect
 - Emission Processes
 - Types of Jets
 - Surrounding medium
- Detection · How we see them
- Results · What we see
- Future- what we'd like to see

Before Chandra

- Jets mainly studied in radio · Xray jets thought "exotic‰
- Einstein and ROSAT had few · M87, Cen A, NGC 6251
- Chandra first light · Xray jet PKS 0637-752
- Xrays found where no optical emision
- Synchrotron model breaks down from radio to Xray
- Now it seems that ALL radio jets have Xray counterparts

Synchrotron Review

See Rybicki and Lightman Ch.6

Larmor Formula:
$$P = \frac{(2q^{2}u^{2})}{(3c^{3})} = \frac{(2q^{2}\vec{a} \cdot \vec{a})}{(3c^{3})}$$
For relativity: $\vec{a} \cdot \vec{a}$ is invariant
$$Beaming: a \|' = y^{3} a \|, a \perp' = y^{2} a \perp.$$

$$a \perp' = \omega_{B} v \perp.$$

$$\omega_{B} = \frac{(qB)}{(ymc)}$$

$$P = \frac{(2q^{2})}{(3c^{3})} y^{4} \frac{(q^{2}B^{2})}{(ymc^{2})} v^{2} \perp.$$

More Synchrotron Review

Classical Electron radius:
$$r_0 = \frac{q^2}{(mc^2)}$$

$$U_B = \frac{B^2}{(8\pi)} \quad \sigma_T = 8\pi r_0/3$$

$$\tau_{rad} = \frac{E}{(-dE/dt)}$$

$$Voila: -dE/dt = 2\sigma_T c \gamma^2 \beta^2 U_B \sin^2 \alpha(1)$$

$$v_g = \gamma \omega_B / 2\pi$$
Critical Freq.: $v_c = (3/2) \gamma^2 v_g \sin \alpha$

Synchrotron · SDF and Luminosity

Critical Freq is 30GHZ

From Worrall and Birkinshaw

$$X = \frac{\mathbf{v}}{\mathbf{v}_c}$$

$$F(\mathbf{v}, \mathbf{v}_c) = X \int_X^{\infty} (K_{(5/3)}(\xi) d\xi)$$

$$L_{\nu} \propto \int F(\nu, \nu_c) N(\gamma) d\gamma$$

Synchrotron · Power Laws and • The Big Punchline Luminosity

$$L_{v} \propto \int F(v, v_{c}) N(y) dy, N(y) dy = \kappa y^{(-p)} dy$$

$$Requires: y_{min}^{2} v_{g} \ll v \ll y_{max}^{2} v_{g}$$

- However, $L_{\nu} \propto \nu^{(-\alpha)}$
- Physics · Pret, mean probability per cycle that particle remains in jet and is

shocked again

Ultarel. case:
$$\alpha = 1 + \frac{(\ln 1/P_{ret})}{(\ln E_f/E_i)}$$

Nonrel. case:
$$\alpha = \frac{(\rho_d/\rho_u + 2)}{(\rho_d/\rho_u - 1)}$$

Phew! Onto Inverse Compton

- Exact same energy rate loss formula! Provided:
- $\gamma h \nu_o \ll m_e c^2 low energy photons!$
- Spectral distribution function differs:

$$X = \frac{v}{(4 \gamma^2 v_o)}$$

$$F(v, v_o, y) = X f(x), f(x) = X (1 + X - 2X^2 + 2X \ln X)$$

$$\bar{X} = \frac{(\int X f(X) dX)}{(\int f(X) dX)} = 1/3, \bar{v} = (4/3) \gamma^2 v_o$$

 When Compton scattering is on synchrotron photons from jet, is synchrotron self-compton

Thermal Bremsstrahlung Emission

Stated:
$$\frac{dW}{(d \omega dV dt)} = \frac{(16\pi e^6)}{(3\sqrt{3}c^3m^2v)} n_e n_i Z^2 g_{ff}(v, w)$$

Maxwell Velocity Dist'n (Isotropic):
$$dP \propto v^2 \exp(\frac{(-mv^2)}{(2kT)}) dv$$

For a photon of freq. v , $hv \leq \frac{1}{2}mv^2$

• Average dW(v, ω)/(d ω dV dt) over the velocity

$$\varepsilon_{\nu} = 32 \frac{\pi}{3} (2 \frac{\pi}{3})^{.5} Z_{i}^{2} g_{ff} n_{i} n_{e} m_{e} c^{2} r_{o}^{3} (\frac{(m_{e} c^{2})}{(kT)})^{.5} e^{(\frac{(-h\nu)}{(kT)})}$$

Integrate over freq., convert to P

$$\tau_{cool} = 2.5 \frac{(kT)}{(\varepsilon \mu m_H)}$$

FR classification

- Paper: Fanaroff and Riley, 1974 MNRAS
 Cambridge One Mile telescope
- "There is a definite relationship between relative positions of the high and low brightness regions of radio sources and their luminosity"
- Classified by ratio: distance between highest central bright. regions on either side of nucleus and total extent · relative position of hotspots
- > .5 Class II, < .5 Class I, High L Class II, Low L Class I
- Class I more complex structure

FR I

• FR I galaxy 3C 31 · note that jets starts right near core

FR I physics

- Low power, and a well defined beam head · this means good contact with external medium
- Based on 3C 31, jet has 3 regions: narrow jet w/ relativistic flow, flaring region bright in radio, outer region with steady deceleration
- Outer region is where deflection takes place
- Knots are a mystery
- Acceleration takes place in knots

FR II

▶ FR II galaxy 3C 220.1 · clear separation of lobes from core · high power

FR II Physics

• FR II is supersonic w.r.t ISM- bow shock forms at end of jet · we see "well collimated jets feeding edge brightened lobes‰

$$c_s = \sqrt{\left(\frac{(\gamma k T)}{(\mu m_H)}\right)}$$

•
$$M = \frac{v_{adv}}{c_s}$$
 Assume strong shock (Rankine-Hugoniot)
• Get simple relations

Get simple relations

$$\frac{P_2}{P_1} = (5M^2 - 1)/4, \frac{\rho_2}{\rho_1} = \frac{(4M^2)}{(M^2 + 3)}$$

$$\frac{T_2}{T_1} = (5M^2 - 1)\frac{(M^2 + 3)}{(16M^2)}$$

FR I/ II Physics

- Difference (according to Sambruna) lies in jet pressure · fits with idea of luminosity discrimination
- Jet pressure in FRII becomes comparable to ambient farther out · this is where shocks form
- Would expect innemost knot closer to core in FR I than in FRII • explore?
- In FRI knots fit radio-optical synchrotron spectrum
- FRI Xray morph. Fairly uniform

FR I/ II Physics

From Sambruna, et al.

From Worrall and Birkinshaw

 Jet terminates at hotspot - light gray is radio emitting fluid · heats ambient gas producing X-rays

Jet Structures

- Jet features defined based on radio
- Jet · narrow feature, 4x as long as it is wide
- Lobe · radio emission not in jet
- Hotspot · compact feature in lobe
- Knot · compact feature in jet
- End of jet: end of emission, 90 degree change of direction, decollimation by 2x
 - Knots are most likely to have X-ray counterparts

Magnetic Fields

- Field orient, determined by linear polarization in radio
- $\pi_L = \frac{(\alpha + 1)}{(\alpha + 5/3)}$ Significant pol. indicates lack of thermal material •
- Circular polarization (mentioned later) also seen in pc
- Is this e+e-?

Superluminal Motion

- VLBI obs. of AGN show jets w/ multiple comp. around bright cores
- These comp. Expanding · separating w/ Vt ~ 10c

Adapted from Peterson (1997)

$$\beta_T = \frac{v_T}{c} = \frac{D}{c} \frac{(\Delta \phi)}{(\Delta t)} = \frac{(v \sin \theta)}{(c(1 - \beta \cos \theta))} = \frac{(\beta \sin \theta)}{(1 - \beta \cos \theta)}$$

Maximize β , *get* $\beta_T^{max} = \beta \gamma$, γ *can be arb. large*

Bulk Relativistic Motion · Effects

• Relativistic Doppler Factor:

$$\delta = \frac{1}{(\Gamma(1-\beta\cos\theta))} R_J = (\frac{(1-\beta\cos\theta)}{(1+\beta\cos\theta)})^{-(\alpha+2)}$$

$$L_{nu}increases\ by\ \delta^{(2+\alpha)}$$
• Boosting by factor of alpha due to blueshift

- Core dominance:

$$R_{cd} = \frac{R_{(cd,(\cos\theta=0))}}{2} ((1 - \beta\cos\theta)^{-(\alpha+2)} + (1 + \beta\cos\theta)^{-(\alpha-2)})$$

External Medium

- Jets mostly distinct from nucleus · X-rays arise from interaction of hot jet gas with cool dense medium
- interior $\nabla P = -\rho \nabla \phi$ Ideal Gas: $P = \frac{(n_p k T)}{(X \mu)}$, solar abund. $\mu = .6$ Spherical sym.: $(A \Phi)$ (GM)
 - $\frac{(d\Phi)}{(dr)} = \frac{(GM_{tot}(r))}{r^2}$

More External Medium

 Follows "Isothermal Beta Model" - see Cavaliere and Fusco-Fermiano, 1978

*
$$\rho = \rho_0 (1 + \frac{r^2}{r_c^2})^{(-1.5\beta)}$$
 $\beta = 2/3 \frac{(\mu m_h)}{(kT)} \frac{(GM_c)}{r_c}$

- Beta depends on ratio of grav. pot. to thermal E per unit mass
- NFW say its unphysical · measured beta's don't match theory · NFW ain't perfect either
- Bottom line · density has power-law structure with dimensionless parameter representing balance of gravity and thermal motions

More External Medium -Surface Brightness and Ion Ratio

- Density and T of medium can be determined from surface brightness, but it's a mess

in class $N = \frac{\left(\int n_e n_p dV\right)}{\left(4\pi D_A^2 (1+z)^2\right)} = \frac{\left((1+z)S_v\right)}{\Lambda_v}$ • Da is angular diameter distance and (1+z) is for

- expanding universe, Lambda is emissivity
- S and Lambda are fit, Ne and Np are "pulled out" using isothermal beta, and

$$\frac{n_e}{n_p} = \frac{(1+X)}{(2X)} = 1.8 \text{ for solar}$$

PKS 1258-321

Marshall et al.

- Core dominated, FRI, no X-ray emission from the jets
- Extended X-ray halo?

PKS 0208-512

→ 4‰ long jet in X-ray, coincident with radio · X-ray cuts out at 90 degree bend · radio polarization is at 90 degrees to jet direction

PKS 1343-601 / CEN-B

Marshall et al.

 Very one sided, knot detected in X-ray, some yellow blobs significant, upstream and in lobe

Sambruna et al.

Sambruna et al.

What can we learn?

- Sambruna et al find ~ 59% detection in X-ray of radio features, around same in optical
- Seems that most all FR I's have X-ray counterparts
- All sources in Sambruna sample are one-sided beaming
- Composition: e- & e+ pairs expected near AGN
 Circular polarization from mode conversion detected
- Evidence for p+ & e- plasma exists too · p+ outnumber e- in CR by 100x
- Also, interaction w/ medium should enhance p+ content
- However, data point to a low mass jet, insuffcient pressure for a p+ & e- jet

Spectral Modeling

- SED modeled for aperature of 1-1.5", limited by Xray
- SED power law from radio through optical to Xray determines emission mechanism (IC, synch., thermal)
- If optical lies on power law between radio and Xray, then
 1 method works for all
- If below, then synch. provides low freq. and IC provides high
- Synchtron dominates when: $\alpha_{ro} < \alpha_{ox}$
- For most jets, Xray is a separate process
- Alpha rx increases from inside of jet out
- Confirms theory of W&B

- A single e- population can produce both synch. and IC present · need input photons from CMB
- Any seed photons will do · CMB is most likely
- Energy density of CMB scales (1+z)^4
- For knots inside host, starlight works too
- As shown earlier, relative lifetimes for the emission processes vary, synch. short @ short WL
- Restricts synch. to more compact reg.
- IC/CMB model · huge cooling times
- Need consistent Xrays along jet PKS 1954+196 shown before

- Sambruna finds trends based on large sample:
- "Common conditions along jet determine the observed properties of emission features"
- Possible reason for FR I/II: location where jet and ambient P equalize · causes major slowdown
- Discrim. Param · Jet P (power), more luminous sources slow down later
 - "Xray emission from extended radio jets with α_{rx} around .8is common in AGN"
 - Knots have different phys. process

- Marshall has similar findings on IC/CMB, interesting results on PA
- First, need to define min. B field strength · find energy in e- by integrating power law (at min. Ue = 4/3 Ub):

$$U_e = \kappa m_e c^2 \int_{(\gamma_{min})}^{(\gamma_{max})} \gamma \gamma^{(-p)} d\gamma = \kappa m_e c^2 \int (\gamma_{min})^{(\gamma_{max})} \gamma^{(-2\alpha)} d\gamma$$

- * $Know L_{\nu} \propto \kappa \nu^{-\alpha} B^{(\alpha+1)}$
- Integrate and plug in for kappa, define K as baryon ratio, eta=f=filling factor

$$U_{part.} = C_1 B^{-(\alpha+1)} \frac{(1+K)}{(\eta V)} L_{nu} f(\alpha)$$

Marshall: alpha=.8, gamma=1

• From there, derived quantities and some assumptions lead to:

$$\Gamma \delta (1+u_j') = \frac{(1-\beta+\mu-\mu\beta)}{(1-\mu\beta)^2}, \mu_j = cosine \ of \ l-o-s \ angle$$

- * Assume $\Gamma = 10$, know $\delta = [\Gamma(1 \mu \beta)]^{-1}$
- Can solve for PA!
 - Jet angles around 20 to 30 degrees

What We Don't know:

- Lots! Biased samples · current surveys have selections effects: L, z
- Need obs. of Xray ISM
- Deep observations · would like to see continuous emission along all jets
- Limited to 1‰ aperature · could be overestimating sizes

References

Achterberg, A., et al., 2001, MNRAS, 328, 393.

Cavaliere, A. and R. Fusco-Fermiano. 1978, A&A, 70, 677.

Fanaroff, B.L. and J.M. Riley, 1974, MNRAS, 167, 31P.

Marshall, H.L., et al., 2004, astro-ph/0409566.

Navarro, J.F., et al., 1995, MNRAS, 275, 720.

Peterson, B: An Introduction to Active Galactic Nuclei (Cambridge University Press), various (1997).

Rybicki, G. and A. Lightman: Radiative processes in astrophysics. (Wiley-Interscience), Ch. 6 (1985)

Sambruna, et.al., 2004, astro-ph/0401475.

Worrall, D.M. and M. Birkinshaw, 2004, astro-ph/0410297.