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1. Introduction
In 1946, Davenport and Heilbronn ([4]) adapted the Hardy-Littlewood
method to prove that if Al5 ...,AS are non-zero real numbers, not all of
the same sign, and not all in rational ratio, then for every e > 0 the
inequality

< e

has infinitely many solutions in natural numbers x^ provided that
s ^ 2fc-t-l. Later, Davenport and Roth ([5]) proved that if k ^ 12,
s > Cklogfc will suffice with a suitable absolute constant C.

More recently, Schwarz .([9]) has shown that if either s ^ 2fc + l or
s ^ 2k2(2 log k + log log k + f) - 1 (k ^ 12), then the inequality

< e
?=i " '

has an infinity of solutions with all the pi prime numbers. In the case
k = 1, this was rediscovered by Danicic ([2]), who had an application in
mind.

A. Baker ([1]) took things a step further by showing that when k = 1,
s = 3, and n is an arbitrary natural number, the e may be replaced by
(logmax^)~n. Ramachandra ([8]) has obtained this result for arbitrary
k and with the pf replaced by arbitrary integer-valued polynomials fj
with prime arguments pi and leading coefficient positive, provided that
s satisfies the same condition as that required by Schwarz. It would be
nice if this condition could be replaced by s > Ck log k, but the Davenport-
Roth method is surprisingly resistant to attempts to extend it to prime
numbers.

In the case k = 1, s = 3, Ramachandra has refined matters still more
by replacing the right side by

The object of this paper is to show that when s = 3 and k = 1 the
right side can be replaced by a power of max^-. The method used
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374 R. C. VAUGHAN

is closely related to that of Davenport and Heilbronn, and makes no
use of the complicated argument of Baker. There is no difficulty in
extending the method to an arbitrary k. However, it should be noted
that the trigonometric sum estimates given by Hua ([6]) (combining
methods of Weyl and I. M. Vinogradov) permit one only to save a
power of a logarithm, and the new and extremely elegant method of
Montgomery (Chapter 16 of [7]) does not appear to combine well with
the Weyl method. Instead, it is necessary to use a theorem given by
Vinogradov ([11]).

2. The main theorem and definitions
THEOREM. Suppose that Al5A2, A3 are non-zero real numbers not all of

the same sign, that rj is real, and that \ / \ is irrational. Then there are
infinitely many ordered triples Pi,P2,Psfor which

IV + KPi + ̂ 2 + ^ 3 1 < (max^-)-1/10(logmaxipy)20. (1)

I t is interesting that one can save as much as 1/10. On the generalized
Riemann hypothesis, 1/5 may be saved, but it seems to require a new
idea to save any more. As with most of the previous work in this field,
the basic argument follows, in general principle, that of Davenport and
Heilbronn ([4]).

Since Aj/A2 is irrational, there are infinitely many different convergents
a/q to its continued fraction, with

(a, q) = 1, q > 0, and a # 0. We choose q to be large in terms of A1} A2, A3,
and 7], and make the following definitions.

X = q™, (3)

P = Z1'5(logX)"1, (4)

r = PX~\ (5)

T = X1'9, (6)

Aal"1), (7)

(8)

KB{x) = 7r-2o;-2sin27Tea; (x ^ 0),l

Ke(0) = e2, j ^ '

e{x) = e27tix, (10)

S{x)= £ e{px)\ogp, (11)
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DIOPHANTINE APPROXIMATION, I 375

and

/ (* )= \Xe{xy)dy. (12)
Jo

We use p = j8 + iy (jS,y real) to denote a typical zero of the Riemann
zeta function, and we write

Gp{x) = 2 nP-xe{nx). (13)

We let

denote summation over all p with | y | ^ T and jS ̂  2/3,

U\JJ) — 2^ ^n\ h \ I

and for any function of a real variable, / ,

fj(x)=f(Xjx). (17)
Furthermore, we let

pix) = rr S-(x) (18)
3=i 3

and

(19)
3 = 1 '

Throughout, constants both explicit and implicit, in the 0, < ,̂ and >
notations, depend only on A1} A2, A3, and rj. C denotes such a constant,
not necessarily the same on each occurrence.

3. Further explanation of the method
The key to the method is the following lemma, which is a trivial

corollary of Lemma 4 of Davenport and Heilbronn ([4]).

LEMMA 1. For every real y,

"00

e(xy)Ke(x) dx = m i n (O,e — \ y \ ) .

Our object is to find a lower bound for

F(x)e(xrj)Ke{x)dxV -

'00

—00

since, by (18), (17), and (11), we may write F(x) as a sum over pv p2,
and ps not exceeding X, and on interchanging the order of summation
and integration we see that there is a non-zero contribution only when
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376 R. C. VAUGHAN

< e- On heuristic grounds, we expect the integral to be e2X2

in order of magnitude, and we shall see that this is indeed so. The
dominant contribution to this integral is from the region close to the
origin, and there H is a good approximation to F. The contribution
from the region \x\ > P is negligible for comparatively trivial reasons,
and the fact that A1/A2 is irrational enables us to assert that in the
intermediate region we cannot approximate to both Xxx and A2# by
rational numbers a'/q' and a"/q" with both q' and q" smaller than P .
Thus one of S1 and S2 must be relatively small.

Lemmas 2 to 10 are concerned with the region near the origin, 11 and
12 with the intermediate region, and 13 with the trivial region.

4. Lemmas concerning the distribution of primes
LEMMA 2. Suppose that a > 0 and t ^ 2, and let N(a, t) denote the number

of zeros p = f3 + iy of the Riemann zeta function with \ y | ^ t and a < jS ̂  1.
Then

N{a,t)^t\ogt (20)
and

N(a, t) ^ *«<i-">/2(log J)1*. (21)

The inequality (20), and even more, is demonstrated by Davenport
in Chapter 15 of [3]. (21) is a corollary of Montgomery's Theorem 12.1
of [7].

LEMMA 3. Suppose that 2 ^ 7 < X and

(22)

Then
&{Y) = 7 - 2 ' Yfp^ + OiX^ilogXf). (23)

Proof. I t is shown by Davenport in Chapter 17 of [3] that if t ^ 2,
then

0( T) = Y - S Y?p-i + O( Yt^(log Ytf + log 7),

where

and A is von Mangoldt's function. We take t = T, and then by (20),
(6), and a partial summation we see that the contribution from the zeros p
with 2/3 > jB > 0 is <̂  X2/3(\ogX)c. The proof of (23) is completed by
the observation that ^(7) and #(7) differ by at most X1/2\ogX.

LEMMA 4. There is a positive number C such that if £(/>) = 0, p = fi + iy,
and t = | y | + 3, then

j8 ̂  l-C(logO-2/3(loglog£)-1/3.
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DIOPHANTINE APPROXIMATION, I 377

This result is given by Walfisz on p. 226 of [12]. See also Montgomery's
Corollary 11.4 of [7]. For our purposes, any number less than unity
would do in place of the 2/3, but then the calculations become more
complicated.

5. The neighbourhood of the origin
In the next lemma we show that I(x) — J(x) is a good approximation

to S(x) when x is small.

LEMMA 5. For every real number x,

A(a) ^ X2'*{logX)G(l + X\x\).

Proof. We begin by noting that if 2 ^ Y ^ X, f < ]8 < 1, and \y | ^ T,
then

Hence, by Lemma 3, (14), and (20),

0 ( 7 ) - 7 + S ' S nP-1 <

The formula
rx

2 ane{nx) = e(Xx) % an-\ 2>nixe(Yx) ^ andY, (24)
n^X n^X ~'l n^Y

with an = log n 4- S ' ^ " 1 if w is a prime number and an = S ' ^ " 1 if ^
is not a prime number, enables us to deduce from (11), (13), and (15)
that

8{x) + J(x) = e(Xx)X

By a partial integration we see that the main term on the right differs
from the integral in (12) by 0(1). This with (16) completes the proof of
the lemma.

The next two lemmas are trivial estimates for the functions S, I, and J.

LEMMA 6. We have
S(x) 4 X (25)

and
I(x)4X. (26)

Proof. 8(x) <^ X is a consequence of Chebychev's upper bound, and
I(x) < X is trivial.
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378 R. C. VAUGHAN

LEMMA 7. If x # 0, then I(x) 4 la;)-1.

Proof. This result follows at once from (12) by integration.

We expect that the integral

F(x)e(xy)KE(x)dx

is about e2X2 in order of magnitude. In the next two lemmas we show
that F(x) can be replaced by H(x) near the origin with an error of a
smaller order.

LEMMA 8. We have

f12 \I(x)\2dx4X, (27)
J-l/2

f12 \S{x)\2dx4XlogX, (28)
J-l/2

rl/2

J-l/2

Proof. The bound (27) is a consequence of (26) and Lemma 7, and (28)
follows easily from Parseval's identity and Chebychev's upper bound.

(29) lies deeper. First of all, note that by (15) the left side is at most

rl/2
;S2 \Gpi(x)Gp%(x)\dx,

J —1/2-1/2

and, by Schwarz's inequality, this is at most

l/2\ 2( / rl/2 \ l/2\2

By (13) and Parseval's identity, the integral in this last expression is
simply

Hence, on noting that j8 ̂  f, we have

*l/2

-1/2

ri/2
IJix^dx^X-^'Xfi)2. (30)

.' - 1 /2
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DIOPHANTINE APPROXIMATION, I 379

By (14) the sum on the right is

X*(logX)da)
z 1

X°N{G,T){\ogX)da,
3

in the notation of Lemma 2. By Lemma 4 and (6), N(a, T) = 0 if
a > l-(logX)-3/4. Therefore, by (21) and (6), the sum in (30) is

This with (30) gives (29).

LEMMA 9. We have

T \F{x)-H(x)\Ke{x)dx <t
J —T

Proof. Note that, by (18), (19), and (16),

F(x)-H(x) =i(uSk(x))(Aj(x)-Jj(x))luik(x)). (31)
j=l\k<3 I \k>j I

By (5) and (4),
\AJ\T4X-*'5. (32)

By (32), (17), and Lemma 5,

fT | A^x) |2 dx 4 X14'15(log X)c. (33)

Clearly, by (9),
Ke(x) <$ £2. (34)

To estimate our integral, we first of all use the crude inequalities (25)
and (26) to replace one of the Sk or one of the Ik in each term in (31).
Then, by (34), we obtain as an upper bound the sum of three expressions
each having either the form

P" (|A,(a:)| + \Jt(x)\)\Ik{x)\d
J —T

or the form

Then Schwarz's inequality and an appeal to Lemma 8 and (33) complete
the proof.
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380 R. C. VAUGHAN

The next step in our argument is to show that H on its own gives a
larger contribution.

LEMMA 10. We have

f | H(x) | KE{x) dx <$ e2X2(log Z)"1 (35)
J\X\>T

and

P H(x)e(xr))Ke{x) dx > e2X2. (36)
J-oo

Proof. To prove (35), we note that Ke(x) <̂  e2 so that, by Lemma 7,
the left side is

= 2e2r-2.

This, with (5) and (4), gives (35).
To prove (36), we write the left side as

[ i f f z\x\i+lL

which, by Lemma 1, is

f m a x ( 0 , e - rj+^X^ \)dyidy2dy3. (37)
Jo Jo Jo \ 3=1 \J

Since Xv A2, and A3 are not all of the same sign (we make no use in the
proof of this lemma of the fact that Ax/A2 is irrational) we may assume
without loss of generality that Ax < 0, A2, A3 > 0. For each pair y2, y3 with

y2,y3 ^ ±X\Ax| ^ | | A , . | ) ( 3 8 )

we have for large X (i.e. large q),

e I Ax |-
x < - A j - ^ + A ^ + AgS/a) < £X.

Thus for each pair y2, y3 satisfying (38), every yx with

^ \e\\\-x

satisfies
0<2/1

Therefore the multiple integral (37) is greater than
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DIOPHANTINE APPROXIMATION, I 381
6. The intermediate region

The treatment of the intermediate region depends on the following
lemma. The argument we use imitates closely that of Lemma 13 of
Davenport and Roth ([5]).

Then

LEMMA 11. For every real number x let

V(x) = mm(\S1(x)\)\S2(x)\). (39)

V(x) <̂  XP-u*{\og X)17 (| x | G (T, P]). (40)

Proof. Let |z | e (T ,P ] , and for j = 1,2 choose a,-,^ so that

; Q-tqr1 (41)

with (apqj) = 1 and
1 ^ qi *k Q.

By (7) and (5), T > l^Q-1. Thus

a±a2 =£ 0.

(42)

(43)

We next establish that one o£qlt q2 is larger than P. To do this, we assume
that qvq2 < P and obtain a contradiction. By (41) and (43),

so that, by (7), (4), and (3),

(44)

We recall that q was chosen as the denominator of a convergent to the
continued fraction for Aj/^. Thus, by Legendre's law of best approxima-
tion, we have

for all integers a', q' with 1 ^ q' < q. Therefore, by (44) and (3),

However, by (41) and (4),

We have thus established that for at least one j , P < q^ <^ XP"1. We
now make use of a classical result of Vinogradov. The result we require
follows easily from [10], Chapter 9, Theorem 3. However, for convenience
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382 R. C. VAUGHAN

we quote [7], Theorem 16.1, which is in the form we require, except for
the trivial replacement of A(n) by logp. Namely that whenever (b, r) = 1
and 7 ^ 2 ,

2 e{bp/r)\ogp 4 (r™Y1>2+ Y^r^u + 7r-1'2)(log 7)17.
P^Y

Hence, by an application of formula (24), we obtain for every real y,

S{y) 4 {r^XW + XWrVu + Xr-WjilogX^il+Xly-b/rl).

This, with y = XjX, b = a^ and r = q^ gives the desired inequality for V(x).

LEMMA 12. We have

f | F(x) | Ke(x) dx 4 -1

Proof. By (18) and (39),

| F{x) | ^ V(x)( | S1{x)83(x) | +1 S2{x)S3{x) \),
so that

\F(x)\4V(x)i\Si(x)\2- (45)
3 = 1

B y L e m m a 1, (17) , a n d (11) ,

P | Sj(x) \*Ke(x) ^ = 2 2 (logJPi)(logl)a) m a x (0, e - | X^ -p2) \).

Since q is large, lA^^—^>2)| < e if and only if p1=pi. Thus, by
Chebychev's upper bound,

P° \Sj{x)\2Ke(x)dx 4
J —oo

Hence, by (45) and Lemma 11,

f | F(x) | Ke{x) dx 4
«'T<la;|^P

The desired bound now follows from (4) and (8).

7. The trivial region
We dispose of this region in a single lemma.

LEMMA 13. We have

f | F{x) | Ke{x) dx 4 e2X2(log X)-1.
J\x\->P
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DIOPHANTINE APPROXIMATION, I 383

Proof. By (18) and (25), the integral here is

<xh \ \Ss(x)\*K.(x)dx.

By (17), (11), and (9),

f \SAx)\2Ke(x)dx<£ [m \S(ij)\2y-2dy

n>JP|Aj|

By Parseval's identity and Chebychev's upper bound this is

An appeal to (4) and (8) completes the proof of the lemma.

8. Completion of the proof of the main theorem
We conclude the proof of the theorem by collecting the above results.

First of all, Lemma 10 gives

H(x)e(xrj)Ke{x)dx p e2Z2.
7*

Moreover, this and Lemmas 9, 12, and 13 together imply that

F{x)e(xr))K6(x)dx > e2X2.

Finally, this, with (18), (17), (11), and Lemma 1, establishes that there
are > eX2(\ogX)~3 ordered triples of primes p1}p2,Ps with p^ < X and
h + ZA#il<fi. By (8),

e ^ (max^)~1/10(logmaxp3)20.

Thus the fact that q and, hence by (3) and (8), eJL2(logX)-3, are large
ensures that (1) occurs for an infinity of ordered triples p1,p2,Ps-
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