STEPANOV'S METHOD FOR HYPERELLIPTIC CURVES

BRANDON HANSON

1. Introduction

In this this note we give a description of how to apply Stepanov's method to get a good estimate for the number of points on the hyperelliptic curve

$$
y^{2}=f(x)
$$

over a finite field with p elements, where $f(x) \in \mathbb{F}_{p}[x]$ is a polynomial of degree d which is not a square in $\overline{\mathbb{F}_{p}}[x]$.

Let N denote the number of points on the curve, i.e. the number of solutions $(x, y) \in \mathbb{F}_{p}^{2}$ with $y^{2}=f(x)$. If (x, y) is a solution with $y=0$ then x is a root of $f(x)$, in which case there are at most d choices for x. If d is small, we might think of this as an error term. For any other choice of $x, f(x) \neq 0$, and $f(x)=y^{2}$ is only possible if $f(x)$ is a quadratic residue. The is no obvious reason for $f(x)$ to be a quadratic residue (after all, $f(x)$ is not the square of some other polynomial) so we think that it has about a $50 / 50$ chance of being a quadratic residue. But if there is a solution, there are in fact two solutions, namely (x, y) and $(x,-y)$. So we expect the number of solutions (x, y) with $y \neq 0$ to be about $2 \frac{p-1}{2}=p-1$. All in all, we expect there to be about p solutions to the equation. What we will show is that this is indeed the case:

Theorem 1. Let $f(x) \in \mathbb{F}_{p}[x]$ be a polynomial of degree $d \geq 3$ which is not a square in $\overline{\mathbb{F}_{p}}[x]$. Then, if $p>4 d^{2}$, we have

$$
|N-p| \underset{1}{\leq} 8 d \sqrt{p}
$$

We are going to actually deduce this from an upper bound on the size of the set

$$
X_{a}=\left\{x \in \mathbb{F}_{p}: f(x)=0 \text { or } f(x)^{\frac{p-1}{2}}=a\right\} .
$$

The reason for looking at this set is that any non-zero element $z \in \mathbb{F}_{p}$ satisfies $z^{p-1}=1$ and so if $f(x)=y^{2}$ then $f(x)^{\frac{p-1}{2}}=y^{p-1}=1$. In this case $x \in X_{1}$. Meanwhile, if x is such that $f(x)$ is a quadratic nonresidue then $f(x)^{\frac{p-1}{2}}=-1$ and $x \in X_{-1}$. Since X_{1} and X_{-1} satisfy

$$
\left|X_{1}\right|+\left|X_{-1}\right|=p+|\{x: f(x)=0\}|
$$

we will be able to turn use upper bounds to prove lower bounds.
Stepanov's method uses the following simple idea, pioneered by Thue, in a beautiful way: if $r(x)$ is a non-zero polynomial of degree D and $r(x)$ has a zero of order l at distinct values x_{1}, \ldots, x_{n} then $n \leq D / l$. This fact is basically just the prime factorization of polynomials. By using the relation

$$
f(x)^{\frac{p-1}{2}}=a
$$

we will build a polynomial (using linear algebra) to create a low-degree polynomial $r(x)$ which has zeros of high order at each element of X_{a}. This will help us bound $\left|X_{a}\right|$ from above.

2. Hasse Derivatives

There is a bit of a snag however. Usually, Taylor expansion tells us that a polynomial $r(x)$ has a zero of order l at x_{0} if all of the $l-1^{\prime}$ th derivatives of r vanish at x_{0}. We run into trouble with this fact over \mathbb{F}_{p} because $\frac{d}{d x}\left(x^{p}\right)=p x^{p-1}=0$. This affects the Taylor expansion of a polynomial since one usually needs to divide by n ! which is no longer non-zero. So to get zeros of high order and not have to deal with the characteristic of the field, we have to work with a slightly more complicated differential operator: the Hasse derivatives.

Definition (Hasse Derivative). We define the Hasse derivative of order k, E^{k}, by setting $E^{k}\left(x^{n}\right)=\binom{n}{k} x^{n-k}$ and extending linearly to all polynomials.

One big downside of these operators is that now we don't have the usual convention that a k 'th order derivative is just a first derivative applied k times. Said differently, the operator E^{k} is not k applications of E^{1}. However there are other formulae that come out nicer in the language of Hasse derivatives. For instance, by the binomial theorem,

$$
x^{n}=\left((x-a+a)^{n}\right)=\sum_{k=0}^{n}\binom{n}{k} a^{n-k}(x-a)^{k}
$$

so that the coefficient of x^{k} in it's expansion about a is $E^{k}\left(x^{n}\right)$ evaluated at k. Also, and this is crucial, $E^{k}\left(x^{p}\right)=\binom{p}{k} x^{p-k}$ which vanishes for $k=0, \ldots, p-1$ but does not vanish at $k=p$.

Lemma 1. For any two polynomials f and g we have

$$
E^{k}(f g)=\sum_{s=0}^{k} E^{s}(f) E^{k-s}(g)
$$

In general,

$$
E^{k}\left(f_{1} \cdots f_{r}\right)=\sum_{j_{1}+\cdots+j_{r}=k}^{k} E^{j_{1}}\left(f_{1}\right) \cdots E^{j_{r}}\left(f_{r}\right) .
$$

Proof. If $f(x)=\sum a_{i} x^{i}$ and $g(x)=\sum b_{j} x^{j}$ then

$$
E^{k}(f g)=\sum_{i, j} a_{i} b_{j} E^{k}\left(x^{i+j}\right)=\sum_{i, j} a_{i} b_{j}\binom{i+j}{k} x^{i+j-k}
$$

meanwhile the right hand side is

$$
\sum_{s=0}^{k} E^{s}(f) E^{k-s}(g)=\sum_{s=0}^{k} \sum_{i} \sum_{j} a_{i}\binom{i}{s} x^{i-s} b_{j}\binom{j}{k-s} x^{j-k+s}
$$

The first identity follows from the fact that

$$
\binom{i+j}{k}=\sum_{s=0}^{k}\binom{i}{s}\binom{j}{k-s} .
$$

The second claim follows by induction on r.
We can use this lemma to derive some more natural properties of Hasse derivatives.

Lemma 2. Let $a \in \mathbb{F}_{p}$. Then

$$
E^{k}\left((x-a)^{r}\right)=\binom{r}{k}(x-a)^{r-k} .
$$

If $0 \leq k \leq r$ then for any polynomials f and g we have

$$
E^{k}\left(f g^{r}\right)=h g^{r-k}
$$

for some polynomial $h(x)$ with $\operatorname{deg}(h) \leq \operatorname{deg}(f)+k \operatorname{deg}(g)-k$.
This last consequence is an analog of the familiar rule: if you take k derivatives of the r 'th power of g then you still have something which is divisible by g^{r-k}.

Proof. For the first claim, apply part 2 of Lemma 1 with $f_{i}(x)=(x-a)$ for each i. Then the only way a derivative $E^{j}(x-a)$ is non-zero is if $j=0$ or $j=1$. In this way we have $\binom{r}{k}$ choices to place the derivatives with $k=1$ and each such derivative is 1 . The remaining choices have $j=0$ so we are applying the identity operator and are left with a factor $(x-a)$.

For the second claim, again apply part 2 of Lemma 1 with $f_{1}=f$ and $f_{i}=g$ for $i=2, \ldots, r+1$. Since $k \leq r$, there are at least $k-r$ values of j_{i} which must be zero in each summand. Hence we are left with a factor of g^{k-r} in each summand, and so the entire expression is divisible by g^{k-r}. The degree restriction on h follows from the fact that the Hasse derivative decreases the degree of the polynomial by at least k. Hence $\operatorname{deg}(h) \leq(\operatorname{deg}(f)+r \operatorname{deg}(g))-k-(r-k) \operatorname{deg}(g)$.

Finally, we can derive the fact that we really need Hasse derivatives to obey, which is that many vanishing derivatives of a polynomial means a high order zero at that point. Specifically,

Lemma 3. Suppose f is a polynomial and $a \in \mathbb{F}_{p}$ is such that $\left(E^{k}(f)\right)(a)=$ 0 for $0 \leq k \leq l-1$. Then $(x-a)^{l}$ divides f.

Proof. Write $f(x)$ in terms of the basis of polynomials $(x-a)^{j}$:

$$
f(x)=\sum_{j} c_{j}(x-a)^{j}
$$

Then by Lemma 2,

$$
E^{k}(f(x))=\sum_{j} c_{j}\binom{j}{k}(x-a)^{j-k}
$$

Plugging in $x=a$, the only term which survives is $k=j$ and the constant and so we are left with a constant c_{k} which must therefore vanish (by our hypothesis). So $c_{k}=0$ for $k<l$ and the lemma follows.

The final lemma we will prove is a bit more technical. In the process of constructing our polynomial we will use polynomials in two variables. This, from a linear algebra perspective, gives us more free variables. Then we will collapse down to one variable by setting $y=x^{p}$ and using the relation $x^{p}=x$, which will reduce the number of linear equations we need to solve. So we will have need to take Hasse derivatives of polynomials of the form $h\left(x, x^{p}\right)$, where $h(x, y) \in \mathbb{F}_{p}[x, y]$. To help with that, we have the following.

Lemma 4. Suppose $h(x, y)$ is a polynomial and $r(x)=h\left(x, x^{p}\right)$. Let $E_{x}^{k}(h)$ denote the k 'th order Hasse derivative of h with respect to x (i.e. applied to $h(x, y)$ with the variable y treated as a constant). Then, for $k<p$,

$$
E^{k}(r(x))=E_{x}^{k}(h)\left(x, x^{p}\right) .
$$

The lemma is essentially saying that a certain "diagram" commutes. We can substitute $y=x^{p}$ and then apply Hasse derivatives or else we can apply a Hasse derivative in the x variable only, and then make the substitution $y=x^{p}$.

Proof. First, if $h(x, y)=x^{m} y^{n}$, then $r(x)=x^{m}\left(x^{p}\right)^{n}$ and by Lemma 1

$$
E^{k}\left(x^{m} x^{p n}\right)=\sum_{s=0}^{k} E^{s-k}\left(x^{m}\right) E^{s}\left(x^{p n}\right)
$$

while $E_{x}^{k}(h(x, y))=y^{n}\binom{m}{k} x^{m-k}$ so that

$$
E_{x}^{k}(h)\left(x, x^{p}\right)=\binom{m}{k} x^{m+n p-k}
$$

For $s>0, E^{s}\left(x^{p n}\right)=\binom{p n}{s} x^{p n-s}$ and since $s \leq k<p$ the binomial coefficient is divisible by p. Thus

$$
E^{k}(r(x))=\binom{m}{k} x^{m+n p-k}=E_{x}^{k}(h)\left(x, x^{p}\right) .
$$

Now, if $h(x, y)=\sum_{m, n} c_{m, n} x^{m} y^{n}$ then the result holds by linearity and the above case.

3. Constructing the auxiliary polynomial

Now assume as in the introduction that we have a polynomial f of degree $d \geq 3$ which is not a square in $\overline{\mathbb{F}_{p}}[x]$, and $a \in \mathbb{F}_{p}$. We want to find a polynomial which vanishes to high order on

$$
X_{a}=\left\{x \in \mathbb{F}_{p}: f(x)=0 \text { or } f(x)^{\frac{p-1}{2}}=a\right\} .
$$

The next proposition nearly does this.
Proposition 1 (Existence of an auxiliary polynomial). Assume $p>8 d$ and let l be an integer in the range $d<l \leq p / 8$. There is a non-zero polynomial $r \in \mathbb{F}_{p}[x]$ of degree

$$
\operatorname{deg}(r)<\frac{p-1}{2} l+2 d l(l-1)+d p
$$

which has a zero of order l at each $x_{0} \in X_{a}$.
The first step is to hone in on the right sort of polynomial we ought to look for. In this case, set $g(x)=f(x)^{\frac{p-1}{2}}$ and we try a polynomial of the form

$$
r(x)=f^{l} \sum_{0 \leq j<J}\left(r_{j}(x)+g(x) s_{j}(x)\right) x^{j p}
$$

where $r_{j}, s_{j} \in \mathbb{F}_{p}[x]$ are to be determined.
Remark. Why is this a good type of polynomial to try? First, the factor f^{l} is there mostly to counteract differentiation: if we take l derivatives of $f^{\frac{p-1}{2}}$ we get something divisible by $f^{\frac{p-1}{2}-l}$ and the extra f^{l} gives us a factor $f^{\frac{p-1}{2}}$ which collapses down to just a or 0 on substituting in $x \in S_{a}$. The rest of the expression for this polynomial is not too much
worse: we are basically separating the terms according to the degrees in ranges $[j p,(j+1) p)$. Indeed, any polynomial can be written

$$
R(x)=\sum_{0 \leq j<J} R_{j}(x)
$$

where all terms in $R_{j}(x)$ have degree in $[j p,(j+1) p)$. Factoring out $x^{j p}$ from $R_{j}(x)$ we get $R_{j}(x)=x^{j p} S_{j}(x)$ where $\operatorname{deg}\left(S_{j}\right)<p$. Assume the r_{j} and s_{j} terms have low degree. Then, since $g(x)$ is a $\frac{p-1}{2}$ 'th power of f, if say $f(0)=0$, each term in $s_{j}(x) g(x)$ has degree at least $\frac{p-1}{2}$ and each term in $r_{j}(x)$ is of degree at most $\frac{p-1}{2}$, we can sort of see this as breaking down the $S_{j}(x)$ into the high degree parts and low degree parts.

Assume now that each r_{j} and s_{j} has degree bounded by $\frac{p-1}{2}-d$. Then the degree of r satisfies

$$
\operatorname{deg} r \leq l d+J p+\frac{p-1}{2}-d+\frac{p-1}{2} d \leq(J+d) p
$$

Next, all the work will have been for not if the polynomial we construct is identically zero. This is where the hypothesis that f is not a square will come in.

Lemma 5 (The auxiliary polynomial is non-zero). Suppose

$$
r(x)=f^{l} \sum_{0 \leq j<J}\left(r_{j}(x)+g(x) s_{j}(x)\right) x^{j p}
$$

where each r_{j} and s_{j} has degree bounded by $\frac{p-1}{2}-d$. If f is not a square in $\overline{\mathbb{F}_{p}}[x]$ then $r=0$ only if $s_{j}=r_{j}=0$ for each j.

Proof. Assume, by making the change of variables $x \mapsto x+a$ that $f(0) \neq 0$. Suppose, by way of contradiction, that $r=0$ but some s_{j} or r_{j} is non-zero and let k be the least index of such a j.. We can divide r by $f^{l} x^{k p}$ to get

$$
\sum_{k \leq j<J}\left(r_{j}(x)+s_{j}(x) g(x)\right) x^{p(j-k)}=0
$$

Group the terms with $g=f^{\frac{p-1}{2}}$ and rewrite this as

$$
h_{1}=-h_{2} g
$$

where

$$
h_{1}(x)=\sum_{k \leq j<J} r_{j}(x) x^{p(j-k)}, h_{2}(x)=\sum_{k \leq j<J} s_{j}(x) x^{p(j-k)}
$$

so that upon squaring and multiplying by f, we get

$$
h_{1}^{2} f=h_{2}^{2} f^{p}
$$

Reduce this equation modulo the polynomial x^{p}. Then

$$
\begin{aligned}
r_{k}(x)^{2} f(x) & =h_{1}(x)^{2} f(x) \bmod x^{p} \\
& =h_{2}(x)^{2} f(x)^{p} \bmod x^{p} \\
& =h_{2}(x)^{2} f\left(x^{p}\right) \bmod x^{p} \\
& =s_{k}(x)^{2} f(0) \bmod x^{p} .
\end{aligned}
$$

We have used $f(x)^{p}=f\left(x^{p}\right)$, in light of the fact we are in characteristic p. Now, the degree constraints on s_{k} and r_{k}, plus the fact that one of them is non-zero, means that $r_{k}(x)^{2} f(x)-s_{k}(x)^{2} f(0)$ cannot be divisible by x^{p} unless it is zero. Thus we must in fact have

$$
r_{k}(x)^{2} f(x)=s_{k}(x)^{2} f(0)
$$

which is impossible since it would imply (by factoring $f(0)=t^{2}$ in some extension) that $f(x)$ is in fact a square in $\overline{\mathbb{F}_{p}}[x]$.

Next we take derivatives of our polynomial.
Lemma 6. Suppose

$$
r(x)=f^{l} \sum_{0 \leq j<J}\left(r_{j}(x)+g(x) s_{j}(x)\right) x^{j p}
$$

where each r_{j} and s_{j} has degree bounded by $\frac{p-1}{2}-d$. For each k with $0 \leq k<l$ we have

$$
E^{k}(r(x))=f^{l-k} \sum_{0 \leq j<J}\left(r_{j}^{(k)}(x)+g(x) s_{j}^{(k)}(x)\right) x^{j p}
$$

where $r_{j}^{(k)}(x)$ and $s_{j}^{(k)}$ are polynomials of degree at most

$$
\frac{p-1}{2}-d+k(d-1) .
$$

Proof. To make things simple, we write $r(x)=h\left(x, x^{p}\right)$ where

$$
\begin{aligned}
h(x, y) & =f(x)^{l} \sum_{0 \leq j<J}\left(r_{j}(x)+g(x) s_{j}(x)\right) y^{j} \\
& =\sum_{0 \leq j<J}\left(f(x)^{l} r_{j}(x)+f(x)^{\frac{p-1}{2}+l} s_{j}(x)\right) y^{j} .
\end{aligned}
$$

By Lemma 4 and linearity

$$
\begin{aligned}
E^{k}(r(x)) & =E_{x}^{k}(h(x, y))\left(x, x^{p}\right) \\
& =f(x)^{l} \sum_{0 \leq j<J}\left(E^{k}\left(r_{j}(x) f(x)^{l}\right)+E^{k}\left(f(x)^{\frac{p-1}{2}+l} s_{j}(x)\right)\right) x^{p j}
\end{aligned}
$$

By Lemma 2 applied to $E^{k}\left(r_{j}(x) f(x)^{l}\right)$ and $E^{k}\left(f(x)^{\frac{p-1}{2}+l} s_{j}(x)\right)$, there are polynomials $r_{j}^{(k)}$ and $s_{j}^{(k)}$, of degrees

$$
\operatorname{deg}\left(r_{j}^{(k)}\right) \leq \operatorname{deg}\left(r_{j}\right)+k \operatorname{deg}(f)-k \leq \frac{p-1}{2}-d+k(d-1)
$$

and

$$
\operatorname{deg}\left(s_{j}^{(k)}\right) \leq \operatorname{deg}\left(s_{j}\right)+k \operatorname{deg}(f)-k \leq \frac{p-1}{2}-d+k(d-1)
$$

and such that

$$
E^{k}\left(r_{j} f^{l}\right)=r_{j}^{(k)} f^{l-k}, E^{k}\left(s_{j} f^{\frac{p-1}{2}+l}\right)=s_{j}^{(k)} f^{\frac{p-1}{2}+l-k}
$$

which is just what we wanted to prove.
Now we can prove Proposition 1.
Proof of Proposition 1. Let $x_{0} \in X_{a}$. We want to ensure that the polynomial $r(x)$ has a zero of order at least l at x_{0}. To that end, we consider (using Lemma 3) the value of $E^{k}(r(x))$ at x_{0}. By Lemma 6,

$$
E^{k}(r(x))=f^{l-k} \sum_{0 \leq j<J}\left(r_{j}^{(k)}(x)+g(x) s_{j}^{(k)}(x)\right) x^{j p}
$$

and if we substitute in x_{0} we get

$$
E^{k}\left(r\left(x_{0}\right)\right)=f^{l-k}\left(x_{0}\right) \sum_{0 \leq j<J}\left(r_{j}^{(k)}\left(x_{0}\right)+b s_{j}^{(k)}\left(x_{0}\right)\right) x_{0}^{j}
$$

where $b=0$ or $b=a$. But $b=0$ means that $f\left(x_{0}\right)=0$ which means that the term $f\left(x_{0}\right)$ out front vanishes already. So $b=a$, and we can rewrite this as

$$
E^{k}\left(r\left(x_{0}\right)\right)=f^{l-k}\left(x_{0}\right) \sigma_{k}\left(x_{0}\right)
$$

where

$$
\sigma_{k}(x)=\sum_{0 \leq j<J}\left(r_{j}^{(k)}(x)+a s_{j}^{(k)}(x)\right) x^{j}
$$

which is a polynomial of much smaller degree than $r(x)$. So to satisfy $\sigma_{k}\left(x_{0}\right)=0$ for each k and x_{0}, it is certainly sufficient that σ_{k} is the 0 -polynomial for each k. This imposes $\operatorname{deg}\left(\sigma_{k}\right)+1$ linear constraints (one for each coefficient of σ_{k}) for each k. Thus the total number of linear equations we wish to have vanish is

$$
\sum_{k \leq l-1} \operatorname{deg}\left(\sigma_{k}\right) \leq l\left(J+\frac{p-1}{2}-d+\frac{1}{2}(l-1)(d-1)\right) .
$$

On the other hand we have $2\left(\frac{p-1}{2}-d\right)$ coefficients to choose from for each r_{j} and s_{j}, which gives us $2 J\left(\frac{p-1}{2}-d\right)$ variables. Take

$$
J=\left[\frac{l}{p}\left(\frac{p-1}{2}+2 d(l-1)\right)\right]
$$

then

$$
J \geq \frac{l}{p}\left(\frac{p-1}{2}+2 d(l-1)\right)-1
$$

which will be enough to have more variables than constraints. In this case,

$$
\operatorname{deg}(r) \leq l d+\frac{p-1}{2} d+\frac{p-1}{2}-d+\frac{l}{p}\left(\frac{p-1}{2}+2 d(l-1)\right)
$$

which is good enough to prove the proposition.
We can now prove our theorem.
Proof. By Proposition 1, there is a non-zero polynomial r of degree at most

$$
\frac{p-1}{2} l+2 d l(l-1)+d p
$$

which has a zero of order l at each point of X_{a}. Thus $\left(x-x_{0}\right)^{l}$ divides $r(x)$ for each $x_{0} \in X_{a}$ which means

$$
\left|X_{a}\right| \leq \frac{p-1}{2}+2 d(l-1)+\frac{d p}{l} .
$$

We take $l=1+\left[\frac{\sqrt{\bar{p}}}{2}\right]$. Then

$$
\left|X_{a}\right| \leq \frac{p-1}{2}+4 d \sqrt{p}
$$

Applying this upper bound to X_{1} tells us that the curve has at most $p+8 d \sqrt{p}$ points on it. Using the fact that

$$
\left|X_{1}\right|+\left|X_{-1}\right|=p+|\{x: f(x)=0\}|
$$

we see

$$
N \geq 2\left|X_{1}\right| \geq 2\left(p-\left|X_{-1}\right|\right) \geq p-8 d \sqrt{p}
$$

which gives the corresponding lower bound.

4. Application: The Burgess Bound

We now use the above estimate to estimate very short character sums with the Legendre symbol. To keep things simple, we will just estimate the sum

$$
S=\sum_{1 \leq n \leq N}\left(\frac{n}{p}\right)
$$

but sums over other arithmetic progressions can be estimated the same way. Also, we can assume $N \leq p^{1 / 2+\varepsilon}$ since otherwise Polya-Vinogradov applies. Observe that since $\left(\frac{n}{p}\right)$ is bounded by 1 , then

$$
\left|S-\sum_{1 \leq n \leq N}\left(\frac{n+h}{p}\right)\right| \leq 2 h
$$

Taking $h=a b$ and summing over all a in the range $1 \leq a \leq A$ and b in the range $1 \leq b \leq B$ we get

$$
S=\frac{1}{A B} \sum_{1 \leq n \leq N} \sum_{1 \leq a \leq A} \sum_{1 \leq b \leq B}\left(\frac{n+a b}{p}\right)+O(A B) .
$$

Let's now focus on the new sum

$$
T=\sum_{1 \leq n \leq N} \sum_{1 \leq a \leq A} \sum_{1 \leq b \leq B}\left(\frac{n+a b}{p}\right)
$$

By the triangle inequality and the fact that the Legendre symbol is multiplicative,

$$
|T| \leq \sum_{1 \leq n \leq N} \sum_{1 \leq a \leq A}\left|\sum_{1 \leq b \leq B}\left(\frac{n a^{-1}+b}{p}\right)\right|
$$

Set $n a^{-1}=x$. Then the inner most sum is

$$
\sum_{1 \leq b \leq B}\left(\frac{x+b}{p}\right)
$$

and we count this sum every time we have can represent x in this way. So let $r(x)$ denote the number of solutions to.

$$
x=n a^{-1}, 1 \leq n \leq N, 1 \leq a \leq A
$$

In short,

$$
|T| \leq \sum_{x \in \mathbb{F}_{p}} r(x)\left|\sum_{1 \leq b \leq B}\left(\frac{x+b}{p}\right)\right|
$$

Now we apply Hölder's inequality in the form

$$
\sum_{x} a_{x} b_{x} c_{x} \leq\left(\sum_{x}\left|a_{x}\right|^{q_{1}}\right)^{1 / q_{1}}\left(\sum_{x}\left|b_{x}\right|^{q_{2}}\right)^{1 / q_{2}}\left(\sum_{x}\left|c_{x}\right|^{q_{3}}\right)^{1 / q_{3}}
$$

which holds as long as $q_{1}^{-1}+q_{2}^{-1}+q_{3}^{-1}=1$. In this case we take

$$
a_{x}=r(x)^{(k-1) / k}, b_{x}=r(x)^{1 / k}, c_{x}=\sum_{1 \leq b \leq B}\left(\frac{x+b}{p}\right)
$$

and

$$
q_{1}=\frac{k}{k-1}, q_{2}=2 k, q_{3}=2 k
$$

which gives

$$
T \leq P_{1}^{1-1 / k} P_{2}^{1 / 2 k} P_{3}^{1 / 2 k}
$$

where

$$
P_{1}=\sum_{x} r(x), P_{2}=\sum_{x} r(x)^{2}, P_{3}=\sum_{x}\left(\sum_{b}\left(\frac{x+b}{p}\right)\right)^{2 k}
$$

By double counting, $P_{1}=A N$ since each a and each n contribute 1 to exactly one $r(x)$, namely $x=n a^{-1}$. Now, each summand in P_{2} counts a pair $\left(a_{1}, n_{1}\right)$ and $\left(a_{2}, n_{2}\right)$ with $n_{1} a_{1}^{-1}=n_{2} a_{2}^{-1}=x$. Summing over x eliminates the variable x and we get

$$
\begin{aligned}
P_{2} & =\left|\left\{\left(a_{1}, a_{2}, n_{1}, n_{2}\right): n_{1} a_{1}^{-1}=n_{2} a_{2}^{-1} \bmod p\right\}\right| \\
& =\left|\left\{\left(a_{1}, a_{2}, n_{1}, n_{2}\right): a_{2} n_{1}=a_{1} n_{2} \bmod p\right\}\right|
\end{aligned}
$$

where $1 \leq a_{i} \leq A$ and $1 \leq n_{i} \leq N$. But by the same reasoning,

$$
P_{2}=\sum_{x} s(x)^{2}
$$

where $s(x)$ is the number of representations of x as an modulo p. If $a n=x_{1} \equiv x \bmod p$, then there are only $A N / p+1$ choices for x_{1}
(namely those congruent to $x \bmod p$ and bounded by $A N$). This means that the congruence condition is at most $A N / p+1$ times the maximum number of solutions to $x_{1}=a n$, which is bounded by the divisor function $d\left(x_{1}\right)$. Thus $s(x) \leq\left(A N p^{-1}+1\right) d\left(x_{1}\right) \leq\left(A N p^{-1}+1\right) p^{\delta}$ for any $\delta>0$ we like. This shows that

$$
P_{2} \leq p^{\delta} \sum_{x} s(x)=p^{\delta}\left(A^{2} N^{2} p^{-1}+A N\right),
$$

again by double counting. Finally,

$$
P_{3}=\sum_{b_{1}, \ldots, b_{2 k}} \sum_{x}\left(\frac{\left(x+b_{1}\right) \cdots\left(x+b_{2 k}\right)}{p}\right)=\sum_{b_{1}, \ldots, b_{2 k}} \sum_{x}\left(\frac{f_{b_{1}, \ldots, b_{2 k}}(x)}{p}\right)
$$

where $f_{b_{1}, \ldots, b_{2 k}}$ is a polynomial in x of degree $2 k$ and is only a square if the numbers b_{i} can be arranged into pairs of equal values. If this does happen, then $f_{b_{1}, \ldots, b_{2 k}}$ is a perfect square and the inner sum is about p. But this only happens in at most $k!\binom{2 k}{k} B^{k}$ ways, which is at most $(2 k B)^{k}$. So for these terms we get a bound of at most $p(2 k B)^{k}$. If $f_{b_{1}, \ldots, b_{2 k}}$ is not a square then then by our new-found knowledge of hyperelliptic curves, $f_{b_{1}, \ldots, b_{2 k}}(x)$ is a quadratic residue about half of the time, and a quadratic non-residue about half of the time. Specifically

$$
\left|\sum_{b_{1}, \ldots, b_{2 k}} \sum_{x}\left(\frac{f_{b_{1}, \ldots, b_{2 k}}(x)}{p}\right)\right| \leq 16 k \sqrt{p}
$$

which means that we get at most $16 k B^{2 k} \sqrt{p}$ for the other terms and

$$
P_{3} \leq(2 k B)^{k} p+16 k B^{2 k} \sqrt{p}
$$

Now choose $B \approx k p^{1 / 2 k}$ and $A \approx N /\left(k p^{1 / 2 k}\right)$ and we have shown that

$$
|S|<_{\delta} N^{1-1 / k} p^{\frac{k+1}{4 k^{2}}+\delta}
$$

This is smaller than N if $N>p^{\theta}$ with $\theta>1 / 4$.

References

[IK] H. Iwaniec and E. Kowalski, Analytic Number Theory. AMS Colloquium Publications, 2004.

Pennsylvania State University, University Park, PA
E-mail address: bwh5339@psu.edu

