
Astronomy 485 — Problem Set 6 — Weeks 12 and 13
Niel Brandt

All problems are worth 10 points.

1. (a) The pseudo-Newtonian potential

Φ = −
GM

R − RS

, RS =
2GM

c2

provides a simple and reasonably accurate potential for particle orbits near a Schwarzschild (non-
rotating) black hole of mass M . It only applies for R > RS, and it approximates the true effects
due to General Relativity. Consider a particle of mass m moving in this potential. Include the
usual angular momentum term (L2/2mR2) to form the ‘effective potential’ (with units kg m2 s−2;
you can read about this in your physics books if you have not heard of it before — check the
section about orbits). Graph this effective potential. Try using the parameters M = 10 M⊙,
m = 100 kg, and L = 2× 1015 kg m2 s−1, and consider radii from 30–300 km. Be careful to choose
an appropriate ordinate range so that you can properly see the relevant physical behavior of the
potential. Compare your graph to a graph of the ‘standard’ Newtonian effective potential, and do
not go inside RS.

For the pseudo-Newtonian potential, note the ‘pit in the potential’ for radii close to RS. This is
an important difference between Newtonian gravity and General Relativity since it allows ‘capture
orbits’ and causes an otherwise Keplerian orbit to precess. If you are interested, you can read more
about this matter in chapter 25 of Gravitation by C.W. Misner, K.S. Thorne and J.A. Wheeler.
1. (b) Show that the radii of the minimum bound and last stable circular orbits for the pseudo-
Newtonian potential are 2RS and 3RS, respectively.
1. (c) Show that the binding energy of a circular orbit at 3RS is 1

16
mc2 [a longer calculation using

General Relativity for a Schwarzschild black hole gives (1 − (8/9)1/2)mc2].
If you are interested in further details of this pseudo-Newtonian potential, you can read about it

in Astronomy and Astrophysics 88, 23 and Astronomy and Astrophysics 313, 334. This is entirely
optional!

2. A rough lower limit on the number of black hole X-ray novae in the Galaxy. Consider the
following facts about black hole X-ray novae:

• We detect about one black hole X-ray nova per year (we have been performing X-ray searches
with high effectiveness for about the past 15 years).

• We can detect black hole X-ray novae out to about 3 kpc.

• Black hole X-ray novae lie in the Galactic disk.

• The time between outbursts for the typical black hole X-ray nova is probably at least 40 years
(compare with page 265 of Charles & Seward).

Using this information, place a reasonable lower limit on the number of black hole X-ray novae in
the Galaxy. You may assume that we are not living in an unusual region of space or epoch of time.



3. Please read the article ‘Advection-Dominated Accretion and Black Hole Event Horizons’ by
Narayan, Garcia & McClintock (The Astrophysical Journal , 478, L79); this is available on the
course World Wide Web page. Then please write an ≈ 2 page essay describing the main results of
this article. You should address issues such as the following:

• What is ‘advection’ in the context of this article?

• What observations have made people postulate the existence of Advection-Dominated Accre-
tion Flows (ADAFs)? That is, what observational problems can be solved using the ADAF
model?

• Why is a ‘two-temperature plasma’ needed to make the ADAF model work? Given what you
have learned in class, why might putting most of the thermal energy into the protons cause
the ADAF to be an inefficient radiator?

• Why do the authors think Figure 2 of this paper provides good evidence for existence of black
hole event horizons?

If you have any difficulties with this article, feel free to drop by and ask questions. I have put a
picture on the course World Wide Web page that will be helpful to look at while you are doing the
reading.

4. (a) Using the expression for vapp for superluminal motion (see the Fabian notes), make a graph
showing how vapp varies as a function of θ for β = 0.1, β = 0.5 and β = 0.98. Concentrate on θ
values from 0–90◦. Explain the observed behavior from a physical point of view. What angle gives
the maximum vapp?
4. (b) For some objects showing superluminal expansion it is possible to place a constraint
on their distance using the observed superluminal expansion. Consider the black hole candidate
GRS 1915+105 which ejected two relativistic ‘blobs’ of gas in antiparallel directions. We have
learned the equations

µa =
β sin θ

1 − β cos θ

c

D
µr =

β sin θ

1 + β cos θ

c

D

where µa (µr) is the proper motion in the sky of the blob of gas that is approaching (receding)
and D is the distance (the geometry is as shown in the Fabian notes). GRS 1915+105 had µa =
17.6 mas day−1 and µr = 9.0 mas day−1. Show that the observed motion implies θ < 71◦ and hence
that the distance to GRS 1915+105 is D < 13.7 kpc. This was the first evidence for a source with
superluminal motions in our Galaxy.



5. (a) Please roughly calculate the maximum temperature in an accretion disk around a 1.4 M⊙

neutron star (you may take the neutron star to have a very small magnetic field so that the inner
accretion disk is not disrupted). Please repeat for a 108 M⊙ Schwarzschild black hole. You may
assume that both systems are accreting at the Eddington limit.
5. (b) Consider an accretion disk in an active galaxy that has an inner radius of rI and a very
large outer radius. Show that the integrated spectrum of this accretion disk varies with frequency
as ν1/3 for low freqencies and e−hν/kTI for high frequencies. Here TI is the disk temperature at rI.
5. (c) Consider spherical accretion onto a highly magnetized neutron star. Please calculate the
radius at which magnetic pressure overwhelms the ram pressure of the infalling matter. This radius
is known as the Alfvén radius. Your answer should be in terms of the radius of the neutron star,
the mass of the neutron star, the surface magnetic field of the neutron star, and the mass accretion
rate. For a neutron star with a surface magnetic field of 1012 gauss that accretes at the Eddington
rate, what is the numerical value of the Alfvén radius (in km)?

6. The importance of the trapping radius for spherical accretion. Consider a spherical flow of
ionized hydrogen onto a black hole with mass M that dissipates (and radiates) an energy per gram
of ≈ GM/r as it falls from r to r/2. Even though some of the energy must clearly be escaping as
radiation, presume that the matter is still falling inward at roughly the free-fall speed all the way
to the black hole.
6. (a) Calculate the optical depth for Thomson scattering from an inner radius r to infinity as a
function of the accretion rate (you will need to do an integral here). Simplify your expression into

an elegant form using rS = 2GM/c2 and ṀEdd = LEdd/c2. Hint: The answer is τT = Ṁ
ṀEdd

( rS

r )
1

2 .

6. (b) At what accretion rate (call this Ṁc) does this optical depth become unity for r = rS? How
does Ṁc relate to ṀEdd?
6. (c) For Ṁ ≫ Ṁc, the inner parts of the flow become optically thick and the flow can drag
back in the photons that are trying to diffuse outward through it. The black hole can then swallow
these photons, so this may be a way to escape the Eddington limit on mass accretion.1 Show that
the critical ‘trapping radius’ (rt) is equal to (Ṁ/Ṁc)rS. Inside this radius, the accretion flow drags
the diffusing photons back into the black hole. Hint: The information on pages 35–36 of Rybicki
& Lightman may be helpful when thinking about the random walk of a photon that is trying to
escape.
6. (d) What is the approximate luminosity, Lesc, that escapes to infinity in the regime Ṁ ≫ Ṁc?
How does the efficiency, η, depend on the ratio Ṁ/Ṁc in this regime? Here you may assume that
all radiation created inside the trapping radius gets dragged back into the black hole, and you do
not need to invoke a specific emission mechanism for the radiation.

If you are interested in reading about the ‘trapping radius’ in more detail, have a look at Physica

Scripta, 17, 193. You may also be interested in the somewhat more complex papers Monthly Notices

of the Royal Astronomical Society , 184, 53 and The Astrophysical Journal , 326, 223. Perhaps this
is a quick way to ‘grow’ the quasar black holes seen at z > 6!

1Of course, since the photons are dragged back into the black hole you still cannot easily exceed the Eddington
limit on luminosity . It is also not known if you can get super-Eddington accretion of this type started in the first
place (for example, strong outflows may start to affect the accretion flow significantly). But if you can, then watch
out!


