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1. Introduction
We continue the study of the problems discussed in the introduction to
[22]. We suppose, as before, that Xv ...,XS are s non-zero real numbers
not all of the same sign and not all in rational ratio, and fc is a natural
number. Davenport and Heilbronn ([11]) have shown that the inequality

3=1
<e (J.I)

has infinitely many solutions in natural numbers n^ provided that
s ^ 2k +1. Davenport has given an account of this in [9]. Davenport and
Roth ([12]) reduced the permissible size of s for large k by showing that
s > Cklogk will suffice, where C is an absolute constant. Their method
shows that if so(k) is the least s for which (1.1) has an infinity of solutions,
then lim so(k)/(k log k) ^ 6. They mention that for small values of k it
does not seem altogether easy to obtain results which correspond exactly
to those found by Davenport ([5], [6], and [8]) for the classical Waring's
problem, but they do show that so(3) ^ 8. Also, Danicic ([3]) has shown
that 50(4) ^14 .

Let s^k) be the smallest s for which the inequality

< e (1.2)

has infinitely many solutions in prime numbers p^ Schwarz ([20]) has
obtained s^k) ^2k + l (k < 12) and sx(k) ^ 2&2(21og& + loglog& + f) — 1
(k ^ 12). Danicic ([4]), Baker ([1]), and Ramachandra ([18]) have made
further contributions to this subject (see the introduction to [22]). We
show that st(k) ^ Cklogk also holds in this problem, and we obtain
results which correspond exactly to those found by Hua ([16], Chapter 9)
and based on Davenport's methods, for small values of k in the Waring-
Goldbach problem. In fact, our bounds for sx(k) improve all known bounds
when k ^ 4, and C can be taken arbitrarily close to 4 when k is large. We
also obtain bounds for so(k) which, except when k = 5, are the same as
those obtained for G(k), when k is small, by Davenport's methods. The
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386 R. C. VAUGHAN

difficulty when k = 5 arises because we have not been able to obtain an
analogue of Davenport's Theorem 4 of [7].

It would be nice to show that lim so{k)/(k log k) < 4c, for instance as is
obtained for G(k) in Vinogradov's Chapter 4 of [24], but again there is a
difficulty, not dissimilar to the one that occurs above. We content
ourselves by giving a bound just 1 smaller than that given for s^k).

2. The main theorems
Throughout, Ax,..., As are s non-zero real numbers such that Als A2, and

A3 are not all of the same sign and X1/X2 is irrational, and rj is a real number.
The symbols %(X) and "^(X), with or without suffices or superfices, are
used to denote finite sets of distinct real numbers such that no element
exceeds X in absolute value and each pair of different elements, say u, u',
satisfies \u — u'\ ^ 1. We use |srf\ to denote the cardinality of the set $2,
and we say that %(X) has density v if | <%(X) \ > X". We further assume
that k ^ 4, and put

6 = 21-* (k ^ 12), 9 = (2k2(2logk + \oglogk + S))-1 (k > 12) (2.1)
and

a=(22*+2(jfc+l))-1. (2.2)

The theorems enunciated here depend on a technical lemma which
embodies the principal new idea and therefore also merits the title of
theorem. They are thus numbered 2 and 3.

THEOREM 2. Suppose that r ^ P + l , v > l-2rd/k, s ^ 2r + 2m+l,
0 < a < fa, and that for every sufficiently large X there are sets Wt(X)
(£ = 1,2) with density v and such that every element can be written in the form

with pf ^ X. Then there are infinitely many solutions of the inequality

". (2.3)
3 = 1

Let Sl{k) be the least 5 for which (2.3) has infinitely many solutions.

COROLLABY 2.1 . Let
K = \/k (2.4)

and
N = [(-log20 + log(l-2K))/(-log(l-K))]. (2.5)

Then
(2.6)

COROLLARY 2.2. We have S(4) ^ 15, .0(5) ^ 25, S(6) ^ 37, 9(1) ^ 55,
75, .0(9) ^ 97, and ^(10) < 123.
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DIOPHANTINE APPROXIMATION, II 387

These bounds correspond exactly to those found by Hua ([16],
Chapter 9) in the Waring-Goldbach problem.

THEOREM 3. Suppose that r ^ k + 3, v > l—rd/k, s ^ r + 2m, and that
for every sufficiently large X there are sets ̂ t(X) (t = 1,2) with density v and
such that every element can be written in the form

with n^ ^ X. Then there is a positive number 8 such that there are infinitely
many solutions of the inequality

(2.7)
3=1

Let D(k) be the least 5 for which (2.7) has infinitely many solutions.

COROLLARY 3.1. Suppose that (2.4) and (2.5) hold. Then

D(k) ^ 2& + 2JV + 6.

COROLLARY 3.2. We have D(5) ^ 24, Z>(6) ^ 36, D(l) ^ 53, D(S) < 73,
D(9) ^ 96, andD(10) < 121.

This compares with the bounds G(5) ̂  23, G(6) ̂  36, G(8) ̂  73,
G(Q) < 96, and (7(10) ^ 121 due to Davenport ([8]), Davenport ([8])
and Sambasiva Rao ([19]), Narasimhamurti ([17]), Cook ([2]), and
Cook ([2]) respectively. When k = 1 Sambasiva Rao's claim G(l) ^ 52,
or rather his Lemma 5, of [19] cannot be substantiated by the method
described there. It seems that 0(1) ^ 53 is the best that can be done.

3. Theorem 1
We consider the numbers Xv ...,XS, rj, s, k, v, and a as constant and let

8 denote a sufficiently small positive number. P and e are positive numbers
which are respectively large and small in terms of 8. In the proof of
Theorems 2 and 3 we shall take e = P~a and e = P~s respectively. The
implied constants in Vinogradov's forms of the 0 notation, <̂  and > ,
depend at most on 8. We write e(x) = e2nix,

f(x) = £ e(xnk) (3.1)

and
Ke(x) = 7T-2x-2suri7T£x(x^0), Ke(0) = e2. (3.2)

THEOREM 1. Let R = Pk~s, and let "^ = i^(R) denote a set with density v.
Suppose that

F(z)= Se(aw), (3.3)
ve-V

(1+1)0 > k-kv, (3.4)
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and

Then

and

r
J — 00

r
J —00

R. C. VAUGHAN

6>91> k-kv-W.

if^xf+^ix^lK^dx 4 eP^-^-r

\fiXjxYFix)21 Ke(x) dx 4 ePl+e^k | "T |2

I2 (l>k + l)

' (Uft + 2).

(3.5)

(3.6)

(3.7)

4. Proof of Theorem 1
We proceed by lemmas.

L E M M A 1. For every real y,

e{xy)Ke(x) dx = max(0 , e — \y\).
J — 00

This follows easily from Lemma 4 of Davenport and Heilbronn ([11]).

Let
1~S, (4.1)

P

8P
= \Pe(yzk)dz, (4.2)

and

S(q,a)= ie{an*/q). (4.3)
n=l

LEMMA 2. Suppose that q <;Q, (<I>a) — 1> # = 2/ + ^/Q'J
 aw<^ IVI ^ q~xQP~k.

Then
f(x)-q-iS(q,a)L(y) 4 P 1 " 1 ^ * <̂  i31"0-

Proof. By Lemma 7.11 of Hua's book [16] the left side is 4 q1'
The stated result follows at once.

LEMMA 3.

and if (q, a) =

Furthermore,

S(q1q2,a1q2 + c

if pXak, then

\S(p,a)\<

S(ph,a) =

= (£2^2) = !» ^ e w

âffi) = %i>ai)^(9f2»a2)J

p*-1 {l<h^ k),

(4.4)

(4.5)

(4.6)

(4.7)
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DIOPHANTINE APPROXIMATION, II 389

and
S{pn,a)=pk-lS{ph-k,a) {h>k). (4.8)

This is due to Hardy and Littlewood; (4.4) is essentially (3.11) of [13],
(4.5) is (3.41) of [15], (4.6) follows from Lemma 13 of [14], (4.7) from
Lemma 12 of [14], and (4.8) from (4.11) and (4.12) of [13]. Vinogradov has
collected all these results together in Chapter 2 of [24].

LEMMA 4. Suppose that \ x — a/q | ^ q~2 with (q, a) = 1 and Q < q ̂  PkQ~x.
Then

f(x) 4 pi-0+s.

When k ^ 12 this is due to Weyl; see, for instance, Lemma 3.6 of [16].
When k > 12 this is shown in the same way as Theorem 9 of [16]. The
slight extension of the range of q makes no essential difference to the
argument.

LEMMA 5. Suppose that r ^ 2. Then

J:
Proof. By (4.2) and a partial integration, L{y) 4 P{Pk\y\)~x {y ̂  0),

and trivially L(y) <^ P.

Let

Ati)= S \S(q,a)\rq-r. (4.9)
a=l

(3,a)=l

LEMMA 6. Suppose that r ^ k + 2. Then

Proof. By (4.4) and (4.9), Ar(q) is multiplicative, and clearly Ar(l) = 1.
Hence

h=l

providing that all of the infinite series on the right converge. I t suffices,
therefore, to show that

. (4.10)
h=l

lip\k, then by (4.5) and (4.9), Ar(p
h) <|p~™k, so that

h=l
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390 R. C. VAUGHAN

If pjfk, then, by (4.6), (4.7), and (4.8), for b ^ 0 we have

2Ar{pbk+i) ^ Jfpl-ir-bir-k) _j_ £ p-r-b(r-k)

4 p-2-bir-k)t

which gives (4.10).
We dissect the real line into basic and supplementary intervals as

follows. When 1 ^ q ^ Q and (q, a) = 1 we use ^{q, a) to denote the
closed interval with endpoints (a-QP'^Xf^-q-1 and (a + QP-^X^q-1.
These intervals are disjoint. We use ^ to mean their union and we write

^ = R \ ^ . . (4.11)

Let x e JVJ. By a well-known elementary theorem we may choose q, a
so that \Xjx-a/q\^q-1QP~k, 1 ^ q ^ PkQ-x and {q,a) = 1. Since
x £ ^ we have q > Q. Hence, by Lemma 4,

f{\p) 4 P1-^8 {x e JTf). (4.12)

On hypothesis, the elements of if are well spaced and | V \ > Rv. Hence,
by (3.3) and Lemma 1,

\F{x)\*Ke(x)dx < eR-v\-r\2. (4.13)

Therefore, by (3.4), (3.5), and (4.12),

f |/(A/c)I+1jP(a;)21 KAx) dx 4 eP^1"* | iT |» (4.14)
JjTi

and

f \f{\jx)lF{x)21 Ke(x) dx 4 ePl+0i~k | T^ |2. (4.15)

Suppose that r ^ A; + 2. By Lemma 2,

f |/(A^)^(a;)2|Z-fi(a;)^<^|>r|2^1 + P ' - ^ 2 , (4.16)

where

( B(x)dx (4.17)g^Q a=—oo
(g,a)=l

and

^ 2 = f \F(x)\*Ke(x)dx. (4.18)

We split the sum over a in (4.17) into two parts according as \a\ ^ q/e
or | a | > g/e, so that

(4.19)
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DIOPHANTINE APPROXIMATION, I I 391

where, by Lemma 5 and (3.2),

J?1 = <M*-*S £ S \S(q,b)\rq~r

q^Q 6=1 O^a^q/e
(6,g)=l a=6(niod q)

and

H'>=Pr-kTi f* \S(q,b)rq-r S 22«-2.
6=1 o>(7/e

(6,g)=l 6 ( d

Therefore, by Lemma 6,
4iePT-k. (4.20)

By (4.18), (4.13), (3.4), and (3.5),

Pr-*6H2 <$ ePr~k | r |2 {r = I +1)
and

Pr-'°H2 4 ePr+e*-k | r |2 (r = I).

Thus, by (4.16), (4.19), and (4.20) we have

f |/(A^y+1P(z)21 Klx) dx 4 ePl^~k | iT |2

and

I |/(A^)JP(a;)21 Ke{x) dx 4 ePl+°^k \ V |2.

This with (4.14), (4.15), and (4.11) completes the proof of Theorem 1.

5. Proof of Theorem 2
Without loss of generality we may assume that s = 2r + 2m -f 1 • Since

AL/A2 is irrational there are infinitely many pairs of integers q, a with

(#, a) = 1, q > 0, and a ̂  0. We choose g > go(S) and let

P = g2'*, (5.2)

aoc-1 <a1<l (5.3)

Tf = P ^ , (5.4)

e = P~ff, (5.5)

(5.6)
and

T = P*. (5.7)
We further define

g(x)= S e(ap*) (5.8)
5P
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392 R. C. VAUGHAN

and

e{xyi(*> - J dy. (5.9)

We use p = j8 + iy (/?, y real) to denote a typical zero of the Riemann zeta
function and 2 ' to denote summation over all those p with \y\ ^ T and
j8 > | . We then let

i), (5.10)

(5.11)

, (5.12)

and for any function of a real variable, 0>{x),

*,(*) = O(V). (5.13)

We use C to denote a positive absolute constant, not necessarily the same
one on each occurrence.

LEMMA 7. We have

B(x) 4 P»(logP)°(l +Pk\x\).

This can be shown in the same way as Lemma 5 of [22].

LEMMA 8. We have
*|a;|-1), (5.14)

| J(x)\2dx ^ P2-*exp(-2(logP)*), (5.15)

f* \I{x)\2dx4P2-k, (5.16)
J-i

(T \Bj(x)\2dx <^P2-fcexp(
J -T

<4 P 2 ~ k . (5.18)

Proof. The inequality (5.14) follows from (5.9) by partial integration,
and (5.15) is shown by the same kind of argument that is used to prove
(29) of [22]. To prove (5.16) we simply apply (5.14). The inequality (5.17)
is a consequence of (5.13), Lemma 7, (5.6), (5.4), and (5.3). Now (5.18)
follows from (5.13) and (5.12).

For convenience we write
2r+l

W(iA — TT n (w\ (K 1 C^
3=1
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DIOPHANTINE APPROXIMATION, II 393

and
2r+l

¥*(*) = n tyx), (5.20)
3=1

and we dissect the real line as follows;

E1 = {x:\x\<r}i (5.21)

E2 = {X:T< |*| ^ W, \gi{x)\ ^ \g2(x)\}, (5.22)

Es = {X:T< \X\ ^ W, \9l{x)\ > \gt(x)\), (5.23)

Et = {x: \x\ > W}. (5.24)

LEMMA 9. Let E1 be given by (5.21). Then

f | Y(a;) - T*(z) | KB{x) dx ^ eap2r+i-* exp( - (log P)*).

Proof. We first note that

0,(*),JJ(aO«P (5.25)

and, by (5.19), (5.20), and (5.12),

2r+ 1/j-l \ / 2r+l \

V ^ - T * ^ ) = s n^(»)lw*)-^))( n /*(*)). (5.26)
,=1 u=i / U=?+i /

We recall that, by (3.2), Ke(x) < e2. We then replace all but one of the 2r
terms in the products in (5.26) by their bounds (5.25), so that

f \Y(x)-Y*(x)\Ke(x)dx

2r+l 2r+l

j= l h=l

The proof is completed by using Schwarz's inequality and Lemma 8.

LEMMA 10. Suppose that \x — m/n\ ^ n~2, (m,n) = 1,

7 =

a is given by (2.2), and

log 7 ^
Then

2 e(^fc)

This is a theorem of Vinogradov ([23]).

LEMMA 11. Let h = 2 or 3 am? suppose that x e Eh. Then
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394 R. C. VAUGHAN

Proof. Let x e E2uE3, so that by (5.22) and (5.23), T < \x\ < W. Let
V = 8W and choose aj/qj so that ^ < P^y-i and |A,a-ai/qj | < g ^ F F - * .
By the method of Davenport and Heilbronn in [11], Lemma 13, we have
m a x ^ , g2) ^ W. Hence, by Lemma 10, (5.3), and (5.5),

min( | gx(x) \, \ g2(x) \) 4 P 1 " ^ <̂  £P(logP)-*-\

The lemma is an immediate consequence of this, (5.22), and (5.23).

Let
Ft(x)= £ e{xu), (5.27)

R

where R = Pk~s agrees with the definition in Theorem 1, and

Ut = \%(R)\. (5.28)

LEMMA 12. Let h = 2 or 3. Then

f | Y(x)F1(x)F2(x) | Ke(x) dx

Proof. In view of Lemma 11 it suffices to show that for j = 1,2,..., 2r +1
and t = 1,2,

r | g^xYF^x) \2Ke(x) dx 4 eP2r~kUt
2. (5.29)

J - 00

By Lemma 1 we can write the left side as a finite sum, which is
clearly bounded by the integral in (3.6) with F replaced by Ft and
1+1 = 2r. This gives (5.29).

LEMMA 13. Let Q(x) = Yie(xu)(y1} ...,yn)), where w is any real function
and the summation is over any finite set of values of ylt...,yn. Then, for
any X > 4t/e we have

f \Q(x)\*Ke(x)dx ^^T \£l(x)\*Ke(x)dx.

Proof. The left side is

s( {Q^x^K^dx
J M>Xe

where Qe(x) = S e ^ a ^ , ...,yn)/s), and the right side is

The lemma now follows from Davenport and Roth's Lemma 2 of [12].
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DIOPHANTINE APPROXIMATION, II

LEMMA 14. Let 2?4 be given by (5.24). Then

f | x¥(x)F1{x)F2{x) | Ke{x) dx 4 e2P2r+1-k{\og P ) " 2 ' " 2 ^
J E\

Proof. By (5.29), (5.4), (5.3), (5.5), and Lemma 13,

f ig^xYF^^K^dx
J Ei

The lemma now follows easily.

LEMMA 15. We have

[ \xF*(x
J |X|>T

395

-2r-2 (5.30)

W*(x)F1{x)F2{x)e{xr))Ke(x)dx > e
2P2''+1-fc(logP)-2'-1?71i[/2. (5.31)

Proof. The inequality (5.30) follows easily from (5.14). To prove (5.31)
we use Lemma 1 to write the integral on the left as

S S TT1—. •••2 2 r + 1—max|0,e-
«i«,J*(logz1)...(logz2r+1) \

2r+l
7] + ux + u2 + 2 V,-1 I dzx.. .dz2r+1,

where the box 88 is the cartesian product of the intervals 8kPk

Suppose that
III < 312

and h and I are chosen so that AftA, < 0. If

3 = I),

(5.32)

<PK

(5.33)

and

then, by (5.

S*P*

33),

2S A,
Az

Pk^

^ Zj ̂  282P& (1

« , < 3S

^ j ^ 2r + ]

Hence the box £8 contains a region &' with volume > eP2rk and such
that if (zv ...,z2r+1) G ^" and M( E [/,(/= 1, 2), then

2r+l

J = l

Thus the expression (5.32) is
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396 R. C. VAUGHAN

This completes the proof of Lemma 15.

It is now a straightforward matter to deduce Theorem 2 from Lemmas 1,
9, 12, 14, and 15.

6. Proof of Corollaries 2.1 and 2.2

The next lemma is an analogue of Davenport's Theorem 2 of [7].

LEMMA 16. For each large X let °U{X) be a set with density v — 8, where

l/k < v < I, and let

= max -

Suppose further that A is a non-zero real number and

,-2^i. (6.2)

TAew, for every sufficiently large Y, there is a set ir{ Y) with density /x — 8 and
such that every element v can be written in the form Xpk + u with pk < Y and

Proof. Let Y > YQ(8), so that, in particular, if

X = 7" (6.3)
then

\<%(X)\ > Xv~s. (6.4)
Let

Z = 8YVk (6.5)

and Fn be the number of solutions of

- £ < Xpk + u-n s£ \ (6.6)
with

Z<p^2Z (6.7)
and

u E %{X). (6.8)

To prove the lemma it suffices to show that when 1 ^ h ^ k — 2 we have

2"*). (6.9)

For then the argument of Davenport's Theorem 2 of [7] gives

71=—00

rn>o
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DIOPHANTINE APPROXIMATION, I I 397

so that, by (6.5) and (6.2),

1 > 27*-*. (6.10)
n=—oo

rn>o
We are thus able to take a representative v from each interval (n — | , n + £]
for which Tn> 0, so that, by (6.7), (6.8), (6.5), and (6.3), v = \pk + u,
u e W(Y9), pk ^ Y, and \v\ ^ T. The worst that can happen is that all
of these v are in consecutive intervals and we have to discard half of them.
By (6.10) the remainder form a set i^{Y) as required.

To prove (6.9) we formally follow the argument of Davenport's
Theorem 1 of [7]. Clearly £ n ^n *s a^ m °s t the number of solutions of the
inequality

with Z < nx,n2 ^ 2Z and ux,u2 e tft{X). We use the notation

A,(O(*)) = <D(*+ *)-<!>(*), \h_lamx)) = AJA,)<1)...)<B_1(

and let Nq (1 ^ q ^ k — 2) be the number of solutions of

A tta ^ 2s-1 (6.11)

with Z < n ̂  2Z, u1} u2 e <%{X), 0 < M X^1"*, and 0 < ti ̂  Z. Then

S r^^ZI^ZJI + Ĵ . (6.12)
n=—oo

Let 0(t, w) be the number of solutions of (6.11) with (t,tL, ...,ia_1) = t and
u2 = u. Then, by Cauchy's inequality,

Nq
2 ^ XZ-k+<* | <&(X) | S ®(t, w)2. (6.13)

The sum ]£t M 0(t, ^)2 does not exceed the number of solutions in
t, h> • • - > *g-i> ni> n2> ui> U2> a n d u o f

-2« ̂  \\k>^Jnk) + ux-X\t^JgJnk)-u2 ^ 2* (6.14)
with

- 2 * - 1 ^ AAWl k_l{nJt) + u1-u ^ 2a-1. (6.15)

For each set of numbers t,tv ..., tq_v n1} n2, uv and u2 the number of choices
for u is at most 2«+ 1. Hence the number of solutions of (6.14) and (6.15)
with W-! ̂  n2 is <̂  i^3+1. Also, for each set of numbers t, tx, ..., tg_lt nx,
n2, uv and u the number of choices for u2 is at most 2a+1 + 1 . Hence
the number of solutions of (6.14) and (6.15) with nx = n2 is <4 Nq. Thus,
by (6.13),

Since g ̂  A; — 2, the number of integers in an interval of length 2«/1A | is
<̂  1. Thus, for each pair ulfu2 the number of choices for titv...,tq_x
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398 R. C. VAUGHAN

and n which satisfy (6.11) with Z < n ^ 2Z and

is <^ZS. Thus

Nq4Zs\W(X)\2. (6.17)

The inequality (6.9), and thus the lemma, now follows from (6.12), (6.16),
and (6.17).

We next prove Corollary 2.1. Let Aj°, ...,A^ be m (^ 1) non-zero real
numbers and X be a large real number. I t is trivial that there is a set
<?/,(1>(X) with density (l/k)-%8 and every element well spaced and of the
form A^p-f w i t h ^ * <; X. We apply Lemma 16 iteratively, noting that

(i) if v = (l/k) + %8, then [x > 2/k,
(ii) fj. > (l/k)(l + v{k-l)) + 8 whenever v > l/k.

This enables us to assert the existence of a %\m){X) with density v(m),
where

v<™> = i_(i_2/c)(l-/c)™-2 (m> 3), (6.18)
and such that every u e %\m)(X) can be written in the form

3=1

with Pjk ^ X. We use this in Theorem 2 with r = k, m = N + 3, and
AJ." = K+2j+t+v T n i s w i t n (2-1)' (2-4)> a n d (2-5) ensures that

v(m) > i _ 2rd/k.

This completes the proof of (2.6).

The estimate (6.18) is in essence Hardy and Littlewood's Lemma 22
of [15], and with v(m) replaced by v{m) + S it could have been shown in
much the same way. However, we require the full strength of Lemma 16
for Corollary 2.2. We begin as in the proof of Corollary 2.1 by noting the
existence of a <%{

t
2){X) with v{2) = 2K-8. When 5 < k ^ 9 we apply

Lemma 16 iteratively. For convenience we follow the calculations of
Hua ([16], Chapter 9) when 5 ^ k ^ 8 and Cook ([2]) when k = 9 (we
extend the calculations one step further when k = 5,6, and 7). We obtain

(a) v(8) = 0-911 (Jfc = 5),
(b) v(13) = 0-9482 (k = 6),
(c) va9) = 0-9668 {k = 1),
(d) v

(28) = 0-9838 (Jfc = 8),
(e) vm) = 0-9933 {k = 9).

The hypothesis of Theorem 2 is now satisfied if we take r = 4, 5, 8, 9, and
8 respectively. This gives the asserted upper bounds for 3){k) when
k = 5, 6, 7, 8, and 9.
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DIOPHANTINE APPROXIMATION, I I 399

When k = 10, we use the method of Cook ([2]) to obtain
(f) v<5i) = 0-9963 {k = 10).

Note that the estimate given by Davenport and Erdos ([10]) can be
adapted to our needs in a straightforward manner; for generalizations in
a different direction see [21]. The hypothesis of Theorem 2 is now
satisfied with r = 10. Thus S(10) ^ 123.

When k = 4 there is an extra difficulty. We should like to take ra = 5,

v(m) _ (5539/6268) - 8, and r = 2, but this violates the requirement
r ^ %k+l. This can be overcome by replacing the expression F(x) in
(3.6) by

/,(«) X e(xu),

where

and %(P**) has density v — 8 with

In- <6-20>

On the supplementary intervals, jVp we note tha t by the method of
Lemma 16 the number of solutions of

-u^ < e

with hP

where

and uv u2 e is

The estimation over these intervals then proceeds as before. On the basic
intervals, ^ - , we use Lemma 2 to replace the factor \fj(x) |6 by
| q~1S(q> a)L(XjX — a/q) |6 + P*+6fi. The contribution over ^ of the first term
can be estimated as in the proof of (3.6), and the second term contributes

J — o
e{xu) K6(x) dx

By (6.19) and (6.20), f-4vp = fiff < 2. We thus obtain
2J: e(xu)
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400 R. C. VAUGHAN

The method used to deduce Theorem 2 from Theorem 1 now shows that
when k = 4 and 0 < a < (25600)-1 there are infinitely many solutions of
(2.3) with s = 15. This gives ^(4) ^ 15, and completes the proof of
Corollary 2.2.

7. Proof of Theorem 3
We give only the briefest outline. Let Pk/2 be the denominator of a

convergent to the continued fraction for Aj/Ag and dissect the real line
into the regions

S, = {x: pi-*-« <\x\<P, \Mx)\ ^ l/2(*)l},

*3 = {x: P1"*-* <\x\^P, \Mx)\ < IAMI},
<?4 = {x:\x\>P}.

Let e = P~$. The region <fx can be treated in a straightforward manner.
On <̂ 2 and <f3 the method of Davenport and Roth's Lemma 6 of [12] and
the bound (3.7) with I = r— 1 give a suitable estimate. Iff is even we use
Lemma 13 and (3.6) to majorize

L \fi(x)'Ft(x)*\K.(x)dx.
4

If r is odd we replace this by

and by Lemma 13 and (3.7) this is

J —

8. Proof of Corollaries 3.1 and 3.2
Corollary 3.1 follows from Theorem 3 in the same way that Corollary 2.1

follows from Theorem 2.
We deduce Corollary 3.2 from Theorem 3 by noting that the computa-

tions giving rise to (a), (b),..., (f) in §6 enable us to assert the existence
of suitable sets %(X) such that in Theorem 3 we may take

(a) m = 8, r = 8 (k = 5),
(b) m = 13, r = 10 (k = 6),
(c) m = 19, r = 15 {k = 7),
(d) m = 28, r = 17 (k = 8),
(e) m = 40, r = 16 (k = 9),
(f) m = 51, r = 19 (k = 10).

This establishes Corollary 3.2.
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