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We consider the problem of unbound interacting charged particles of very di�erent mass. In the frame
of the heavier particle, the light particle is moving at velocity v with an impact parameter b. The electric
�eld of the heavier particle accelerates the lighter particle, and, as we know, accelerating charges radiate.
We suppose that the particles are unbound throughout the problem, hence the name free-free. The lighter
particle is gradually decelerated because it is losing energy to radiation, hence the name bremsstrahlung

(German for `braking').
In an ionised plasma, free-free radiation comes from electrons encountering ions. Encounters between

two electrons cannot produce radiation by electric or magnetic dipole processes (they will emit quadrupole
radiation, for which the power is lower by � (v=c)2). An ion, of course, is also accelerated by the �eld of a
passing electron; however, its mass mi is much greater than me, so its acceleration (and thus its radiated
power) is negligible in comparison to the electron's. We assume that the electron's trajectory is a straight
line, which will be true of in a typical astrophysical gas (this is essentially the Born approximation). We
neglect the e�ect of radiation reaction on the orbit, generally a good approximation.

There are a few important facts about bremsstrahlung to keep in mind. The process is not an oscillatory
one, so the spectrum covers a broad band of frequencies. The total power will be dominated by the closest
approach, where the acceleration is largest. The emissivity vs. frequency is nearly at up to an exponential
cuto� at high frequencies. Note that absorption in a plasma can alter the spectrum at low frequencies
where the material becomes optically thick (see homework #3).

We �rst consider the (simpler) case where the electron is moving non-relativistically. The acceleration
is

a =
Ze2

med2
d̂ =

Ze2

me(b2 + v2t2)
d̂;

where t = 0 is taken to be the point of closest approach, and d is the distance from the electron to the ion.
The dipole electric �eld at distance r from the electron is

jEj =
ea

c2r
sin � =

Ze3 sin �

mec2r(b2 + v2t2)
:

From the contour integration in assignment #2, the Fourier transform of this electric �eld is
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The spectrum radiated by a single electron is therefore
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This spectrum is at for � � v=b and cuts o� exponentially for � � v=b.
If electrons all have the same velocity v, the number of electrons passing through an annulus db of

impact parameters around a single ion per unit time is nev2�b db. To get the power radiated per unit
volume, we also multiply by the density ni of ions, yielding
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where dW=d� is the single-electron spectrum found above. Since this spectrum cuts o� exponentially for
� > v=b, we may approximate the exponential by a step function which goes from 1 to 0 at � � v=b; this
is equivalent to choosing a maximum impact parameter for the integration bmax � v=� and ignoring the
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exponential factor. We put all of our ignorance (both the approximations made thus far and additional
quantum mechanical factors) into the Gaunt factor gff (v; �), which is of order unity in most regimes of
interest. See Rybicki & Lightman (p. 159{161) for approximations and references to tabulations of the
Gaunt factor.

The minimum impact parameter bmin will be set by one of the two following considerations:

� The uncertainty principle prohibits the electron from getting any closer than bmin � �h=p � �h=mev.

� The small-angle approximation will begin to break down if b < bmin, where bmin is set by Ze2=bmin �
mev

2.

The classical criterion will be important when v � Ze2=�h (v=c � �Z where � = e2=�hc � 1=137); this will
be true for bremsstrahlung from a typical HII region (T � 104 K). At the higher velocities found in the
intergalactic gas in galaxy clusters (T � 108 K), the uncertainty principle determines bmin.

To make further progress we need to know the velocity distribution of the particles in the gas. Let
dP (v) be the probability of a velocity in the range (v;v + dv), normalised so that

R
dP (v) = 1. To �nd

the emission coe�cient from a thermal gas, we simply average over the velocity distribution:

�� =

Z 1

vmin

dW

d� dt dV
dP (v):

Note that there is a minimum allowable velocity vmin in the problem. This arises because the electron
must have a kinetic energy of at least 1

2mev
2 = h� in order to emit a photon of frequency �. This is a

photon discreteness e�ect; photons must be emitted in quanta.
For Maxwell-Boltzmann statistics, we know that dP / e�E=kTd3v = e�mv2=2kT4�v2 dv, where we have

assumed that the velocities are isotropic. For a gas at temperature T ,

P (v) = 4�ne
� me

2�kT

�3=2
v2e�mev

2=2kT :

To do the integral, change variables to v0 = v � vmin. The integration range is then 0 to 1, and we can
pull out a factor e�me(�vmin)

2=kT = e�h�=kT . The result is
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� 6:8� 10�38Z2neniT
�1=2e�h�=kT �gff erg s�1 cm�3 Hz�1;

where �gff is the Gaunt factor averaged over velocities. Note where each of the factors in this expression
comes from. The exponential cuto� is due to photon discreteness and the exponentially small number of
very high-energy electrons in a Maxwellian distribution. The T�1=2 arises because the power emitted by
a single electron scales as v�1 / T�1=2. The process depends on an electron encountering an ion; the rate
of this is obviously proportional to neni.

The total power loss to bremsstrahlung can be found by integrating over all frequencies:
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where �g is now the frequency average of the velocity-averaged Gaunt factor. This factor will be in the range
1.1{1.5, and a good approximation is 1.2. Note that the total power lost to the electron is proportional to
T 1=2 / v / E1=2; where E is the energy of the electron.
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