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1. Introduction

In this this note we give a description of how to apply Stepanov’s

method to get a good estimate for the number of points on the hyper-

elliptic curve

y2 = f(x)

over a finite field with p elements, where f(x) ∈ Fp[x] is a polynomial

of degree d which is not a square in Fp[x].

Let N denote the number of points on the curve, i.e. the number

of solutions (x, y) ∈ F2
p with y2 = f(x). If (x, y) is a solution with

y = 0 then x is a root of f(x), in which case there are at most d choices

for x. If d is small, we might think of this as an error term. For any

other choice of x, f(x) 6= 0, and f(x) = y2 is only possible if f(x) is a

quadratic residue. The is no obvious reason for f(x) to be a quadratic

residue (after all, f(x) is not the square of some other polynomial) so

we think that it has about a 50/50 chance of being a quadratic residue.

But if there is a solution, there are in fact two solutions, namely (x, y)

and (x,−y). So we expect the number of solutions (x, y) with y 6= 0

to be about 2p−1
2

= p − 1. All in all, we expect there to be about p

solutions to the equation. What we will show is that this is indeed the

case:

Theorem 1. Let f(x) ∈ Fp[x] be a polynomial of degree d ≥ 3 which

is not a square in Fp[x]. Then, if p > 4d2, we have

|N − p| ≤ 8d
√
p.
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We are going to actually deduce this from an upper bound on the

size of the set

Xa = {x ∈ Fp : f(x) = 0 or f(x)
p−1
2 = a}.

The reason for looking at this set is that any non-zero element z ∈ Fp
satisfies zp−1 = 1 and so if f(x) = y2 then f(x)

p−1
2 = yp−1 = 1. In

this case x ∈ X1. Meanwhile, if x is such that f(x) is a quadratic non-

residue then f(x)
p−1
2 = −1 and x ∈ X−1. Since X1 and X−1 satisfy

|X1|+ |X−1| = p+ |{x : f(x) = 0}|

we will be able to turn use upper bounds to prove lower bounds.

Stepanov’s method uses the following simple idea, pioneered by Thue,

in a beautiful way: if r(x) is a non-zero polynomial of degree D and

r(x) has a zero of order l at distinct values x1, . . . , xn then n ≤ D/l.

This fact is basically just the prime factorization of polynomials. By

using the relation

f(x)
p−1
2 = a

we will build a polynomial (using linear algebra) to create a low-degree

polynomial r(x) which has zeros of high order at each element of Xa.

This will help us bound |Xa| from above.

2. Hasse Derivatives

There is a bit of a snag however. Usually, Taylor expansion tells us

that a polynomial r(x) has a zero of order l at x0 if all of the l − 1’th

derivatives of r vanish at x0. We run into trouble with this fact over

Fp because d
dx

(xp) = pxp−1 = 0. This affects the Taylor expansion of a

polynomial since one usually needs to divide by n! which is no longer

non-zero. So to get zeros of high order and not have to deal with

the characteristic of the field, we have to work with a slightly more

complicated differential operator: the Hasse derivatives.

Definition (Hasse Derivative). We define the Hasse derivative of or-

der k, Ek, by setting Ek(xn) =
(
n
k

)
xn−k and extending linearly to all

polynomials.
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One big downside of these operators is that now we don’t have the

usual convention that a k’th order derivative is just a first derivative

applied k times. Said differently, the operator Ek is not k applications

of E1. However there are other formulae that come out nicer in the

language of Hasse derivatives. For instance, by the binomial theorem,

xn = ((x− a+ a)n) =
n∑
k=0

(
n

k

)
an−k(x− a)k

so that the coefficient of xk in it’s expansion about a is Ek(xn) evaluated

at k. Also, and this is crucial, Ek(xp) =
(
p
k

)
xp−k which vanishes for

k = 0, . . . , p− 1 but does not vanish at k = p.

Lemma 1. For any two polynomials f and g we have

Ek(fg) =
k∑
s=0

Es(f)Ek−s(g).

In general,

Ek(f1 · · · fr) =
k∑

j1+···+jr=k

Ej1(f1) · · ·Ejr(fr).

Proof. If f(x) =
∑
aix

i and g(x) =
∑
bjx

j then

Ek (fg) =
∑
i,j

aibjE
k(xi+j) =

∑
i,j

aibj

(
i+ j

k

)
xi+j−k

meanwhile the right hand side is

k∑
s=0

Es(f)Ek−s(g) =
k∑
s=0

∑
i

∑
j

ai

(
i

s

)
xi−sbj

(
j

k − s

)
xj−k+s.

The first identity follows from the fact that(
i+ j

k

)
=

k∑
s=0

(
i

s

)(
j

k − s

)
.

The second claim follows by induction on r. �

We can use this lemma to derive some more natural properties of

Hasse derivatives.
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Lemma 2. Let a ∈ Fp. Then

Ek ((x− a)r) =

(
r

k

)
(x− a)r−k.

If 0 ≤ k ≤ r then for any polynomials f and g we have

Ek(fgr) = hgr−k

for some polynomial h(x) with deg(h) ≤ deg(f) + k deg(g)− k.

This last consequence is an analog of the familiar rule: if you take k

derivatives of the r’th power of g then you still have something which

is divisible by gr−k.

Proof. For the first claim, apply part 2 of Lemma 1 with fi(x) = (x−a)

for each i. Then the only way a derivative Ej(x − a) is non-zero is if

j = 0 or j = 1. In this way we have
(
r
k

)
choices to place the derivatives

with k = 1 and each such derivative is 1. The remaining choices have

j = 0 so we are applying the identity operator and are left with a factor

(x− a).

For the second claim, again apply part 2 of Lemma 1 with f1 = f

and fi = g for i = 2, . . . , r + 1. Since k ≤ r, there are at least k − r
values of ji which must be zero in each summand. Hence we are left

with a factor of gk−r in each summand, and so the entire expression

is divisible by gk−r. The degree restriction on h follows from the fact

that the Hasse derivative decreases the degree of the polynomial by at

least k. Hence deg(h) ≤ (deg(f) + r deg(g))− k − (r − k) deg(g). �

Finally, we can derive the fact that we really need Hasse derivatives

to obey, which is that many vanishing derivatives of a polynomial means

a high order zero at that point. Specifically,

Lemma 3. Suppose f is a polynomial and a ∈ Fp is such that (Ek(f))(a) =

0 for 0 ≤ k ≤ l − 1. Then (x− a)l divides f .

Proof. Write f(x) in terms of the basis of polynomials (x− a)j:

f(x) =
∑
j

cj(x− a)j.
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Then by Lemma 2,

Ek(f(x)) =
∑
j

cj

(
j

k

)
(x− a)j−k.

Plugging in x = a, the only term which survives is k = j and the

constant and so we are left with a constant ck which must therefore

vanish (by our hypothesis). So ck = 0 for k < l and the lemma follows.

�

The final lemma we will prove is a bit more technical. In the process

of constructing our polynomial we will use polynomials in two variables.

This, from a linear algebra perspective, gives us more free variables.

Then we will collapse down to one variable by setting y = xp and using

the relation xp = x, which will reduce the number of linear equations

we need to solve. So we will have need to take Hasse derivatives of

polynomials of the form h(x, xp), where h(x, y) ∈ Fp[x, y]. To help

with that, we have the following.

Lemma 4. Suppose h(x, y) is a polynomial and r(x) = h(x, xp). Let

Ek
x(h) denote the k’th order Hasse derivative of h with respect to x (i.e.

applied to h(x, y) with the variable y treated as a constant). Then, for

k < p,

Ek(r(x)) = Ek
x(h)(x, xp).

The lemma is essentially saying that a certain “diagram” commutes.

We can substitute y = xp and then apply Hasse derivatives or else we

can apply a Hasse derivative in the x variable only, and then make the

substitution y = xp.

Proof. First, if h(x, y) = xmyn, then r(x) = xm (xp)n and by Lemma 1

Ek(xmxpn) =
k∑
s=0

Es−k(xm)Es(xpn)

while Ek
x(h(x, y)) = yn

(
m
k

)
xm−k so that

Ek
x(h)(x, xp) =

(
m

k

)
xm+np−k.
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For s > 0, Es(xpn) =
(
pn
s

)
xpn−s and since s ≤ k < p the binomial

coefficient is divisible by p. Thus

Ek(r(x)) =

(
m

k

)
xm+np−k = Ek

x(h)(x, xp).

Now, if h(x, y) =
∑

m,n cm,nx
myn then the result holds by linearity and

the above case. �

3. Constructing the auxiliary polynomial

Now assume as in the introduction that we have a polynomial f of

degree d ≥ 3 which is not a square in Fp[x], and a ∈ Fp. We want to

find a polynomial which vanishes to high order on

Xa = {x ∈ Fp : f(x) = 0 or f(x)
p−1
2 = a}.

The next proposition nearly does this.

Proposition 1 (Existence of an auxiliary polynomial). Assume p > 8d

and let l be an integer in the range d < l ≤ p/8. There is a non-zero

polynomial r ∈ Fp[x] of degree

deg(r) <
p− 1

2
l + 2dl(l − 1) + dp

which has a zero of order l at each x0 ∈ Xa.

The first step is to hone in on the right sort of polynomial we ought

to look for. In this case, set g(x) = f(x)
p−1
2 and we try a polynomial

of the form

r(x) = f l
∑

0≤j<J

(rj(x) + g(x)sj(x))xjp

where rj, sj ∈ Fp[x] are to be determined.

Remark. Why is this a good type of polynomial to try? First, the fac-

tor f l is there mostly to counteract differentiation: if we take l deriva-

tives of f
p−1
2 we get something divisible by f

p−1
2
−l and the extra f l gives

us a factor f
p−1
2 which collapses down to just a or 0 on substituting in

x ∈ Sa. The rest of the expression for this polynomial is not too much
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worse: we are basically separating the terms according to the degrees in

ranges [jp, (j + 1)p). Indeed, any polynomial can be written

R(x) =
∑

0≤j<J

Rj(x)

where all terms in Rj(x) have degree in [jp, (j+1)p). Factoring out xjp

from Rj(x) we get Rj(x) = xjpSj(x) where deg(Sj) < p. Assume the

rj and sj terms have low degree. Then, since g(x) is a p−1
2

’th power

of f , if say f(0) = 0, each term in sj(x)g(x) has degree at least p−1
2

and each term in rj(x) is of degree at most p−1
2

, we can sort of see this

as breaking down the Sj(x) into the high degree parts and low degree

parts.

Assume now that each rj and sj has degree bounded by p−1
2
− d.

Then the degree of r satisfies

deg r ≤ ld+ Jp+
p− 1

2
− d+

p− 1

2
d ≤ (J + d)p.

Next, all the work will have been for not if the polynomial we con-

struct is identically zero. This is where the hypothesis that f is not a

square will come in.

Lemma 5 (The auxiliary polynomial is non-zero). Suppose

r(x) = f l
∑

0≤j<J

(rj(x) + g(x)sj(x))xjp

where each rj and sj has degree bounded by p−1
2
−d. If f is not a square

in Fp[x] then r = 0 only if sj = rj = 0 for each j.

Proof. Assume, by making the change of variables x 7→ x + a that

f(0) 6= 0. Suppose, by way of contradiction, that r = 0 but some sj or

rj is non-zero and let k be the least index of such a j.. We can divide

r by f lxkp to get ∑
k≤j<J

(rj(x) + sj(x)g(x))xp(j−k) = 0.

Group the terms with g = f
p−1
2 and rewrite this as

h1 = −h2g
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where

h1(x) =
∑
k≤j<J

rj(x)xp(j−k), h2(x) =
∑
k≤j<J

sj(x)xp(j−k)

so that upon squaring and multiplying by f , we get

h21f = h22f
p.

Reduce this equation modulo the polynomial xp. Then

rk(x)2f(x) = h1(x)2f(x) mod xp

= h2(x)2f(x)p mod xp

= h2(x)2f(xp) mod xp

= sk(x)2f(0) mod xp.

We have used f(x)p = f(xp), in light of the fact we are in characteristic

p. Now, the degree constraints on sk and rk, plus the fact that one

of them is non-zero, means that rk(x)2f(x) − sk(x)2f(0) cannot be

divisible by xp unless it is zero. Thus we must in fact have

rk(x)2f(x) = sk(x)2f(0)

which is impossible since it would imply (by factoring f(0) = t2 in

some extension) that f(x) is in fact a square in Fp[x]. �

Next we take derivatives of our polynomial.

Lemma 6. Suppose

r(x) = f l
∑

0≤j<J

(rj(x) + g(x)sj(x))xjp

where each rj and sj has degree bounded by p−1
2
− d. For each k with

0 ≤ k < l we have

Ek(r(x)) = f l−k
∑

0≤j<J

(r
(k)
j (x) + g(x)s

(k)
j (x))xjp

where r
(k)
j (x) and s

(k)
j are polynomials of degree at most

p− 1

2
− d+ k(d− 1).
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Proof. To make things simple, we write r(x) = h(x, xp) where

h(x, y) = f(x)l
∑

0≤j<J

(rj(x) + g(x)sj(x))yj

=
∑

0≤j<J

(f(x)lrj(x) + f(x)
p−1
2

+lsj(x))yj.

By Lemma 4 and linearity

Ek(r(x)) = Ek
x(h(x, y))(x, xp)

= f(x)l
∑

0≤j<J

(Ek(rj(x)f(x)l) + Ek(f(x)
p−1
2

+lsj(x)))xpj.

By Lemma 2 applied to Ek(rj(x)f(x)l) and Ek(f(x)
p−1
2

+lsj(x)), there

are polynomials r
(k)
j and s

(k)
j , of degrees

deg(r
(k)
j ) ≤ deg(rj) + k deg(f)− k ≤ p− 1

2
− d+ k(d− 1)

and

deg(s
(k)
j ) ≤ deg(sj) + k deg(f)− k ≤ p− 1

2
− d+ k(d− 1),

and such that

Ek(rjf
l) = r

(k)
j f l−k, Ek(sjf

p−1
2

+l) = s
(k)
j f

p−1
2

+l−k,

which is just what we wanted to prove. �

Now we can prove Proposition 1.

Proof of Proposition 1. Let x0 ∈ Xa. We want to ensure that the poly-

nomial r(x) has a zero of order at least l at x0. To that end, we consider

(using Lemma 3) the value of Ek(r(x)) at x0. By Lemma 6,

Ek(r(x)) = f l−k
∑

0≤j<J

(r
(k)
j (x) + g(x)s

(k)
j (x))xjp

and if we substitute in x0 we get

Ek(r(x0)) = f l−k(x0)
∑

0≤j<J

(r
(k)
j (x0) + bs

(k)
j (x0))x

j
0

where b = 0 or b = a. But b = 0 means that f(x0) = 0 which means

that the term f(x0) out front vanishes already. So b = a, and we can

rewrite this as

Ek(r(x0)) = f l−k(x0)σk(x0)
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where

σk(x) =
∑

0≤j<J

(r
(k)
j (x) + as

(k)
j (x))xj

which is a polynomial of much smaller degree than r(x). So to satisfy

σk(x0) = 0 for each k and x0, it is certainly sufficient that σk is the

0-polynomial for each k. This imposes deg(σk) + 1 linear constraints

(one for each coefficient of σk) for each k. Thus the total number of

linear equations we wish to have vanish is∑
k≤l−1

deg(σk) ≤ l

(
J +

p− 1

2
− d+

1

2
(l − 1)(d− 1)

)
.

On the other hand we have 2
(
p−1
2
− d
)

coefficients to choose from for

each rj and sj, which gives us 2J
(
p−1
2
− d
)

variables. Take

J =

[
l

p

(
p− 1

2
+ 2d(l − 1)

)]
then

J ≥ l

p

(
p− 1

2
+ 2d(l − 1)

)
− 1

which will be enough to have more variables than constraints. In this

case,

deg(r) ≤ ld+
p− 1

2
d+

p− 1

2
− d+

l

p

(
p− 1

2
+ 2d(l − 1)

)
which is good enough to prove the proposition. �

We can now prove our theorem.

Proof. By Proposition 1, there is a non-zero polynomial r of degree at

most
p− 1

2
l + 2dl(l − 1) + dp

which has a zero of order l at each point of Xa. Thus (x− x0)l divides

r(x) for each x0 ∈ Xa which means

|Xa| ≤
p− 1

2
+ 2d(l − 1) +

dp

l
.

We take l = 1 +
[√

p

2

]
. Then

|Xa| ≤
p− 1

2
+ 4d
√
p.
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Applying this upper bound to X1 tells us that the curve has at most

p+ 8d
√
p points on it. Using the fact that

|X1|+ |X−1| = p+ |{x : f(x) = 0}|

we see

N ≥ 2|X1| ≥ 2(p− |X−1|) ≥ p− 8d
√
p

which gives the corresponding lower bound. �

4. Application: The Burgess Bound

We now use the above estimate to estimate very short character sums

with the Legendre symbol. To keep things simple, we will just estimate

the sum

S =
∑

1≤n≤N

(
n

p

)
,

but sums over other arithmetic progressions can be estimated the same

way. Also, we can assumeN ≤ p1/2+ε since otherwise Polya-Vinogradov

applies. Observe that since
(
n
p

)
is bounded by 1, then∣∣∣∣∣S − ∑

1≤n≤N

(
n+ h

p

)∣∣∣∣∣ ≤ 2h.

Taking h = ab and summing over all a in the range 1 ≤ a ≤ A and b

in the range 1 ≤ b ≤ B we get

S =
1

AB

∑
1≤n≤N

∑
1≤a≤A

∑
1≤b≤B

(
n+ ab

p

)
+O(AB).

Let’s now focus on the new sum

T =
∑

1≤n≤N

∑
1≤a≤A

∑
1≤b≤B

(
n+ ab

p

)
.

By the triangle inequality and the fact that the Legendre symbol is

multiplicative,

|T | ≤
∑

1≤n≤N

∑
1≤a≤A

∣∣∣∣∣ ∑
1≤b≤B

(
na−1 + b

p

)∣∣∣∣∣ .
Set na−1 = x. Then the inner most sum is∑

1≤b≤B

(
x+ b

p

)
,
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and we count this sum every time we have can represent x in this way.

So let r(x) denote the number of solutions to.

x = na−1, 1 ≤ n ≤ N, 1 ≤ a ≤ A

In short,

|T | ≤
∑
x∈Fp

r(x)

∣∣∣∣∣ ∑
1≤b≤B

(
x+ b

p

)∣∣∣∣∣ .
Now we apply Hölder’s inequality in the form∑

x

axbxcx ≤

(∑
x

|ax|q1
)1/q1 (∑

x

|bx|q2
)1/q2 (∑

x

|cx|q3
)1/q3

which holds as long as q−11 + q−12 + q−13 = 1. In this case we take

ax = r(x)(k−1)/k, bx = r(x)1/k, cx =
∑

1≤b≤B

(
x+ b

p

)
and

q1 =
k

k − 1
, q2 = 2k, q3 = 2k

which gives

T ≤ P
1−1/k
1 P

1/2k
2 P

1/2k
3

where

P1 =
∑
x

r(x), P2 =
∑
x

r(x)2, P3 =
∑
x

(∑
b

(
x+ b

p

))2k

.

By double counting, P1 = AN since each a and each n contribute 1 to

exactly one r(x), namely x = na−1. Now, each summand in P2 counts

a pair (a1, n1) and (a2, n2) with n1a
−1
1 = n2a

−1
2 = x. Summing over x

eliminates the variable x and we get

P2 = |{(a1, a2, n1, n2) : n1a
−1
1 = n2a

−1
2 mod p}|

= |{(a1, a2, n1, n2) : a2n1 = a1n2 mod p}|

where 1 ≤ ai ≤ A and 1 ≤ ni ≤ N . But by the same reasoning,

P2 =
∑
x

s(x)2

where s(x) is the number of representations of x as an modulo p. If

an = x1 ≡ x mod p, then there are only AN/p + 1 choices for x1
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(namely those congruent to x mod p and bounded by AN). This means

that the congruence condition is at most AN/p+1 times the maximum

number of solutions to x1 = an, which is bounded by the divisor func-

tion d(x1). Thus s(x) ≤ (ANp−1 + 1)d(x1) ≤ (ANp−1 + 1)pδ for any

δ > 0 we like. This shows that

P2 ≤ pδ
∑
x

s(x) = pδ(A2N2p−1 + AN),

again by double counting. Finally,

P3 =
∑

b1,...,b2k

∑
x

(
(x+ b1) · · · (x+ b2k)

p

)
=

∑
b1,...,b2k

∑
x

(
fb1,...,b2k(x)

p

)
where fb1,...,b2k is a polynomial in x of degree 2k and is only a square

if the numbers bi can be arranged into pairs of equal values. If this

does happen, then fb1,...,b2k is a perfect square and the inner sum is

about p. But this only happens in at most k!
(
2k
k

)
Bk ways, which is at

most (2kB)k. So for these terms we get a bound of at most p(2kB)k.

If fb1,...,b2k is not a square then then by our new-found knowledge of

hyperelliptic curves, fb1,...,b2k(x) is a quadratic residue about half of the

time, and a quadratic non-residue about half of the time. Specifically∣∣∣∣∣ ∑
b1,...,b2k

∑
x

(
fb1,...,b2k(x)

p

)∣∣∣∣∣ ≤ 16k
√
p

which means that we get at most 16kB2k√p for the other terms and

P3 ≤ (2kB)kp+ 16kB2k√p.

Now choose B ≈ kp1/2k and A ≈ N/(kp1/2k) and we have shown that

|S| �δ N
1−1/kp

k+1

4k2
+δ.

This is smaller than N if N > pθ with θ > 1/4.
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