STEPANOV’S METHOD FOR HYPERELLIPTIC
CURVES
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1. INTRODUCTION

In this this note we give a description of how to apply Stepanov’s
method to get a good estimate for the number of points on the hyper-
elliptic curve

over a finite field with p elements, where f(x) € [F,[z] is a polynomial
of degree d which is not a square in F,[x].

Let N denote the number of points on the curve, i.e. the number
of solutions (z,y) € F, with y* = f(z). If (z,y) is a solution with
y = 0 then x is a root of f(x), in which case there are at most d choices
for x. If d is small, we might think of this as an error term. For any
other choice of =, f(z) # 0, and f(x) = y? is only possible if f(z) is a
quadratic residue. The is no obvious reason for f(x) to be a quadratic
residue (after all, f(x) is not the square of some other polynomial) so
we think that it has about a 50/50 chance of being a quadratic residue.
But if there is a solution, there are in fact two solutions, namely (z,y)
and (z, —y). So we expect the number of solutions (z,y) with y # 0
to be about 21%1 = p— 1. All in all, we expect there to be about p
solutions to the equation. What we will show is that this is indeed the

case:

Theorem 1. Let f(z) € F,[z] be a polynomial of degree d > 3 which
is not a square in F,[z]. Then, if p > 4d*, we have

|IN — p| <8d/p.
1
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We are going to actually deduce this from an upper bound on the
size of the set

Xo={zeF,: f(x) =0or f(:z:)pT_1 =a}.

The reason for looking at this set is that any non-zero element z € I,
satisfies 221 = 1 and so if f(z) = y? then f(z)"z = y*~! = 1. In
this case © € X;. Meanwhile, if z is such that f(z) is a quadratic non-
residue then f(az:)p%1 = —1and z € X_;. Since X; and X_; satisfy

[ Xa| + [X o =p+[{z: flx) =0}

we will be able to turn use upper bounds to prove lower bounds.

Stepanov’s method uses the following simple idea, pioneered by Thue,
in a beautiful way: if r(z) is a non-zero polynomial of degree D and
r(z) has a zero of order [ at distinct values z1,...,x, then n < D/I.
This fact is basically just the prime factorization of polynomials. By
using the relation

we will build a polynomial (using linear algebra) to create a low-degree
polynomial r(x) which has zeros of high order at each element of X,,.
This will help us bound | X,| from above.

2. HASSE DERIVATIVES

There is a bit of a snag however. Usually, Taylor expansion tells us
that a polynomial r(z) has a zero of order [ at x if all of the [ — 1'th
derivatives of r vanish at xy. We run into trouble with this fact over
F, because - (zF) = pa?~! = 0. This affects the Taylor expansion of a
polynomial since one usually needs to divide by n! which is no longer
non-zero. So to get zeros of high order and not have to deal with
the characteristic of the field, we have to work with a slightly more

complicated differential operator: the Hasse derivatives.

Definition (Hasse Derivative). We define the Hasse derivative of or-

der k, E*, by setting E*(a") = (Z)x”_k and extending linearly to all

polynomials.
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One big downside of these operators is that now we don’t have the
usual convention that a k’th order derivative is just a first derivative
applied k times. Said differently, the operator E* is not k applications
of E'. However there are other formulae that come out nicer in the

language of Hasse derivatives. For instance, by the binomial theorem,

2" = ((x —a+a)") = Z (Z) a"F(z — a)k

k=0

so that the coefficient of ¥ in it’s expansion about a is E*(2") evaluated
at k. Also, and this is crucial, E*(a?) = (?)2P~* which vanishes for

k=20,...,p—1 but does not vanish at k = p.

Lemma 1. For any two polynomials f and g we have

k

E¥(fg) =) E°()E**(g).

s=0
In general,

k

E¥(fi--f)= ) EM(A)- BT

1=k
Proof. If f(x) =3 a;z* and g(z) = >_ bz then

Z@zb Ek i+5) Z aib, (Z —fk—:]> LIk

).]

meanwhile the right hand side is

S E()E (g ZZZaZ<)ZSb(k_S)xj’”S.

s=0

The first identity follows from the fact that

(V)-2067)

The second claim follows by induction on 7. U

We can use this lemma to derive some more natural properties of

Hasse derivatives.
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Lemma 2. Let a € F,. Then

B (- a) = (] ) o - ar
If 0 < k <r then for any polynomials f and g we have
E*(fg") = hg"™*
for some polynomial h(x) with deg(h) < deg(f) + kdeg(g) — k.

This last consequence is an analog of the familiar rule: if you take k
derivatives of the r’th power of g then you still have something which
is divisible by g"*.

Proof. For the first claim, apply part 2 of Lemma 1 with f;(x) = (x—a)
for each i. Then the only way a derivative E’(z — a) is non-zero is if
j=0or 7 =1. In this way we have (2) choices to place the derivatives
with £ = 1 and each such derivative is 1. The remaining choices have
J = 0 so we are applying the identity operator and are left with a factor
(x —a).

For the second claim, again apply part 2 of Lemma 1 with f; = f
and f; = gfort=2,...,r+ 1. Since k < r, there are at least k — r
values of j; which must be zero in each summand. Hence we are left

with a factor of ¢"~"

in each summand, and so the entire expression
is divisible by ¢g*~". The degree restriction on h follows from the fact
that the Hasse derivative decreases the degree of the polynomial by at

least k. Hence deg(h) < (deg(f) +rdeg(g)) — k — (r — k)deg(g). O

Finally, we can derive the fact that we really need Hasse derivatives
to obey, which is that many vanishing derivatives of a polynomial means
a high order zero at that point. Specifically,

Lemma 3. Suppose f is a polynomial and a € F,, is such that (E*(f))(a) =
0 for0<k<l—1. Then (z — a)" divides f.

Proof. Write f(x) in terms of the basis of polynomials (x — a)’:

fl@) =) ejle—a).

J
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Then by Lemma 2,

B = o ()= art
Plugging in = a, the only term which survives is £ = j and the
constant and so we are left with a constant ¢; which must therefore
vanish (by our hypothesis). So ¢, = 0 for k& < [ and the lemma follows.
O

The final lemma we will prove is a bit more technical. In the process
of constructing our polynomial we will use polynomials in two variables.
This, from a linear algebra perspective, gives us more free variables.
Then we will collapse down to one variable by setting y = 2P and using
the relation 2P = x, which will reduce the number of linear equations
we need to solve. So we will have need to take Hasse derivatives of
polynomials of the form h(z,2?), where h(z,y) € F,[z,y]. To help
with that, we have the following.

Lemma 4. Suppose h(z,y) is a polynomial and r(x) = h(x,zP). Let
E%(h) denote the k’th order Hasse derivative of h with respect to x (i.e.
applied to h(x,y) with the variable y treated as a constant). Then, for
k<p,

EX(r(x)) = Eg(h)(x,a").

The lemma is essentially saying that a certain “diagram” commutes.
We can substitute y = 2P and then apply Hasse derivatives or else we
can apply a Hasse derivative in the x variable only, and then make the

substitution y = aP.

Proof. First, if h(x,y) = a™y", then r(z) = 2™ (2P)" and by Lemma 1

EF(a™a™) =Y B (™) B (a™)

s=0

while EX(h(z,y)) = y™(7)a™ " so that

E*(h)(z,27) = (”;) gk
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For s > 0, E*(zP") = ("")z"* and since s < k < p the binomial
coefficient is divisible by p. Thus

B o) =)ot = Bi(h) o).
Now, if h(z,y) = Zmn Cmn@™y" then the result holds by linearity and
the above case. 0

3. CONSTRUCTING THE AUXILIARY POLYNOMIAL

Now assume as in the introduction that we have a polynomial f of
degree d > 3 which is not a square in F,[z], and a € F,. We want to
find a polynomial which vanishes to high order on

Xo={z€F,: f(x)=0or f(x)% =a}.

The next proposition nearly does this.

Proposition 1 (Existence of an auxiliary polynomial). Assume p > 8d
and let | be an integer in the range d < | < p/8. There is a non-zero
polynomial v € Fp[z]| of degree

—1
deg(r) < pTl +2dI(l — 1) + dp
which has a zero of order | at each xy € X,.

The first step is to hone in on the right sort of polynomial we ought
to look for. In this case, set g(x) = f(x)p%l and we try a polynomial
of the form

r(x) = 1) (ri(@) + g(x)s(x))a
0<j<J

where 7}, s; € F,[z] are to be determined.

Remark. Why is this a good type of polynomial to try? First, the fac-
tor f! is there mostly to counteract differentiation: if we take | deriva-
tives of prfl we get something divisible by f%_l and the extra f! gives
us a factor ]‘192;1 which collapses down to just a or 0 on substituting in

x € S,. The rest of the expression for this polynomial is not too much
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worse: we are basically separating the terms according to the degrees in
ranges [jp, (7 + 1)p). Indeed, any polynomial can be written

R(z)= ) R(x)

0<j<J

where all terms in R;(z) have degree in [jp, (j+1)p). Factoring out x7P

from R;(z) we get Rj(x) = xPS;(x) where deg(S;) < p. Assume the

. . ; ; p—1
r; and s; terms have low degree. Then, since g(x) is a %5

of f, if say f(0) = 0, each term in sj(x)g(x) has degree at least ’%1

th power

and each term in r;(x) is of degree at most ;%1; we can sort of see this
as breaking down the S;(x) into the high degree parts and low degree

parts.

Assume now that each r; and s; has degree bounded by p%l —d.
Then the degree of r satisfies

1 1
degrgld—i—Jp—l—pT—d—i—png (J +d)p.

Next, all the work will have been for not if the polynomial we con-
struct is identically zero. This is where the hypothesis that f is not a

square will come in.

Lemma 5 (The auxiliary polynomial is non-zero). Suppose

r(z) = f' (rj(x) + g(@)s;(x))a”

where each r; and s; has degree bounded by p%l —d. If f is not a square

in F,[z] then r = 0 only if s; = r; = 0 for each j.

Proof. Assume, by making the change of variables z — x + a that
£(0) # 0. Suppose, by way of contradiction, that » = 0 but some s; or
r; is non-zero and let k be the least index of such a j.. We can divide
r by fla*? to get

3 (ry(@) + s5(2)g(x))a? ™ = 0.

k<j<J
Group the terms with g = f 2 and rewrite this as

hi = —hag



8 BRANDON HANSON

where

_ Z rj(x)xp(j Z s; xp(a

k<j<J k<j<J

so that upon squaring and multiplying by f, we get
hif = h3f?.

Reduce this equation modulo the polynomial #P. Then

ri(z)*f(x) = hi(2)* f(z) mod 2
= ho(z)?f(2)” mod 2”
= hy(x)*f(2F) mod z”
= s(2)*f(0) mod z”

We have used f(z)? = f(aP), in light of the fact we are in characteristic
p. Now, the degree constraints on s, and 7, plus the fact that one
of them is non-zero, means that ry(z)?f(x) — s.(2)?f(0) cannot be

divisible by 2P unless it is zero. Thus we must in fact have

(@) f () = su(2)* f(0)
which is impossible since it would imply (by factoring f(0) = ¢ in
some extension) that f(z) is in fact a square in F,[z]. O

Next we take derivatives of our polynomial.

Lemma 6. Suppose

r(x) = 1) (ri(@) + gl2)s;(x))a’

0<i<J

where each r; and s; has degree bounded by *== — d. For each k with
0 <k <1l we have

E*r(x) = /0 Y (7 (@) + g(@)s” (@))a?

0<j<J
where r(k)(x) and st are pol als of d t t
i i polynomials of degree at mos

1
pT—ch(d 1).
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Proof. To make things simple, we write r(x) = h(z, 2?) where

hiz,y) = f) Y (ri(2) + g(2)s;(2))y’

= > (f@)'ra) + fl@)'T i)y’

By Lemma 4 and linearity
Ef(r(z)) = Eg(h(w,y))(z, 2”)
= f@) Y (Ery(@)f@)) + BM(f (@) sy()a?.

0<j<J

p—1

By Lemma 2 applied to E*(r;(x)f(z)") and E*(f(z)™= T's;(z)), there

. (k
are polynomials r

; ) and sg-k), of degrees

—1
deg(r](.k)) < deg(rj) + kdeg(f) — k < pT —d+k(d—1)

and
(k) p—1
deg(s!")) < deg(s;) + kdeg(f) — b < L= —d+ k(d - 1),
and such that
EX(ryf') = ri? 1, BN sy f T ) = 5[0,
which is just what we wanted to prove. U
Now we can prove Proposition 1.

Proof of Proposition 1. Let xq € X,. We want to ensure that the poly-
nomial r(x) has a zero of order at least [ at xy. To that end, we consider
(using Lemma 3) the value of E*(r(z)) at x9. By Lemma 6,
BXr(a)) = 7 3 (P (@) + g(@)s (@)
0<j<J
and if we substitute in xy we get
BX(r(wo)) = £ (o) D (] (wo) + b5} (o)) ]
0<j<J
where b = 0 or b = a. But b = 0 means that f(z¢) = 0 which means
that the term f(z() out front vanishes already. So b = a, and we can

rewrite this as

E*(r(x0)) = f"*(xo)on(x0)
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where
on@) = D () +as] (@)’
0<j<J
which is a polynomial of much smaller degree than r(x). So to satisfy
or(xg) = 0 for each k and xg, it is certainly sufficient that oy is the
0-polynomial for each k. This imposes deg(oy) + 1 linear constraints
(one for each coefficient of oy) for each k. Thus the total number of

linear equations we wish to have vanish is
> deg(ox <l(J+——d+ (l—l)(d—l)).
k<l—1

On the other hand we have 2 (— — d) coefficients to choose from for
each r; and s;, which gives us 2J (T — d) variables. Take

N )

[ (p—1
> (= y2d(i—-1)) —1
J_p( 5 +2d(l ))

which will be enough to have more variables than constraints. In this

then

case,
p—1 p—1 Il (p—1
d <ld d —d+-—+2d(l -1
eg(r) <ld+ 5 + 5 + ’ ( 5 + 2d( )
which is good enough to prove the proposition. O

We can now prove our theorem.

Proof. By Proposition 1, there is a non-zero polynomial r of degree at
most

1
pTlnLZdl(l—l)erp

which has a zero of order [ at each point of X,. Thus (z — x¢)! divides
r(z) for each xy € X, which means
—1 d
X,| < pT v2d(i—1)+ 2.
Wetakel—l—l—[ } Then

-1
X,| < pT +4d\/p.
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Applying this upper bound to X tells us that the curve has at most
p + 8d,/p points on it. Using the fact that

[ Xa| + [ X =p+[{z: f(z) =0}

we see
N 22X, 2 20p - |X_]) 2 p - 8dy/p

which gives the corresponding lower bound. 0

4. APPLICATION: THE BURGESS BOUND

We now use the above estimate to estimate very short character sums

with the Legendre symbol. To keep things simple, we will just estimate

=2 )

1<n<N
but sums over other arithmetic progressions can be estimated the same

the sum

way. Also, we can assume N < p'/2%¢ since otherwise Polya-Vinogradov
applies. Observe that since (%) is bounded by 1, then

=2 (%)

1<n<N

< 2h.

Taking h = ab and summing over all @ in the range 1 < a < A and b
in the range 1 < b < B we get

3 X XX (M) roun.

1<n<N 1<a<A 1<b<B

Let’s now focus on the new sum

T - Z Z Z (n+ab)

1<n<N 1<a<A 1<b<B

By the triangle inequality and the fact that the Legendre symbol is

(1)

1<b<B

multiplicative,

i< >, 2

1<n<N 1<a<A

I — 2. Then the inner most sum is

> (59):

1<b<B

Set na~
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and we count this sum every time we have can represent x in this way.

So let 7(z) denote the number of solutions to.

r=na"t, 1<n<N,1<a<A

> (=)

1<b<B

In short,

T <> r(@)

z€Fp

Now we apply Holder’s inequality in the form

1q 1/q2 /g3
Z%%%S(ZI%I‘“) (Z\bxl‘”) (Z!cx\%)

x x T

which holds as long as ¢;* + ¢ * + qs 1 = 1. In this case we take

b
o= @) Db, = o) = Y ()

1<b<B p

and .
a1 = m;% =2k, q3 =2k
which gives
1-1/k p1/2k 1/2k
T < plVEpy/*pl/

where

P =Y 1), B=Y r@? P=Y (Z (‘”;b»%.

x T T b

By double counting, P, = AN since each a and each n contribute 1 to

exactly one r(z), namely x = na~!. Now, each summand in P, counts

1

a pair (a;,n1) and (ag,ny) with nja;’ = nqa; ' = x. Summing over

eliminates the variable x and we get
Py = [{(a1,as,n1,m2) : nyay' = nsay' mod p}

= {(a1, az,n1,m2) : agny = a;ny mod pi}|

where 1 < a; < A and 1 < n; < N. But by the same reasoning,

Py, = Z s(z)?

T
where s(z) is the number of representations of x as an modulo p. If
an = x; = x mod p, then there are only AN/p + 1 choices for x;
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(namely those congruent to x mod p and bounded by AN). This means
that the congruence condition is at most AN/p+ 1 times the maximum
number of solutions to x1 = an, which is bounded by the divisor func-
tion d(z1). Thus s(z) < (ANp™' + 1)d(x1) < (ANp~' + 1)p° for any
0 > 0 we like. This shows that

Py <p Z PP(AN?p~! + AN),

again by double countmg Finally,

Z Z(x—l—bl (x+b2k) Z Z(fbl, b (T )

bi,....bak wbop @

where fy,  p,, is a polynomial in x of degree Qk and is only a square

2k
if the numbers b; can be arranged into pairs of equal values. If this

does happen, then fy, s, is a perfect square and the inner sum is

2k
about p. But this only happens in at most k:!(%f) B* ways, which is at
most (2kB)*. So for these terms we get a bound of at most p(2kB)*.
If fu, ., is DOt a square then then by our new-found knowledge of
hyperelliptic curves, fy, 5, (%) is a quadratic residue about half of the

time, and a quadratic non-residue about half of the time. Specifically

p 5 (L))

bgk x

< 16k\/p

which means that we get at most 16k32k\/f9 for the other terms and
P; < (2kB)*p + 16kB**/p.
Now choose B = kp'/?* and A ~ N/(kp'/?*) and we have shown that
S| <5 N1—1/kp4;§+5
This is smaller than N if N > p? with 6 > 1/4.
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