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Chapter II1.

LINE RADIATION AND SPECTROSCOPY

Claude R. Canizares

II1.1 THE FORMATION OF ATOMIC X-RAY LINES
IIL.1.1 The Strongest X-ray Lines

The temperatures of interest in X-ray astronomy are T > 3x10° K, wich corresponds to
energies kT > 200 eV. We can compare these values to the energy required to strip the last
electron from a nucleus of charge Z, E; = 13.6 Z? eV. Here E; stands for ionization energy, and
the expression follows directly from the quantum mechanical description for the one-electron
atom or, more simply, from the Bohr model. The two most abundant elements in the universe, H
and He, have ionization energies of 13.6 and 54.4 eV, so at temperatures above a few million
Kelvin they will be fully ionized and cannot emit characteristic atomic lines. This means that the
important lines in cosmic X-ray spectra come from the heavier trace elements or metals, which
will be highly ionized but generally not fully stripped. Metals with cosmic abundances > 1075 that
of H (by number) are listed in Table 3.1 together with some of the dominant ionization stages
and lines.

For a given element, the strength of a particular line depends on several factors, each of
which is discussed in more detail below. The most important factor is the relative population of
the requisite ion. This depends on the local thermal and radiation environment and possibly on
the thermal history, but in general ions which are relatively harder to ionize can exist over a
wider range of temperatures. As for neutral atoms, these more stable ions are those with
completely filled electron shells, so it is not surprising that He-like (2 electrons, 1 filled shell)
and Ne-like (10 electrons, 2 filled shells) ions dominate. Hydrogen-like (1 electron) ions are also
important.

All ions with a given number of electrons form what is called an isoelectronic
sequence. For example, the He-like isoelectronic sequence includes C V, O VII, Ne IX and Fe
XXV. The ions in an isoelectronic sequence have similar internal structure. To first order, the
electronic states differ only by scaling factors: for example, energies are larger by a factor Z 2
and radii are smaller by a factor 1/Z.. In multielectron ions, the effective positive charge (in
units of |ef) acting on an electron, Z.g;, is smaller than the total nuclear charge, Z, due to screening
by other electrons. Because of this scaling, the strong lines in the X-ray band from a particular
ion generally correspond to strong lines in the optical or UV spectrum of the neutral member of
its isoelectronic sequence. For example, the H-like ions have strong Lyman o lines at energies
10.2 Z2 eV, and the He-like ions have strong lines at 21.2 Z? eV, which correspond to the strong
n=2 to n=1 transition at 584 A in neutral He. The scaling is not precise, however, because of
higher order effects, such as relativistic corrections to the energy levels which grow like Zg*.



II1.1.2 Line Emission

Spectral lines are emitted by an ion that makes a transition from an excited state to a
state of lower energy. For most elements of interest, a state is best characterized by the quantum
numbers LSJM, where L is the total orbital angular momentum, S the total spin, J the total
angular momentum and M the projection of J on an arbitrary axis. This is called LS coupling. In
the absence of an external magnetic field, the energy of the state is independent of M, so
transitions usually refer to levels labeled by LSJ. The degeneracy or statistical weight of a level
is 2J+1, the number of possible values of M. Levels differing only in J have nearly identical
energies (the J dependence is the fine structure) and form a term. Spectral lines from transitions
between the various levels of two terms are called a "multiplet." Despite these precise
definitions, the word szate is often used to describe a level or term.

Because of the various ways in which angular momenta can be added in a multi-
electron ion, a given configuration of individual electron states, or orbitals, can combine to give
a variety of possible atomic states. The electron orbitals are specified by the principal quantum
number n, and the orbital angular momentum /. Therefore, the standard notation indicates both
the configuration and the level. For example, the ground level of a He-like ion is 2s* 'S, (see Fig. -
3.1), an excited level is 1s2p >P,, and an excited level of a Ne-like ion is 1s?2p*3d 'P,. Here each
orbital is labeled in spectroscopic notation, with principal quantum number n flollowed by
s,p,d.f,g... corresponding to orbital angular momentum /=0,1,2,3,4.... When an orbital appears
more than once in a configuration, it carries an appropriate exponent called the occupation
number. The notation often omits orbitals for lower-lying closed shells that do not change during
a transition. The total angular momentum is designated by upper-case letters preceded by a
superscript that denotes the multiplicity 2S+1 and followed by the subscript J. If the subscript is
omitted, the notation refers to the entire term. It is common to refer to "orbitals" as "electrons,"
as in "a 2p electron," even though the actual wave function cannot assign a particular electron to
a given orbital (rather the wave function must be a fully anti-symmetric combination of orbitals
often expressed as a Slater determinant). '

For historical reasons the n=1,2,3,4,... orbitals are also refered to as the K,L,M,N....
shells. This nomenclature is also used for X-ray lines. The K,L,M,N... lines are transitions to the
shell with n=1,2,3,4,.... An additional greek letter, o.p,,..., denotes transitions with An=1,2,3,...,
(e.g. the KB line refers to the n=3 to n=1 transition), and numerical subscripts are used to further
distinguish between multiplets, if necessary.

Radiative Transitions

The strongest lines correspond to electric dipole transitions (Rybicki and Lightman
1979, pp. 271ff). These are the lowest order terms in a semi-classical perturbation series
expansion of the interaction of an ion with an electromagnetic field.

The probability per unit time of a spontaneous downward transition from upper state u to
lower state | is given by the Einstein A coefficient,

A, = [0¥/3cP][2I<ulerlI>I]%. 3.1

Here o is the angular frequency of the emitted photon. Electric dipole transitions can occur only
between levels that satisfy the selection rules AS = 0, AL = 0,+1 excluding L=0 to L=0, AT = 0,1
excluding J=0 to J=0 (these apply to pure LS coupling), because for all other transitions the
matrix element of equation 3.1 vanishes.



Equation 3.1 is similar to the classical electric dipole approximation for the power
radiated by an oscillating charge distribution,

P = [0*/3c*]p.%, 32

where p, is the amplitude of the classical electric dipole moment, p(t)=Re[p,e/®]. Equation 3.1
can be obtained from 3.2 by noting that for a radiating atom, P = JwA,, and by making the
correspondence between p, and 2l<uleril>l. When the transition refers to two levels, the matrix
element is replaced by an appropriate average Over the upper states and a sum over the lower
states.

The transition probability is often expressed in terms of the oscillator strength £,
(Cowan 1981, p. 404; Tucker 1975, p. 96), :

Ay = -[2€%0?/mc?] £y, 3.3
= -a3 £, [Ey/Ry] o, 3.4
so f; = -[2ma/3e?] I<ulerll>P?, 35
= -[1/3] [E/Ry] [I<ulrll>|/a 2. 3.6

The (positive) energy difference between the two states is E,; =Ho, Ry is the Rydberg Ry = 13.5
eV), a, =#/me? = 0.5 Ais the Bohr radius of hydrogen, and o = e*#c = 1/137 is the fine structure
constant. The oscillator strength is a dimensionless quantity whose definition is more
straightforward when one considers photon absorption accompanied by a transition from 1 to u:
when f, = 1, the quantum mechanical absorption cross section integrated over frequency is
identical to that of a classical harmonic oscillator of charge e. In general, f is not far from unity
for electric dipole transitions. The minus signs in equations 3.3 and 3.4 reflect the convention
that emission oscillator strengths are negative. One of several sum rules states that the sum of the
oscillator strengths for all possible upward or downward transitions from a given state exactly
equals the number of electrons in the atom. In that sense, the aggregate behavior of the electrons
in an atom is that of a equal number of classical harmonic oscillators. 3

We can obtain estimates of the magnitudes of A and f for X-ray lines by considering a
hydrogenic ion of charge Z. In equation 3.6, E/Ry ~ 7?* while I<ulrll>l/a, ~ 1/Z, so Ifl is of order
unity and is independent of Z. Independence from the strength of the Coulomb force is plausible
because the integrated absorption cross section for a classical harmonic oscillator is independent
of its restoring force (which does, however, fix the resonant frequency). Evaluating equation 3.4
for the Einstein A coefficient gives

Ay~10°Z¢sL, 37

Non-hydrogenic ions follow the same scaling with Z replaced by an appropriate Z.g. Therefore,
the strong X-ray lines of Table 3.1 will typically have spontaneous transition probabilities of 102
to 10'4 s-1. Correspondingly, an excited state that can decay by electric dipole radiation has a
characteristic decay time of 1072 to 10 s. The relative strengths of lines of a given multiplet
follow general rules (which hold to the extent that LS coupling is valid). The strongest lines have
AJ = AL, the sum of the strengths of all lines that originate (or end) on a given level J is oc 2J+1,
and the total strength of all lines in a multiplet is e 25+1.

After electric dipole transitions, the next highest order terms are the electric quadrupole
and magnetic dipole transitions. The transition probabilities for each of these is many orders of
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magnitude smaller, although in some cases they increase with Z g relative to the electric dipole
term along a isoelectronic sequence. Higher order transitions are observed as forbidden lines if
they provide the only path for radiative decay of a metastable state and if collisional
deexcitations are rare, as is usually the case in low density astrophysical plasmas. In highly
ionized atoms, forbidden transitions between levels in the same term are visible in the optical.
For example, the 3p 2Py, to 3p 2p, , transition of Fe XIV at 15303 is prominent in the solar
corona (hence its designation as a coronal line) and has been seen in several galactic supernova
remnants and active galactic nuclei.

Transitions that apparently do not obey the electric dipole selection rules readily occur
in multielectron atoms for which the eigenstates are not pure LSJM states. An important example
is the intercombination or intersystem line of the He-like isoelectronic sequence (see Fig. 3.1).
This 1s2p 3P, to 1s? 'S, transition violates the AS = 0 rule. It occurs because the true excited
eigenstate includes a very small contribution from the 1s2p 1P, level which can decay to the IS
ground state by electric dipole radiation. Another forbidden transition to the same ground state
from 1s2s 3S, occurs by magnetic dipole radiation because of a similar mixing of levels;
otherwise this level could only decay by two photon emission, which is of still higher order. The
r%}adtive strengths of these lines are effective as diagnostics of the emitting plasma (see Section
IV.4).

The spectra of high temperature plasmas often show secondary lines at energies only
slightly removed from those of strong electric dipole transitions of a given ionization stage.
These satellite lines involve the same electric dipole transition, but the radiating atom contains
one or more additional loosely bound electrons. The extra electrons do not participate in the
transition, but they cause a slight shift of the atomic energy levels and hence a shift in the energy
of the emitted photon. For example, satellites to the strong 1s2p 'P - 1s? 'S transitions in He-like
ions are caused by Li-like ions (e.g. 1s2p? 2D - 1s?2p ?P, which in iron occurs at an energy lower
by 0.7%; see Fig. 3.1). Initial states for satellite transitions often follow dielectronic
recombination or inner shell excitation (see below), and the relative strengths of satellite lines
can be a sensitive plasma diagnostic (see section II1.4).

II1.1.3 Excitation and Ionization
Collisional Excitation

An inelastic collision of an electron with an ion can leave the ion in an excited state.
Classically, the cross section for this process is

P
Ol = Jl P,,(r) 2nr dr, 3.8
0

where P, (1) is the probability that an electron with impact parameter r will induce a transition
from state 1 to u. The form of the quantum mechanical expression can be obtained from equation
3.8 by replacing the integral over r with a sum over the quantized angular momentum of the
scattering electron of velocity v (Aller et al. 1940). Using mvr = V[, (1+1) M and E, = mv?/2 gives

(V) = nWmv)? £(21,+1) P (L) 3.9
= nYmv)? [Q/(2T+1)] ' 3.10
= na 2(Ry/B)[Qu/ I +1)]. 3.11



In equations 3.10 and 3.11 the sum in equation 3.9 has been replaced by the collision strength Q
for the transition, which is obtained from the Born approximation by summing the appropriatg
matrix elements over 1, and averaging over the states of the initial level 1 (Bell and Kingston
1974). The collision strength is nearly independent of the velocity of the electron, so equation
3.10 implies that 6,,(v) « v2. For the strong transitions of Table 3.1, Q, ranges from 0.005 to
0.15 and is roughly approximated by

Q/(21+1) = 4 (RY/Ey,). L8312

In a thermal plasma at temperature T, the total collisional excitation rate coefficient R,u
is obtained by integrating equation 3.10 over the Maxwell-Boltzmann distribution of electron
velocities f(v),

[ o :

Ry= | vouv)f(v)dy, 3.13
Jv,

where

f(v) = dn[m/2nk T ?v?exp(-EJKT}, | 3.14

and mv /2 = E;,. We define R;, so that the number of collisions per ion per second in a plasma
with electron density n, is n. R;,. The integration in equation 3.13 gives

R,, = 2n¥m)? Q@ V[m/2rkT] exp(-E,/kT), 3.15
= 8.6x10° T2 Q’ exp(-E,/kT) cm? s°L. 3.16

Here Q' is Q;/(2J,+1) averaged over f(v), but because of the weak dependence on v the averaging
does not have a strong effect. A frequently used approximation which relates Q’ to the oscillator
strength f; of the transition (see 3.4 - 3.6) is

Q= [8r/N3] £, [RY/E] <g(T)>, 3.16b

where <g(T)> is a correction factor (Gaunt factor) averaged over the Maxwell-Boltzmann
distribution (Tucker 1975, p. 280; Burgess and Summers 1987). It is a weak function of T with
typical values of 0.1 - 0.2. Generally, Q' is corrected upward by 5-10% to account for the
contribution of cascades following excitation to higher levels that are otherwise not accounted
for.

The exponentials in 3.15 and 3.16 reflect the fact that only electrons with speeds
greater than v, can excite the ion. Using 3.12, typical values of Ry, for plasma of T = 107 to 10K
are 109 to 1012 cm3 571,

Equation 3.15 shows that R, =~ m™?, so in general proton collisions will be nearly
100,000 times less effective than electron collisions at causing transitions.

Photoexcitation

Absorption of a photon can excite an ion to an upper level. The photoabsorption cross
section is sharply peaked at frequency w, = E;,M with a width usually determined by the thermal



Doppler motion of the ion, Aw/w = V[2kT/Mc?], where M is the mass of the ion (Rybicki and
Lightman 1979, p. 287). The peak value of the cross section is

01 (®0,) = -(me?/mc) fi, 2Vn/Aw. 317
Note that
(Aw/27) oy, (0,) = (fi/VT) [re?/mc]. 3.18

The second factor on the right of 3.18 is the absorption cross section integrated over frequency
for a classical harmonic oscillator of charge e; the first factor gives the quantum mechanical
corrections. Equation 3.17 can be rewritten,

01(@0)= 42 a.2 £ (Ry/E,,)Ry/KT)"*(M/m)'? 3.19

Typical values for transitions of interest are ~ 10716 - 107 cm?.

Collisional Ionization

An inelastic collision of an electron with an ion can eject one of the bound electrons,
leaving the atom in the next ionization state. This process is clearly similar to collisional
excitation, with the upper level u replaced by a continuum electron state. Therefore, the cross
section oy, should bear some similarity to oy, of equation 3.11. A classical estimate of o, which
has the correct order of magnitude can be obtained from the Rutherford formula for the Coulomb
scattering of two charged particles, considering only those trajectories that transfer energies >E;
(Seaton 1962; Bell and Kingston 1974). This gives

oy classieal = 3 2 (E/E,)? (EJ/E; - 1) for E, > E. ' *.3:20

Various approximate quantum mechanical calculations have given mixed results when compared
to experimental data even for hydrogenic ions, so most computations make use of semi-empirical
formulae. The main correction to 3.20 is a factor In(E./E;), which changes the behavior at high
energies. For multielectron atoms, equation 3.20 must be multiplied by the number of electrons
in a shell and summed over shells.

In a thermal plasma, the collisional ionization rate coefficient, R defined analagously
to R,, in equation 3.13, can be approximated by

R, = 7x10°1! T2 uF (Ry/E})* exp(-Ey/kT) cm’ 57, 321

where v is the number of outer shell electrons and F is a factor or order unity (e.g. F = 1.5 for Fe;
Seaton 1964, Ragmond and Smith 1977) . Applying this to O VII at 107 K, for example, gives
R.3=2%10:!! cm® 571,

Autoionization

In multielectron atoms, an inelastic collision can transfer to the atom more energy than
is required for ionization yet leave the atom: in a bound, excited state. This occurs when the
collision raises an inner shell electron to a sufficiently high level or when it excites more than
one electron. Such a doubly excited or autoionizing state can decay radiatively, leaving the atom
its original ionization stage. Alternatively, it can decay non-radiatively by ejecting an electron,
further ionizing the atom; this latter process is called autoionization. An example is an atom
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initially in the 1s*2s?2p configuration, which is excited to the 152522p? configuration. It can
radiatively decay to its initial configuration or it can autoionize by ejecting one of the 2p
electrons in a transition to 1s22s2. Deexcitation by collision with yet another electron is possible
but very rare at the densities of astrophysical plasmas. Autoionization is particularly important
for configurations with many inner shell electrons and only one or two outer shell electrons, such
as the Li, Be, or Na isoelectronic sequences.

Estimates of the autoionization rate coefficient can be obtained by multiplying Ry, the
rate coefficient for collisional excitation of an inner shell electron (eq. 3.16), by a branching
ratio that gives the fraction of ionizations that actually occur from the autoionizing state. Typical
values for Q' times the branching ratio are 0.1-0.5. Comparing this rate to that of direct
collisional ionization (eq. 3.21) shows that the two processes are of similar importance in
plasmas at X-ray temperatures. More precise computations of the autoionization rates of highly
ionized species are difficult. Although consideration of equation 3.16 and computations for
hydrogenic ions predict no strong dependence of the rate on Z, experiments show that simple
extrapolation along an isoelectronic sequence is not possible. Imprecise autoionization rates have
been a major source of uncertainty in calculations of the ionization equilibrium in thermal
plasmas (Shull and van Steenburg 1982).

Photoionization

. _ Photoionization is related to photoexcitation in the same way that collisional ionization
is to collisional excitation. The cross section has a form similar to that of equation 3.17

o1.(@) = (ne?/mc) 2x df, /dw. 3.22

The last factor is the oscillator strength per unit frequency for transitions to the continuum from
level 1. An approximation for this can be obtained by extrapolating f;, for hydrogenic ions, which

gives :

Gpe(@) = (641/3V3) aa 2 (/Z?) (B, /E,.)°, 3.23
=7.9x10"'® (n/Z?) (E,/E, )’ cm?, 3.24
with E > Ep.

Here n is the principal quantum number of the level, Ey, is the ionization energy and E,, = ho.
More exact expressions include a correction factor (or Gaunt factor) g(E,.,n), which alters
slightly the energy dependence (Cowan 1981; Tucker 1975, p. 241).

X-rays absorption by neutral or slightly ionized atoms will generally result in the
ejection of an inner shell electron, leaving an ion in a highly excited autoionizing state. In this
case, the subsequent decays often eject additional electrons. Autoionization following a vacancy
in the innermost shells of an atom is called the Auger process. For neutral atoms of intermediate
Z, like C, N, and O, >99% of the inner shell ionizations are followed by emission of a second,
Auger electron. In higher Z atoms, such as Fe, the increased probability of radiative transition
(see 3.7) reduces the likelihood of Auger autoionization. v

II1.1.4 Recombination

Radiarive Recombination




The process of electron capture by an ion to produce a photon and an atom in the next
lower stage of ionization is the inverse of photoionization. The cross sections for two such
competing processes can be related to one another by using the principal of detailed balance.
This exploits the fact that an ion in true thermodynamic equilibrium with a radiation field must
have equal net rates of destruction by photoionization and of formation by radiative
recombination. The relative population of the ionization stages is set by thermodynamics (the
Saha equation) as is the radiation field (the Planck black body formula). Using these, detailed
balance fixes a relation between the two cross s_cctions that must hold whether or not the ion is in

equilibrium (this is the method used by Einstein to relate the A and B coefficients for radiative
transitions):

6a(Ed) = W o (BA+EDYRYED ai(0). . ' 3.25

Here o4(E,) is the radiative recombination cross section for electrons of energy E,, Ej is the
ionization energy for level 1 of the recombined ion, o = (E, + ED)M’ W is the ratio of the statistical
weight of level 1 to that of the recombining ion, and o, is given by equation 3.22. Using the
approximation of 3.23 gives an expression valid for recombination to the nth shell of hydrogenic
ions

Sem(Ee) = (32/3V3) no? ma 2 {E /[(E+E)E ]}, : " 3.26
=2.1x102 n (E,%/[(E.+E)E.]} cm?. 3.27

Using 3.26 and 3.27, we can compute the radiative recombination coefficient for a thermal
plasma, defined analagously to equation 3.13 (Cowan 1981, p. 547; Tucker 1975, p. 218):

oo = 5.2x10 n (E/Ry)? (Ry/kT)*? exp(EL/kT) €, (E,/kT) cm® s, 3.28

:
with g,(x) = J| e? dy/y (e.g. (1) = 0.22). 3.29
X

For example, o = 2.5x10"3 cm?® s°! for E/k =T=10"Kand n = 1.

At densities above 108 cm? three body recombination is also important. This is the
inverse" of collisional jonization; the energy released by the recombining ion is carried off by
the additional electron. A -

Dielectronic Recombination

) Dielectronic Recombination is the inverse of autoionization. In this case a free electron
is captured by an atom. However, the excess energy is not radiated, as it is in radiative
recombination, but appears as an additional excitation of the atom to an autoionizing state. Using
the example from our description of autoionization, an jon in the 1s?2s? configuration makes a
radiationless capture of an electron, which leaves it in the 252s22p? configuration. Then its fate is

thc_sa_mc as described earlier: it can autoionize, returning to its initial configuration, or it can
radiatively deexcite to give 1s22s?2p, which accomplishes the recombination.

Although the rate of formation of an autoionizing state is relatively independent of the
degree of ionization, dielectronic recombination becomes increasingly important relative to
radiative recombination along an isoelectronic sequence. This is because the probability for
radiative decay from this highly excited state increases rapidly with Zg (see for example €q.
3.7). In X-ray emitting plasmas, dielectronic recombination is generally the dominant process for
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non-hydrogenic ions. For example, for Fe XVII in a 10’ K plasma the rate for dielectronic
recombination is ~6 times the radiative rate. However, at densities >10'2 ¢cm?® dielectronic -
recombination will be suppressed because collisional ionization of the intermediate, autoionizing
state reduces the branching ratio of radiative decay.

A rough approximation for the dielectronic recombination rate coefficient for ions with
Z.¢ ~ 5 - 15 in a thermal plasma at temperature T is -

of = 5x10'!! (KT/Ry)3? Z 57 exp(E/kT), 3.30

(Cowan 1981, pp. 549ff; Tucker 1975, p. 223). Here E; is the ionization energy of the
recombined ion. Equation 3.30 gives od ~10°!! cm® s! for reasonable values of the parameters.

The radiative decay of an autoionizing state following dielectronic recombination can
give rise to satellite lines. These are lines at energies very close to those from radiative
transitions of singly excited states of the unrecombined ion. An example is the dielectronic
recombination of He-like ions to the autoionizing state of the Li-like ion 1s2pnl. This can decay
to the stll excited state 1s’nl. The emitted photon will have an energy close to that of the
corresponding He-like transition 1s2p - 1s?; the difference in energies comes from the
perturbation of the energy levels by the "spectator” nl electron. For n = 2 or 3, the satellite lines
can generally be resolved and often give important diagnostic information about the emitting
plasma. For larger n or in lower resolution studies the satellite line simply adds to the intensity of
the He-like line. The relative increase in the dielectronic recombination rate with Z , means that
the relative strength of satellite lines also increases along an isoelectronic sequence (see III.4. for
further discussion).



1.2 CORONAL PLASMA
I11.2.1. Fundamental Properties

Astrophysical X-ray line emitting plasmas cover a vast range of density, size and age.
Table 3.2 lists some typical values for these parameters (see also more detailed chapters on each
of these systems). How they are determined is described in Section II1.4 below. From the point
of view of atomic physics, astrophysical plasmas can be divided into two broad categories:
thermal plasmas and photoionized plasmas. Thermal plasmas are discussed in this section, and
photoionized plasmas in section IIL.3.

Despite the range of parameters in Table 3.2, nearly all the thermal plasmas have
common characteristics. First, most have sufficiently low particle densities that collisional
excitation occurs at a much lower rate than radiative decay. We can see this by comparing the
relevant time scales. Equation 3.16 gives a collisional excitation time scale of 10" n.! to 10"
n,! s, whereas the radiative decay time scale for electric dipole transitions is 102 1o 10 s
(equation 3.7). Thus decaw% proceeds at a much faster rate than excitation in any plasma with
density less than n, = 102 cm?, a limit that exceeds the typical values for even the densest:
regions in the solar corona. Even an ion excited to a metastable state typically has time to decay
radiatively by a higher order transition before being disturbed by a collision. This means that in
most astrophysical plasmas, an ion is nearly always in its ground state, and when it is excited, it
generally decays by photon emission. With homage to the solar prototype, such systems are
called coronal plasmas (see Pallavicini 1988).

Another characteristic of such a relatively low density plasma is that it is optically thin,
meaning that a radiated photon has very little chance of interacting before it leaves the plasma.
For a continuum X-ray photon, the most important absorption process is photoionization of
intermediate Z elements, which has a cross section near threshold given by 3.24. In a plasma, the
effective cross section depends on the elemental composition and the degree of ionization. Figure
3.1 shows the effective absorption cross section o,,,(E) for photons of energy E normalized per
hydrogen atom for a mix of elements with cosmic abundances at various temperatures. For T 2
10° K, 0,,(E) < 102 cm? for all E. The column densities, n L, of all the thermal plasma sources
in Table 3.2 are < 10?!, so most continuum photons will escape. .

The thermal plasma sources have greatest opacity for line photons emitted by atomic
transitions to the ground state of an abundant ion, because these generally ‘have just the right
energy to excite another ion from its ground state. Equation 3.19 gives a typical peak cross
section of 10'6 cm? for photoabsorption in a strong line. To compare with the column densities
of Table 3.2, the cross section must be multiplied by the abundance of the ion relative to
hydrogen (Table 3.1), For a strong line of oxygen, for example, the peak cross section could be
as large as ~ 109 cm? at some temperatures, so some astrophysical systems will not be optically
thin to all line photons. For strong transitions, however, the absorbing atom will usually just
reemit a photon in the same line; the net result of the absorption is merely a nearly elastic
scattering of the original photon. This phenomenon is resonance scattering, and lines involving
transitions to the ground state are resonance lines. Resonance absorption can alter the emitted
spectrum if the atom has alternative transitions from the upper level (i.e. in a hydrogen like ion a
Lyman g n =3 to 1 line can be converted into a Balmern =3 to 2 lineand a Lymanan=2to 1
line). Furthermore, rzsonance scattering causes a photon to random walk th;ough the plasma,
which temporarily traps it (so-called resonance trapping), increasing its effective path length and
making it more susceptible to continuum absorption. In non-spherical geometries, such as in
solar coronal loops, resonant scattering can alter the angular distribution of the line emission.
This last effect has been seen in the sun.
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IT1.2.2. Statistical Equilibrium

lonization Balance

Coronal plasmas are far from being in true thermodynamic equilibrium. In
thermodynamic equilibrium the relative populations of the excited states of an atom are derived
from the Boltzmann distribution; in a coronal plasma atoms are nearly always in their ground
states. In thermodynamic equilibrium the radiation field is that of a black body; in a coronal
plasma the radiation, mostly bremsstrahlung and lines, has many orders of magnitude less
energy density and barely interacts with the matter.

In a steady state, the relative population of the ionization stages of an ion in a coronal
plasma can be deduced from the principle of statistical equilibrium: the total number of
ionizations to the next higher stage must equal the total number of recombinations from that
higher stage (this approach can be extended to encompass multiple ionization such as the Auger
process),

n(X") Ryr(T) = n(X™!) ayxe1(T), 3.31
n(XYnX™) = ayee1(TYRye(T). 332

Here n(x") is the density of element X in ionization stage r, R(T) is the collisional ionization rate
coefficient and a(T) is the recombination rate coefficient. We assume that the electrons in the
plasma have a Maxwellian velocity distribution of temperature T (see Section II1.2.3). In general,
R is dominated by direct collisional ionization (see eq. 3.21); autoionization can also be
important, especially for multielectron ions with only one or two outer shell electrons.
Photoionization is generally negligible if the column density is < 10 cm. Similarly, a includes
contributions from radiative recombination (3.28) and dielectronic recombination (3.30); the
latter can dominate for some ions. :

Figure 3.2 shows the ionization fractions at equilibrium for oxygen and iron in a
coronal plasma as derived from equation 3.32. In general, the ion of maximum abundance in a
coronal plasma has ionization energy E; ~ 1-3 kT. Coronal plasma is less highly ionized than
plasma at thermodynamic equilibrium at the same temperature, in which the most abundant ions
typically have E; ~ 3-10 kT.

Line Emission

Because the radiative time scale is generally much shorter than the collisional time
scale in a coronal plasma, the strength of a line from a given transition depends almost entirely
on the rate at which the upper level of that transition is populated. For most strong lines this rate
is dominated by collisional excitation. Thus the power emitted per unit volume in a line from the
l-u transition of ionization stage r of element X is

P, =nnX" E, R, ergcm3 s, 3.33

where R,, the collisional excitation rate coefficient from equation 3.16. Equation 3.33 is often
rewritten as

P,/n.2 = [n(H)/n] [n)/n(ED)] [n(XH/nX)] Ey, Ry, erg cm’ sl 3.34
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The first factor on the right hand side is the number of hydgrogen atoms per electron, which is~ ~

~[1 + 2n(He)/n(H)]"! = 0.85 for cosmic abundances. The second factor is the abundance of
element X relative to hydrogen and the third is the fraction of ions of X in the r* ionization stage.
The ionization fraction is the most temperature sensitive factor in equation 3.34, so the maximum
line emission occurs at the temperature at which the ion is most abundant. For strong lines, peak
values of P, /n 2 are ~10% erg cm® s'!. Peak values for the strongest lines are given in Table 3.1)

Cascades from excitations to higher levels and from radiative and dielectronic -
recombination can also populate the upper level of a transition and contribute to line emission.
Generally these processes are important only for higher order transitions such as forbidden and
intercombination lines in He like ions (see II1.4). 5"

Continuum Emission

Thermal bremssmrahlung (see Chapter I) is the main source of contiuum photons,
although there are also contributions from radiative recombination and two-photon decays from
levels with no single photon decay path. For example, at 107 K bremsstrahlung contributes ~90%

of the continuum at ~ 1 keV and ~50% at 5 keV, most of the remainder is from radiative -

recombination. Two-photon emission is only important around 0.5 keV for T ~ 10° K. At 10* K
bremsstrahlung dominates at all energies. It is possible to modify the bremsstrahlung Gaunt
factor of equation 1.xx to approximate all continuum emission processes,

G(T) ~ 5.6x10"3 T2 + 6.3x10°5 E034 192, 3.35
(Mewe and Gronenschild 1981, eq. 47).

Calculated Spectra

Computations of the total line and continuum emission from an isothermal coronal
plasma with cosmic abundances have been carried out by several authors (e.g. Raymond and
Smith 1977, Mewe et al. 1985) who are periodically update their computer codes to incorporate’
improvements in the atomic physics (Raymond 1988). Figure 3.3 gives an example of the
calculated spectrum of a coronal source at 107 K. For each significant emission line, the models
give the emissivity Plu/n.2 (eq. 3.34) at discrete temperatures from 10° to 10° K (figure 3.34).
Model spectra can be integrated to give the total emissivity, A(T) of a thermal plasma, and such a
cooling function is shown in Figure 3.4. As the figure shows, the intgrated line emission is the
major component of the radiation for all T < 10’ K, and at some temperatures, only a few lines
dominate. Observers using detectors with moderate or low spectral resolution, like a silicon
detector or proportional counter, fold their instrument response functions with the results of these
models to create libraries of fitting functions that they apply to the data. High resolution
spectrometers, like Bragg spectrometers, gratings, or calorimeters, measure individual line
strengths which can be compared directly to the model calculations (Holt 1989, Canizares 1989).

I11.2.3 Departures from Equiiibrium

There are three equilibria relevant to coronal plasmas, each of which can affect the
emitted spectrum. First, there is the equilibration of energy amongst the electrons, leading to the
Maxwell Boltzmann velocity distribution. Second, there 1s the equipartition of energy between
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protons and electrons, and third there is the equilibration between jonization and recombination
that leads to the steady state distribution among ionization stages. In many cases, the time scales
for establishing the various equilibria are long compared to the age of the astrophysical object or

1o the time scale for impulsive heat input, as in solar flares.
Non-Maxwellian Electron Distribution

Energy exchange between electrons by elastic Coulomb scatterinfg has the shortest time
scale of the processes considered here. It is given roughly by 0.011 n.! T3Z s = 3x108 n,1sfor T
= 107 K (Spitzer 1978, pp. 20ff). Comparison with Table 3.2 shows that in all astrophysical
plasmas this time scale is short compared to the age of the system. For this reason, nearly all
computations assume that the electrons have a Maxwellian velocity distribution.

In situ measurements of electron velocities in the solar wind and in planetary
magnetospheres do show departures from Maxwellian distributions, but even if similar
departures occur in the systems of Table 3.2, they will probably not alter significantly the line
emitting characteristics of the plasma. Itis thought that departures from Maxwellian distributions
occur where there are large gradients in temperature and density, because the longer mean free
path for high energy electrons enables them to migrate from hotter to cooler regions thus
distorting the velocity distribution in the cooler region. In line emission, the electron velocity
distribution enters as a weighting factor in the calculation of the mean interaction rate
coefficients of section IIL1 (see Eq 3.13). Sample computations show that distortions of the
distribution have little effect on the recombination rates and affect ionization (or excitation) rates
only when E; > 8-10 kT, whereas in ionization equilibrium E; ~ 1-3 kT (Owocki and Scuder

1983).

Unequal Electron and Proton Temperatures

If a plasma is heated by 2 shock wave, it is possible that the protons will be raised to a
higher temperature than the electrons. Such a situation may occur in supernova remnants, where
Tpfl' . could be as high as mP/rne just inside the shock front (see Section VILE). It may be that
collective plasma processes rapidly equilibrate these temperatures, otherwise eC}uilibration will
only occur on the ime scale of electron-proton Coulomb collisions, which is ~10 In1s (McKee
and Hollenbach 1980). All the processes of section ITI.1 depend on the electron temperature, SO

. .

models of line and continuum emission computed with T = T, can be used in any case.

Non-Equilibrium Ionization

The time scale for ionization of an atom to its next ionization stage is (n,R,)* which,
for example, is ~5%x10'2/n, s for OVIL at 107 K (see Eq. 3.21). Comparison with the parameters of
Table 3.2 shows that many supernova remnants are too young to have achieved ionization
equilibrium and that solar flares will approach equilibrium on a time scale accessible to
observation. For these systems, the assumption of ionization balance of Eq. 3.32 is not justified,
and it is necessary to follow in detail the time dependence of the ionization state of the plasma.

The time dependent equation for the ionization fraction £(X) of the " jonization stage
of element X,

£(X") = n(XH/n(X), 3.36

is given by
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df(X")/dt = ne{er-lf(X"l - (Ryr + axnf(x") + ayr+1f(x™) ), 137

It is convenient to substitute T = tn, in this expression, which removes the explicit dependence on
n,. An element of charge Z will have Z+1 such coupled equations with the added condition that
s§ = 1. These can be integrated numerically (Mewe and Schrijver 1978) or solved by a more
general eigenvalue technique (Hughes and Helfand 1985).

Examples of the temporal evolution of the ionization fractions for O and Fe are given
in Figure 3.5, assuming impulsive heating of the electrons to 107 K at t = 0. The figures show
that the progression through subsequent ionization stages "stalls” at stages with closed electron
shells (the isoelectronic sequences of the inert gases) such as He-like O VII and Ne-like Fe XVIL.
This means that the lines from these stages will be anomalously strong in plasmas which are still
ionizing. Models of the emission vs. time from supernova remnants, for example, would

incorporate these ionization fractions in Eq. 3.34.

The cooling of a plasma can also cause departures from ionization equilibrium.
However, this is generally not a problem for plasmas that are cooling by emission of radiation
until T < 10° K (Edgar and Chevalie 1986). We can see this by comparing the radiative cooling
time of a plasma with the atomic recombination time scale. The cooling time scale is

teoot = 3(0 + 1 )KT/2 + n 2A(T), 3.38
= 3kT/n A(T), 3.39

where we have divided the energy density by the radiation per unit volume, approximated n, =n,
and ignored the small amount of thermal energy in heavier elements. The cooling function A is
given in Figure 3.5. The recombination time scale is

.. = [n,a’(T)]%, 3.40

with the recombination coefficient of given by eq. 3.28 or 3.30. At T = 1Tt 5 e SO 500
recombinations can easily keep up with the cooling rate. This means that the ionization fractions
will maintain nearly their equilibrium values at each temperature as the plasma cools. This is
reasonable because the the dominant contribution to the cooling function for T < 108 K is the line-
emission from the very ions in question, and it has been verified by numerical calculations using
Equation 3.37. As a result, the line emission from cluster cooling flows, for example, can be
found by an apporpriate superposition of equilibrium models (see section VII D). Plasmas that
cool more rapidly, such as by adiabatic expansion, could be overionized and would require a
fully time dependent models as do plasmas with T < 10°K.

In addition to effects on the ionization fractions themselves, departures from ionization
equilibrium can alter the relative strengths of some of lines from a given ionization stage. This
oceurs for the forbidden and resonance lines of He-like ions, for example, because population of
the upper levels depends on recombinations as well as collisional excitation and the relative
importance of these processes changes when the plasma is either under-ionized or over-ionized
for its electron temperature. Thus these line ratios become diagnostics for non-equilibrium
inonization (see I11.4). y

I11.2.4 Moderately Thick Plasmas

When the column density in a plasma is > 1/or, where or is the Thompson scattering
cross section (equation 2.xx), electron scattering will alter the spectrum of the emitted radiation.
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The distortion of the continuum spectrum is described in Chapter I1.2(?). A line photon thatxs
Compton scattered by an electron in the emitting plasma will typically have its energy altered by..
an amount 5

Aw/e ~ kT/mc)2 = (1/16)(T/107K)!%, 3.41

(see equation 2.xxx). Equation 3.41 shows even a single scattering is sufficient to completely
remove the photon from the line, so that the effective line emitting volume of the source is
limited to a thin layer near the surface from which the photons can escape freely. If one considers
only electron scattering, the thickness of this layer is ~(4nor).

Resonance lines are even more susceptible to diminution by Compton scattering
because of the resonance trapping phenomenon described in III.2A. The importance of resonance
trapping depends on a parameter which is roughly the ratio of the electron scattering to resonance
scattering mean free paths

B = (nop)/(x'*n(XNoy,(0,)), 3.42
~ 4x10%/(n(X"/n(H)), 3.43

(Felten et al. 1972). In 3.43 a typical value of 10! cm? has been used for oy,(«,), the resonance
absorption cross section at the line center (see 3.19). In general, a strong resonance line will
come from an ion with n(X")/n(H) ~ n(X)/n(H), so for all reasonable abundant elements § will be
small and resonance trapping is important. A proper treatment of resonance trapping requires
consideration of the line profile, because resonance scattering can shift the energy of a photon
from the peak of the line to the wings where the absorption cross section is smaller and the mean
free path larger. The net result is that resonance trapping reduces the thickness of the layer from
which line photons can emerge from the plasma without suffering a Compton scattering by a
factor which is approximately ~0.6/In(B) for § < 0.1. Thus resonance trapping can significantly
weaken the resonance lines relative to lines from forbidden transitions, which are not trapped.

In sources with moderate column densities photoionization can be important or even
the dominant ionization process. This increases the equilibrium ionization stage at a given
temperature. Like the radiative transfer, the ionization balance calculations must take account of
the geometry of the source.
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1.3 PHOTOIONIZED PLASMA
II1.3.1. Fundamental Properties

When a plasma is subjected to strong X-radiation from an external source, its
properties differ considerably from those of a coronal plasma. These conditions occur in the
stellar winds around X-ray binaries and in emission line clouds near active galactic nuclei, for
example. In such plasmas photoionization is more important than collisional ionization and the
ionization struture depends in detail on the spectrum of incident radiation and the geometry of
the system. The simplest case is a plasma that is optically thin to both photoabsorption and
Compton Scattering. Here each ion is assumed to see the full spectrum of the external source at
the appropriate flux for its distance but unmodified by absorption in the intervening plasma.
Furthermore, in this case the radiation emitted at all points by the plasma itself is assumed to
escape freely. However, the observed spectra of X-ray binaries, for example, often show low
energy cut-offs greater than those expected from absorption by interstellar material, indicating
that photoabsorption in the circum-source material is important. Because the Thompson cross
section (see II.xx) is generally smaller than photoionization cross sections (eq. 3.24), plasmas can
be optically thick to photoabsorption but still thin to Compton scattering. Such plasmas are
treated in the nebular approximation, named after the similar treatment of planetary nebulae
ionized by ultraviolet radiation (the thin plasma approximation is itself a special case of the
nebular approximation). Some X-ray binary spectra also show iron lines broadened by Compton
scattering, suggesting that the surrounding plasma is thick to electron scattering as well. In either
case a description of an optically thick plasma involves a self-consistent treatment of radiative
transfer, ionization balance and the balance between heating and cooling.

I11.3.2 Ionization Balance and Temperature

In photoionized plasmas the ionization balance equation (3.31) must be modified to
include the effects of the radiation field (Kallman and McCray 1982):

n(XH[L(P. XD + nRyr] = n(X™Hn,ax«(T). 3.44

Here {(?,X") is the photoionization rate for ionization stage r of element X at the location T in
the plasma, which is obtained by integrating the z}ppropriate photoionization cross section oy, (see
eq. 3.22) over the local radiation flux, j, (erg cm? s Hz'!),

[ o
¢=|  jyor(hv)dv/v. 3.45

VI
The lower limit of integration is the threshold frequency for photoionization, v; = Ey/h.

In the optically thick case, eq. 3.44 must be coupled to a radiative transfer equation and
solved by iteration. The recombination coefficient o. may also depend on density (see section
II1.1.2): for n, > 10° cm?®, dielectronic recombination is suppressed and for n, > 10'® cm™ three-
body recombination becomes important for intermediate Z ions (but not for iron). In the optically
thin case one can negiect all these complications and also assume that collisional ionization 1s
negligible, which gives '

n(X7)/n(X™!) = nage 1 (TP XD). 3.45
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The temperature of the plasma is computed by balancing all the relevant heating and
cooling mechanisms. This situation differs from that in coronal plasmas, which are assumed
heated by some external process, such as a strong shock, and for which the cooling times are
always much longer than the ume scales for all other atomic processes. In the photoionized
plasmas the radiation supplies heat to the ions through photoabsorption and to the electrons

through Compton scattering. Cooling is by bremsstrahlung, line emission, and inverse Compton
scattering (also called Compton cooling). The net energy transfer from Compton scattering is

nJLc="0cF [o7/mc?][4KT - hev>] erg cm>s ™, 3.46

where F is the local radiation flux integrated over all frequency, ot is the Thompson Cross section
(see I1.xX) and h<v> is the mean photon energy for the given spectruml. This expression neglects
relativistic effects, SO it is valid only when the photon energies are « mc2 = S11keV.

_ In optically thin plasmas and for a given spectral shape of the incident radiation, the
ionization structur® and temperature at a given point in the plasma depend on 2 single ionization
parameter, which for the usual geometry of plasma at 2 distance D from 2 point X-ray source of

Juminosity L is given by
¢ = L/n,D% 3.47
The value of & is proportional to the number of photons per particle in the plasma.

For intermediate spectra, such as power laws jy ~ VOsto> with ogiom ~ 1 OF thermal
spectra with characteristic temperatures of ~10 keV, the results of detailed calculations show that
T ~ 10K for log®) <1 and rises monotonically with & to a maximum of ~10’K for log(t) >=4 (3
is in cgs units). At these highest values of &, the temperature is set by the competition between
Compton heating and Compton cooling; i.e., the temperature is such that the right hand side of
equation 3.46 nearly vanishes, $0 Trnax = h<v>/4k. Thus the maximum temperature depends on
the radiation field, is nearly independent of the properties of the plasma, and is nearly
independent of g for log(®) > 4. For example, for 2 power law spectrum with o = 1.0 that extends
from E i 10 Emax €4 3.46 gives T ~ (1/4Kk) [Em_,/ln(Em“/Emm)]. For a thermal spectrum with

temperature Tra i v Ta/4

For harder specta (.e., 2 power law with smaller 100D 1€ transition between low
and high temperatures is more abrupt, occuring over a narrower range of &. If the incident
spectrum is sufficiently hard (i.e., Os10ml S 0.75), the T vs. log(k) relation is triple valued. That is,
for intermediate values of 10g(&) the photoionized plasma can have either T ~ 10°K or T ~ Taxd
an intermediate temperature is formally allowed but plasma at this temperature is thermally
unstable and will quickly heat or cool to one of the other two values. Thus material subjected to @
sufficiently hard X-ray flux can have two phases of equal pressure: denser clouds at the lower
temperature em ded in a hotter, more diffuse medium. The denser clouds may be reponsible
for the optical and UV lines seen in quasar spectra (Krolik et al. 1981, Gilbert et al. 1983).

The degree of jonization of a given element increases with log(&), or decreases with
distance from the source. This is because photoionization cannot compete with recombination in
the more dilute radiation field far from the source. In thin plasmas, & characteristic value of & at

which a given ion ¥ will be found is

£ pin(XD) =41 ax( DT XD ' 3.48

For & < Epin(XD element X will be less jonized than the r jonization state. Equation 3.48 is

obtained by equating the recombination and ionization rates for the ion, evaluated at an
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appropriate temperature. Higher ionization stages have larger recombination rates, smaller
ionization cross sections and higher ionization thresholds, (see equations 3.24 and 3.28) all of
which make &4;,(X" in equation 3.48 increase strongly with Z. For example, in a plasma
illuminated by a thermal spectrum with kT ~ 10 keV, hydrogen is fully ionized for log(§) > -1.0
and He for log(&) > 1.0. Heavier elements become progressively more ionized as & increases (see
Fig. 3.7). For example, OVII predominates at log(§) ~ 1.5 and O VIII at ~ 1.8. Typically a given
ionization stage persists over an interval Alog(g) ~ 0.5. At log(€) = 4., there is some H-like iron,
Fe XXV, but the intermediate Z elements are fully stripped. Using eq. 3.47, these results show
that an active galaxy nucleus with an X-ray luminosity of 10* ergs s will almost fully ionize the
interstellar medium of the host galaxy (for which n ~ 1 cm™) to a distance of several kpc, and H
will be ionized within 30 kpc.

In plasmas that are optically thick to photoabsorption but not to Compton scattering, it
is the depletion of ionizing photons rather than their geometrical dilution that limits the regions
of ionization. The characteristic value of & below which element X is less ionized than the
stage is found by equating the total flux of ionizing photons with the number of recombinations .
per second within the ionized region. Approximating the photon flux by L/E; and the number of
recombinations by (4rn/3) R¥n 2 A, a(X",T), and using 3.47 gives

Epia(XD) = [4nAxa(X",T)Ey/3]2? [Ln,]'2. 3.49

Here Ay is the abundance of element X relative to H. Equation 3.49 overestimates the size of the
ionization zone because the absorption by the inner regions of plasma (high &) partially shields
the outer parts. But equation 3.49 shows that in addition to &, optically thick photoionized
plasmas are characterized by the parameter Ln, (Kallman and McCray 1982). Slightly ionized
elements are affected by optical depth for Ln, > 10% erg s cm?. For larger Ln,, even highly
ionized species are affected. One can show that the column density for a given ion scales as a
fractional power of Ln,.

In an optically thick plasma, the ionization structure becomes more stratified, with
more sharply defined zones of Alog(¢) within which a given ionization stage prodominates. Thus
in a point source surrounded by gas one obtains so called Stromgren spheres or shells of
decreasing ionization with increasing radius just as in an HII region ionized by the ultraviolet
continuum from a hot star. The sharp boundaries of the ionization zones can be understood as
follows: as the ionizing photons are depleted, the column density of the absorbing ion begins to
increase, which further depletes the supply of photons, etc.

Comparing the ionization state of a photoionized plasma with that of the coronal
plasmas of section III.2 shows that a photoionized plasma is very significantly over-ionized for
its temperature. Whereas the ionization energy of the dominant ion E; ~ 1-3 kT in a coronal
plasma, in a photoionized plasma E; ~ 0.001 - 0.02 kT for the X-ray emitting ions (recall that in
true thermodynamic equilibrium E; ~ 3 - 10 kT).

II1.3.3 Emitted Spectrum

Because a photoionized plasma is severely over-ionized, or equivalently has a very low
temperature for its ionization state, collisional excitation is negligible (note the exponential in eq.
3.16). Therefore, the X-ray emission lines are largely due to cascades following radiative
recombination. In general, the continuum will be dominated by the external source. Figure 3.8
shows two examples, one for a thin plasma and one for a plasma that is optically thick to
photoabsorption but not to Compton scattering. In the latter, the absorption due to partially
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ionized elements has removed most of the low energy photons. Note that many of the emission
lines appear near the low energy cut off in the continuum. This is because, for a given Ln,,

the ionization stages of a given Z g will have column densities corresponding to an optical depth
near unity. The spectrum will be cut off below the corresponding ionization energy E; ~ Z,2Ry.
But these ions will also provide most of the emission lines at energies > E;. Lines from lower
ionization stages, which have even larger column densities, will be absorbed; higher ionization
stages have smaller column densities and therefore their lines are weaker.

The K lines of iron near 7 keV are strong in all the optically thick models, in
contradiction to the argument just presented (Hatchett et al. 1976). The lines are produced by
fluorescence (see below) in all stages of iron, even neutral Fel, and they escape freely because
even the "thick" plasmas are generally transparent at such high energies. For plasmas with low
energy cut-offs of several keV, 5% of the absorbed radiation can reemerge in the Fe K lines. The
strong Fe line seen in the X-ray binary Hercules X-1 may be from a thick shell of photoionized
plasma being held above the surface of the neutron star by the magnetic field (the so called
Alfven shell; Basko 1980). :

In all optically thick plasmas the energy absorbed from the continuum is emitted
primarily as emission lines. However, many of the strongest lines are in the ultraviolet, such as
the resonance lines of C IV 11540 and O VI 11035. These lines have energies below the 13.6 eV
ionization threshold of H, and therefore can escape relatively easily from the plasma.

I11.3.4 Fluorescence

Fluorescence is line emission by neutral or nearly neutral material illuminated by an
external source. An example is the photosphere of the normal star in a binary system with an X-
ray pulsar. Continuum from the pulsar is absorbed by the photosphere, and some of the energy
reemerges as scattered or fluoresced X-radiation. The photosphere is dense enou%h that it
remains at T > 10* K (typical densities are ~10'° cm™ so, for L = 10*” erg s and D = 10! cm, eq.
3.47 gives & ~ 1), so most elements are not highly ionized. The dominant opacity for the incident
X-rays is K shell photoelectric absorption by the abundant elements of Table 1 with Z = 6, much
as in the interstellar medium (see II.xxx). The absorbing ion is left with an inner K shell vacancy
which is an autoionizing state (see IIL.2): it can either decay by the emission of an additional
electron (the Auger process) or decay radiatively by emitting a K X-ray. The branching ratio for
radiative decay is called the fluorescent yield. Because the probability for radiative transition
increases strongly with Z (e.g. see eq. 3.7), so do the fluorescent yields. For C, N and O, the
fluoresecent yields are < 0.5%, they are ~5% for Si and S but 35% for Fe. The opacity is lower
for the Fe line, so it will be by far the strongest fluorescent line, assuming, of course, that the
incident continuum contains photons with energies above the Fe K absorption threshold Ey(Ey =
7.1 keV for Fe I).

For solar abundances the opacity of neutral iron xg.(E) at energy E 27.1 keV is
xge(E) = 1.6x10% ny A, [E/7.1 keV] cm’!, 5.50

where Ap, is the abundance of Fe relative to solar abundances (Table 1) and ny is the density of
hydrogen (Hatchett and Weaver 1977). At threshold, g, is comparable to the Compton opacity,

K= Bens = 08x10% vy oy, _ 3.51

where we have used eq. [I.xx and n, = 1.2ny, which assumes a He abundance of 10%.
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Detailed radiative transfer calculations show that ~3% of the photons near Ey striking the
atmosphere at normal incidence will reemerge in the Fe K line (Basko 1978). This albedo falls
like ~ E? as one would expect from 3.50. Because «g, and k¢ are comparable, ~30% of the Fe K
photons will have been Compton scattered at least once. :
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IIL4 DIAGNOSTICS OF CORONAL PLASMAS

The major goal of astronomical spectroscopy is the elucidation of the physical
parameters of the emitting object. These include temperature or the distribution of temperatures,
densities, elemental abundances, and state of evolution. Most diagnostic techniques have been
developed in the study of the solar corona or of laboratory plasmas, both of which are thermal,
although the methods could be readily adapted to photoionized plasmas.

111.4.1 Line Emission from Cosmic Sources

The measured strength of an X-ray emission line from a cosmic source is a

complicated function of the physical parameters which one would like to determine. For coronal
plasmas, the flux at Earth of a collisionally excited emission line of energy E is

(
F,= [7,3x10'6e'GENH/41:D2] [n(X)/n(H)] Jlm f (T) T-172 ¢-EAT =(T) dT photons em 87, 3.52

where fx,(T) = [n(X"H/nX)], is the ionization fraction and
=(T) = nX(T) dV/dT | 3.53

is the differential volume emission measure, €ach at temperature T. Here we have used 3.34 and
316 for the emissivity of the i line of the r' ionization stage of element X integrated over the
emitting volume. The first exponential accounts for absorption by material along the line of sight

with hydrogen column density Ny; og is the appropriate absorption Cross section at energy E (see
[Lxxx) and D is the distance to the source from Earth.

The integral in eq. 3.52 extends over the emitting volume. Even in the study of an
isolated solar active region, the observed region will likely encompass material at different
temperatures; it surely does for more distant stellar coronae, SNRs or clusters. In the case of a
supernova remnant, one may also have regions of varying composition and jonization history.
Depending on the quantity and quality of the data, one may attempt t0 model these effects as part

of the analysis or be forced to average over them.

The standard spectroscopic technique is to use ratios of selected line strengths to
isolate particular parameters. The ratio of any two lines is independent of D. For homogeneous
plasma, ratios of lines from the same element are independent of abundance and those from the
same ion are generally independent of jonization fraction (the exceptions are lines whose upper
levels are populated by recombination or inner-shell ionization). The ratios of lines of nearly the
same energy are nearly independent of Ny. More generally, Ny must be determined along with
the other parameters of the source in order to relate lines in different parts of the spectrum unless
the absorption is very small (as it generally is above ~1-2 keV or for nearby stars).

The spectra of Helium-like ions are particularly useful as diagnostics for temperature,
density and ionization equilibrium. The principal spectral lines are the resonance (R), forbidden
(F) and intercombination (I) lines shown in Figure 3.1. Satellite lines from Li-like species are

also important as diagnostics of temperature, “onization disequilibrium, and departures from
Maxwellian electron distributions (see Figure 3.9).

4.2 Tempefature Diagnositics
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The temperature distribution of plasma in sources for which statistical equilibrium
can be established or plausibly assumed can be found by comparing the observed line strengths
to those predicted by coronal models (see III.4.5). This applies to clusters of galaxies and stellar
coronae (possibly excluding the early phases of stellar flares).

Assuming for the moment that D and Ny can be eliminated or are known, then Equation
3.52 can rewritten for the luminosity of the line: -

(
L, = 4xD? e = | (Pu(T)/n] =(T) T, 3.54

where the factor in brackets is the emissivity of the line computed as a function of T in the
coronal models (see eq. 3.34). If several F, are measured, in principle it should be possible to
invert 3.54 to find the distribution of emission measure with temperature, =(T). The temperature
dependence of the line emissivity is dominated by the product fy (T) T12 ¢EAT (called the
contribution function for the line). Typically the emissivity is significant over a temperature
range of roughly a factor of 2-4, although the range is even larger for lines of H-like ions. This
means that in practice it is difficult to invert 3.54, because the emissivity acts as a smoothing
function which obscures the detailed shape of the emission measure distribution. Furthermore,
even modest observational uncertainties in the values of L, are amplified in the inversion process,
giving large uncertainties in Z(T).

Nevertheless, measurements of even a small number of lines that are prominent at
different temperatures can define the overall shape of the emission measure distribution. If the
relative abundances of the elements are uncertain, then one should use lines from different
ionization stages of a single element, such as Fe. Even approximate temperature distributions can
often be of great value in astrophysics, as in the establishment of cooling flows in clusters and
galaxies.

With several lines of overlapping contribution functions, one can apply more refined
methods. One approach is to parameterize Z as a function of T, such as a low order polynomial,
and to fit the values of the parameters using the measured line ratios. Alternatively, one can
convert the integral in equation 3.54 into a discrete sum and solve by iteration or by matrix
inversion (preferably using smoothing and constraining = to be non-negative). ;

In isolated regions of the solar corona or of a supernova remnant, it is possible that
much of the emission comes’ from material that is nearly isothermal. For example, the emission
measure distribution of a coronal loop is sharply peaked at a single temperature. In this case,
selected line ratios can be used to make relatively precise measurements of the electron
temperature T,. For example, the ratio of two lines from the same ion depends only on two
parameters T, and Ny:

F/F, = [Q/Q] exp{-(E-E)/KT, -(og; - og)Ny}- 3.55

A given measurement defines an allowed region in the parameter space of Ny vs. T,. Additional
measured ratios can be used to reduce the size of this region.

Examples of line ratios that can be used for this Purpose are the Lyman o to Lyman 8 line
ratio of H-like ions (see Fig. 3X), and the 1s% 1S - 1s3p 'P to 1s? 'S - 1s2p 'P line ratio of He-like
ions. Equation 3.55 and fig 3.X show that such line ratios will only be useful diagnostics for
temperatures around (E; - E;)/k. For plasma at much higher temperatures the ratio is insensitive to
T, and can only. be used to set a lower limit.

=), 5



The 3p-2s lines of ionized Fe are particularly useful as temperature diagnostics. Lines
from every ionization stage between Fe XVII and Fe XXIV appear in the same region of the
spectrum, between 0.7 and 1.2 keV. Their contribution functions peak at temperatures from
~4x10% K to ~2x107 K, so the relative strengths of these neighboring lines will trace the emission
measure distribution from ~2 to 50x10° K. Within this range, s;g)eciﬁc line ratios can be used as
temperature verniers. An example is the ratio of Fe XVIII 2p° Py - 2p*('D)3d *Ds, plus 2P,
(the line is a blend) at 873 eV (14.20 A) to Fe XVII 2p° 'S, - 2p°3d 'P, at 826 eV (15.01 A). This
ratio changes from 0.05 at 3x10% K to 0.65 at 5.5x10°K (Rugge and McKenzie 1985). The ratio
of a multiplet of 2p°® - 2p°4d lines of Fe XVII at 1011 and 1023 eV (12.12 and 12.26 A) to the 2p
- 3d (826 eV) line of the same ion is sensitive to temperatures between 1.5x10° K and 107 K.
Both these diagnostics require sufficient signal to noise and spectral resolution to measure lines
that differ in intensity by factors up to twenty. Also, the contributions from unresolved satellite
lines can be significant and must be included in the model spectra (Raymond and Smith 1986).

The ratio G = (I+F)/R for He-like ions, where I, F and R are the intercombination,
forbidden and resonance transitions (see Fig. 3.1), is sensitive to T,, although it also measures
departures from ionization equilibrium (see II1.4.3; Gabriel 1972; Pradhan and Shull 1981). For
plasma at equilibrium the G ratio is an effective diagnostic over approximately two octaves of
temperature roughly centered at T, the temperature of peak resonance line emission. Typically,
G varies by + 50% over this range, with G(T,,) < 1. An element with atomic number Z has T, ~
1.2x10%(Z-1)%6 K (Pradhan and Shull 1981); values of T, for some abundant elements are given
in Table 3.3. Because the lines of the He-like ions are at nearly the same energy, the diagnostic is
independent of Ny. On the other hand, at the densities of stellar coronae, the optical depth in the
resonance line can become significant, which will artificially reduce G (see IIL2A). In spectra
with high signal-to-noise, a more sensitive temperature diagnostic is given by the ratio of the 1s?
IS - 1s3p P line to the resonance line. This ratio varies by more than an order of magnitude over
a decade of temperature, but it is generally less than ~0.1 (Keenan et al. 1987)

Satellite lines to the He-like triplet from dielectronic recombination to autoionizing states
of the Li-like ion are also useful as temperature diagnostics. These lines are increasingly
important for the elements above Si, because of the strong Z dependence of the branching ratio
for radiative decay (see IIL.1.4). The strongest lines are from the multiplet 1s?2p 2P - 1s2p? 2D.
Unfortunately, for elements with Z below ~20 these are closely blended with the forbidden line;
even for Fe, resolving powers of ~1000 are required to separate them. When it can be measured,
the intensity ratio of this multiplet of dielectronic satellites lines to the resonance line is very
sensitive to temperature, and it is independent of ionization state. In Fe, the ratio is ~02atT, . It
changes by nearly an order of magnitude for temperatures from ~1/2 T_, to ~2 T, being stronger
at lower temperatures as expected for a recombination line (see Bhalla, Gabriel and Presnyakov
1975, Doschek et al. 1980).

Line profile measurements, performed with spectrometers of resolving power > 1000, can
in principle give a measure of the temperature of the emitting ions, T,. In many sources this can
be equated to T,. For a given T;, the dispersion of the line profile from thermal Doppler
broadening is given by

Oos/c = [(KT/(Am c?)]'? 3.56
=0.003 (T/10'K)'?2 (A/10)17 3.57
where oy, is the root-mean-square velocity dispersion along the line-of-sight and A is the atomic

weight of the emitting ion. However, in most astronomical plasmas, the bulk velocities due to
shocks, outflow, etc., will be comparable to or exceed the thermal velocities, making the
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temperature diagnostic ineffective. The spectra of solar flares exhibit complex and variable
profiles which are attributed to bulk motions (Acton et al. 1981).

IIL4.3 Diagnostics for Ionization Disequilibrium

Diagnostics for departures from ionization equilibrium (see III.2C) involve making
independent determinations of T, and of the relative populations of ionization states for a given
ion. The ratio of the populations of neighboring states defines an ionization temperature T,, the
temperature at which that population ratio would occur in a coronal plasma at equilibrium. If T, =
T., then disequilibrium is indicated. If one can assume that the plasma was impulsive heated, as
in a supernova remnant, then the degree of inequality of T, and T, is a measure of the ionization
time = nt. Generally, different ion pairs will give different values of T, but in a homogeneous
plasma they should all imply the same .

In dealing with plasmas out of ionization equilibrium one must distinguish between lines
formed primarily through collisional excitation from those that are primarily the by-product of
recombination or ionization processes. The strengths of the former are proportional to the .
population of the emitting ion (eq. 3.52), whereas the latter depend on the relative populations of
neighboring ionization states. :

The ratio of the 1s3p-1s? line from He-like ions to the Lyman o line of the H-like ion of
the same element gives a very direct measure of the relative populations in these two stages and
therefore of T,. Both these lines are excited primarily by collisions. They have nearly the same
energy, so their ratio is nearly independent of T, and Ny, which can be separately determined as

described above.

The ratio G = (I+F)/R for He-like ions, which was described in section 142 as a
temperature diagnostic, is also sensitive to the relative populations of He-like and H-like ions and
is therefore a measure of departures from ionization equilibrium (jGabriel and Jordan 1969,
Mewe and Schrijver 1978, Pradhan 1983). This is because the 3S and °P upper levels of the I and
F lines can be fed by cascades following radiative recombination as well as by collisional
excitation, whereas coilisional excitation alone dominates the production of the R line. Cascades
favor population of the triplet levels because of their higher statistical weight. In a plasma that is
under-ionized relative to the equilibrium value for its electron temperature (ie. T, < T,), the
recombination rate is suppressed and G is smaller than its equilibrium value (Figure 3.10).
Conversely, in a recombining, overionized plasma G will be larger. Another population process
that operates to increase G in an ionizing plasma is inner shell ionization of Li-like ions. This
also favors the triplet states because of their highter statistical weights. However, in most
ionizing plasmas the Li-like state is relatively short lived (see Figure 3.6), so the recombination
effect generally dominates. The value of G can also be affected by non-Maxwellian electron
distributions (Section 111.4.4).

Because G depends on both T, and T,, one or more additional diagnostics are required to
establish each parameter independently. For example, T, could be fixed using one of the
diagnostics of section IIL.4.2 that is independent of ionization state, or T, could be measured with
the 1s3p-1s? to Lyo ratio meroned above. Data on G for several supernova remnants show
evidence for departures from icrization equilibrium and give values of t that are consistent with
ages and densities deduced by other means (see Figure 3.7; Canizares 1989).

Another diagnostic for ionization disequilibrium makes use of the satellites to the He-like

triplet. As noted in section [I1.4.2, the ratio of satellites from dielectronic recombination of He-
like ions to the He-like resonance line is sensitive to T, but independent of T,, as both lines are
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proportional to the density of He-like ions alone. A second multiplet of satellite lines comes from
the transitions 1522s 28 - 1s2p(*P)2s 2P. In addition to being fed by dielectronic recombination,
the up?er level can also be populated by inner shell excitation of Li-like ions. This is not true of
the 1s?2p 2P - 1s2p? *D multiplet, whose upper Jevel can only be obtained from the 1s?2S Li-like
ground state by a second order process. The ratio of the latter, dielectronic recombination
satellites to the resonance line gives T, and the ratio of the inner-shell ionization satellites to R
depends on the Li-like to He-like ratio, giving a measure of T,. The diagnostic is only useful for
high Z elements, such as Ca or Fe, which have sizable Li-like 1onization fractions at temperatures
around T,,. For example, for Fe the inner-shell satellite to resonance line ratio is ~0.06 at T, ~
T, and is twice that for T, ~ 0.6 T,,. For O and even Si inner-shell ionization gives a negligible
contribution to the 2P upper level (Bhalla, Gabriel and Presnyakov 1975, Feldman, Doschek and
Kreplin 1980, Bely-Dubau et al. 1982).

[1.4.4 Diagnostics of the Electron Energy Distribution

Although the assumption of Maxwellian electron energy distributions has some
justification in most astrophysical plasmas (section I11.2.3) it would be comforting to have
observational verification. Most collisionally excited lines are not very sensitive to the exact
shape of the electron distribution (II.2.3; Owocki and Scudder 1983). Suprathermal electrons
can affect the relative intensities of the He-like triplet, however, because very energetic electrons
preferentially excite the singlet level. If as much as several percent of the electrons had energies
~10kT, they would affect the ratio G and compromise its utility as a diagnostic of T, or. T,
(Gabriel et al 1990). On the other hand, these energetic electrons would also radiate sufficient
bremsstrahlung to reveal themselves.

Ratios of selected dielectronic satellites to He-like ions depend on the electron
distribution. This is because the dielectronic recombination of an ion requires an electron of
energy within a narrow range of the excitation energy of the intermediate autoionization state.
For example, the 1s22p 2Py, - 152p? ZDZS line of Fe XXIV is formed by recombination of Fe
XXV with a 4.694 keV electron. The 1s fp 2p,, - 1s2p3p('P)’Ds, line follows recombination of
Fe XXV with a 5.185 keV electron. The ratio of the intensities of these lines to that of the
resonance line, which is excited by any electron that exceeds the threshold energy of 6.7 keV,
gives a measure of the population of electrons at 4.7 or 5.2 keV relative to those above 6.7 keV,
which can be compared to that expected for a Maxwellian distribution. This method has
indicated departures from an equilibrium electron energy distribution in the early minutes of
solar flares (Gabriel and Phillips 1979, Seely, Feldman and Doschek 1987).

II14.5. Density Diagnostics

The ratio of the forbidden to the intercombination lines of He-like ions is a diagnostic of
Elasma density. The ratio increases when the rate of collisional excitation from the metastable 2
S state to the 2 3P state becomes comparable to the 2 3S to 2 'S radiative decay rate (radiative
excitation between triplet states is generally unimportant). The relation between the measured I/F
ratio R and n,is

n, = n( DR (TR - 1,

where n (T) is the critical density for the given element and R'(T) is value of Ry in the low
density limit. Both parameters are only weak functions of temperature, generally remaining
within ~10% of their values at T, For O, Si and Fe the critical densities are 2x101%, 4x10" and

m

10" cm3 and R’z = 4, 2.5, and 1.0, respectively. (Pradhan 1982).
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Generally it is possible to see density effects only if n, >nJ/ 10, which is comparable to
the densities in stellar coronac but is orders of magnitude above those in SNRs or clusters of
galaxies. This diagnostic has been used to deduce the densities of solar active regions (McKenzie
1987, McKenzie and Landecker 1982) in the range 3.13x10° cm™.
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