
MEAN VALUE THEOREMS IN PRIME NUMBER THEORY

R. C. VAUGHAN

1. Introduction
In 1965, Bombieri [1] and A. I. Vinogradov [18] proved a theorem which states,

in the slightly stronger form given by Bombieri, that if A is a given positive number
and Q < xi(logx)~B where B = 34 + 23, then

max
a,y

(a, q)=l, y
<Kq)

(i)

Davenport [4] has given a proof with B = 44 + 40 and Gallagher [7] has given a
simple proof with B = 164 + 103. More recently Montgomery [14; Chapter 15]
and Huxley [11; Chapter 24] have given B = 4 + 13 and B = 4 + 10 respectively.
All these proofs, except that of Gallagher, depend substantially on zero density
estimates which (apart from that of Vinogradov) are deduced in turn from estimates
of the large sieve type. The more refined proofs of Montgomery and Huxley also
require an approximate functional equation for L(s, x)2 of the form given by Lavrik
[13; Theorem 1]. Gallagher, in his proof, appeals directly to the large sieve, but
with some loss of efficiency.

We follow in the spirit of Gallagher's method, but with a substantial modification.
For a given Dirichlet L-function Gallagher writes L/L = (\-LG)2 L/L + 2LG-
LLG2, where G is a partial sum of the Dirichlet series for 1/L. This line of approach
goes back to Heilbronn [9], who gave an improvement on the work of Hoheisel [10]
concerning prime numbers in short intervals, and Fogels [3] who gave a different
proof of Ingham's result [12] on the same subject. Even with Lavrik's approximate
functional equation, Gallagher's method will apparently give nothing better than
B = 24 +10. Instead, we write

L/L = (L/L + F)(l-LG) + (L + LF)G-F,

where F is a partial sum of the Dirichlet series for —L/L. This idea appears to be
completely new, and may have applications to other problems. We obtain (1) with
B = 4 + 7/2 simply and directly from (i) the large sieve, (ii) a theorem given by
Montgomery as a straightforward consequence of Lavrik's approximate functional
equation and (in common with all the other proofs) (iii) the Siegel-Walfisz theorem.

Our first mean value theorem is as follows.

T H E O R E M 1. Suppose that i ^ l and x ^ 2 . Then

where £* denotes summation over all the primitive characters modulo q, \//(y, x)
Sn<y A(n)x(n), A is von MangoldVs function and 3? =
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154 R. C. VAUGHAN

When £ ^ xl/2 we may compare this with the bound given on page 140 of [14],
which when summed over Q = 2k with 2 ^ 2k < £ implies that

There are applications, e.g., [16] and [17], in which inequalities of this kind have
been more useful than the Bombieri-Vinogradov theorem.

COROLLARY 1.1. Suppose that Z ' denotes summation over all the non-principal
characters modulo q. Then

Z TT-rZ' max \ij/{y, X)\ <A

Note that in both this corollary and Theorem 1 the bounds are sharp even if £
is enormous compared with x, and for large £ are as good, apart from the logarithmic
factor, as one can obtain on the assumption of the generalized Riemann hypothesis.

The next corollary is our form of the Bombieri-Vinogradov theorem.

COROLLARY 1.1.1. Suppose that

n^y, n = a(mod q)

Then

Z max
a,y

\jf(y,q,a)-

In 1937, I. M. Vinogradov [19-22] (see also [23-28]) obtained, by elementary
methods, estimates for sums of the form

Z e(ap) (e(z) = e2"'2).
p*Zx

In particular, [28; Theorem 3, Chapter IX] implies that if

x112 ^ x ^ *exp(-(logx)e<-), \cc-a/q\ ^ l/(qx), (a,q) = 1
and

exp ((log x)e°) ^ q ^ T,
then

Z e(ap) <e>eo(xq-ll2+*lZ + xV5+E + xl>2+B/2ql>2-«2). (2)

Vinogradov also gives inequalities valid in the regions 1 ^ q ^ exp ((log x)8°) and
x e x p ( - (logx)e°) < q ^ x, but with a much weakened middle term.

Recently, Montgomery [14; Chapter 16] has used zero density estimates to show
that if (a, q) = 1, then

Z A(n)e(an/q) < (xq-'^+x5'1q3/1* + xll2ql/2)(\ogxqy.

In fact he obtains an inequality of the kind given in Theorem 2 below, but with the
right hand side replaced by 5 / 7 5 / 7 1 / 2 1 7
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MEAN VALUE THEOREMS IN PRIME NUMBER THEORY 155

We use the methods developed for our proof of Theorem 1 to give a mean value
theorem for characters modulo q. This implies an inequality which is always superior
to that of Montgomery, although the middle term is still not quite as good as that
in (2).

THEOREM 2. Suppose that q ^ 1 and x ^ 2. Then

£ max|iK)>,x)i < */3+;c3/V/8/23 /8+;c1/2g/7/2

X mod q y^x

where I = \ogxq.

The remark after Corollary 1.1 applies here also.

COROLLARY 2.1. Suppose that (a, q) = 1. Then
£ \(n)e(anfq) < (xq-i/2 + x^ql'8 + xl'2ql/2)l\ (3)

The logarithmic factor here could be slightly improved.

COROLLARY 2.1 .1 . Suppose that 1 ^ r\ < x1/3, ;; < q < xn~l, (a,q) = 1
\cc — a/q\ ^ 2rjq~l x~l. Then

COROLLARY 2.1.2. Suppose that (a,q) = 1 and \<x-a/q\ ^q~2. Then

The ' x' term on the right in both Theorem 1 and Theorem 2 occurs not only
because of the pole of £(s) at 1 (we consider the trivial character modulo 1 to be
primitive) but because there may also be a zero of an L-function very near to a = 1.
As we have remarked before, the last terms in our theorems are what we would expect
if we assumed the generalized Riemann hypothesis. The middle terms we should
like to remove altogether. In Theorem 2, q plays precisely the same role as ^2 in
Theorem 1 and we think of these quantities as being essentially the number of terms
over which we are summing.

In a private communication, Professor Gallagher has observed that if one intro-
duces a smoothing factor log (x/n) into the left hand side of (3), the right hand side
can be replaced, apart from a logarithmic factor, by xq~l/2 + x1/2ql/2+c, where c
is such that L{\ + it, %) <iqc{\t\ + \). The method of Burgess 12] gives c = -fe + e
(see also [3]) and the modified bound is then slightly better than that of Vinogradov,
(2), in the range x2'5 <q< JC3/(5 + 1OC).

2. Fundamental lemmas

Our first lemma is from the theory of the large sieve.

LEMMA 1. Suppose that T ^ 2 and M ^ 0. Then

T

y* f
z 1

M + N
.-it

2 fit M + N

I («+£2logT)k|2 (4)
-r
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and

Z" /
Af + iV

Y a Y|

R. C.

ri)n~u 2 dt

1+|/

VAUGHAN

M + N

Z (n+qlogT)\an\2, (5)

z" is used to mean summation over all those primitive characters to moduli d
with 1 < d\q.

Proof. We first of all prove (5). We define an = 0 if n ^ M or n > M+N. By
Theorem 1 of Gallagher [8] we have

T

\
-T

' dt< T2 anX(n)
dy

where T = exp (1/T). By Theorem 6.3 of Montgomery [14] we have

Z" Z anX(n Z \an\
2.

y^n^xy

(6)

(7)

This with (6) gives

Z"
X ~ T

which is in fact essentially Theorem 2 of Gallagher [8]. A partial integration then
completes the proof of (5).

The proof of (4) is similar, using, instead of (7), the inequality

z* Z aHx(n
y^n^xy

which is an immediate consequence of (5) and (3') of Gallagher [6].

For each non-principal character x> w e u s e L(s,x) to denote that Dirichlet
L-function defined for a > 1 by L(s,x) = Z*=iX(«)w~s-

The next lemma is a consequence of an approximate functional equation of
Lavrik [13] for Lis^)2. The exponent of the logarithm in (9) could be
reduced to 4, but makes no difference to our end products.

LEMMA 2. Suppose that T ^ 2. Then

T

and

Z* f ^(i+^^rTrr-.^^Klog^)5

x J i+*
-r

I* f IL'^+^^^-^-^^XloggT)5.
z J 1+ t

(8)

(9)

Proof. The inequality (8) follows at once by partial integration from Theorem
10.1 of Montgomery [14] with a - \. To prove (9) we note that

T

I * f \m + it,x)\*dt 4<t>(q)T(\ogqT)»
J
-T
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MEAN VALUE THEOREMS IN PRIME NUMBER THEORY 157

can be shown in the same way as Corollary 10.2 of Montgomery [14]. Cauchy's
inequality and a partial integration then give the required result.

We here introduce two sums F and G which approximate to —L/L and 1/L
respectively when a = 1 + (logx)"1. We write, for each character x,

n~s (u > 1) (10)

and
G(s,x)=llvX(.n)Kn)n-s ( O 1). (11)

For brevity, we let
(12)

LEMMA 3. Suppose that 2 < y ^ x, T ^ x2, u > 1 and x is a character modulo q.

Then
6+iT

1 r /L
2ni J \ L

O-IT

Proof Clearly

We complete the proof by noting that by the methods of Chapter 17 of Davenport
[4], or by a slightly amended form of Lemma 3.12 of Titchmarsh [15], we have

0 + iT

I A(/I)X(«)+T-. f (^-(s,
u<n^y 2ni J \ L s

The next lemma follows easily from the inequality

N

£ x(n) ^q (x ̂  Xo)

and some Abel summation.

LEMMA 4. Suppose that a ^ \ and x is a non-principal character modulo q. Then

L(s,x)<(q\s\)1/2 (13)
and

L(s,x)<(q\s\)ll2\og{q(l + \t\)). (14)

3. Description of the proofs
Our main idea is as follows. We write

H(s,X) = (|-(5,x) + F(5,x))(l-L(S,x)G(s,x)) (15)
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and

so that

R. C. VAUGHAN

, X) F(s, X)) G(s, X),

— (s,

(16)

(17)

We then use Lemma 1 to estimate directly the contribution from H, averaged over x,
to the integral in Lemma 3. The function / is regular for a > 0. We are thus able to
move the path of integration to the line a = •£ and combine Lemmas 1 and 2 to obtain
a suitable estimate.

Henceforth we assume that

either T = (x®i0 or T = (xq)10, (18)
and

1 ^ w < x and either 1 ^ v ^ £2 or 1 < v < q, (19)

according as we are considering sums of the form

^ q Z* or Z"-
x x

4. The line a = 6

LEMMA 5. Let H be given by (15). Then

x* f \H(9+it,x)\-^-: <

and
-T

T

Z" \ \HW+iU)\ T^TT <
x J I " " ' ' I

-T

</>(<?)
- r

L
L

dt

\e+it\
2 ^ -\ogT)A(n)2n

(20)

(21)

Proof. Clearly £„«* A(«)2 <̂  x logx and y^n^xd(n)2 < x(logx)3. Hence, by
(10), (11) and (4),

and
4.

f | 1 - L ( 5 J ' * " \9 + it\

Z
.-20
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MEAN VALUE THEOREMS IN PRIME NUMBER THEORY 1 59

The inequality (20) now follows by Cauchy's inequality, and (21) is shown in the
same way, using (5) in place of (4).

5. The line a = \

LEMMA 6. Let I be given by (16). Then

and

J |J(ff±iT,x)|—^j**"1

1/2 ~

o

I" f
x J1/2

This lemma is a trivial consequence of (10), (11), (16) and Lemma 4.

LEMMA 7. Let I be given by (16). Then
T

and

f

T

X" f \I(Hit, X)\
x J

^ -7 <
l

Proo/. For an arbitrary function / let

T

By Lemma 2,

and

Let

Clearly

g(n)=
m|n, n/ii

<̂ 2 i ? 5 .

A(m)A{nlm).

(22)

(23)

Z Z ^

p§u m$(2 log i/)/log p

M(l0g«)3 + M2(l0gI/)2.Hence

Similarly S^Cw)2/?"1 < &*. Hence, by (28), (10) and (4),

By (4) and (11),

(24)

(25)

(26)

(27)

(log/72)2

(28)

(29)

(30)
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160 R. C. VAUGHAN

By (16) and Cauchy's inequality applied several times,

This with (26), (27), (29) and (30) gives (24). The proof of (25) is identical except
that we use (5) instead of (4).

6. Proofs of Theorem 1 and its corollaries
Let T consist of the three line segments {a-iT; 9 ^ a ^ -|}, {%+it; -T ^ t ^ T}

and {a + iT; $^o^9}. Then, by (15), (16) and (17),
6+iT f 0+iT

I I r \ t AJ V 5 A / I I \ > A.J | V > A /

e-iT e-iT r

Theorem 1 now follows from Lemma 3, (20), (22) and (24) with v = £2 and

To prove the first corollary we note that if x modulo q is induced by the primitive
character x* modulo d, then d\q and

(31)

We also make use of the trivial inequality

! (32)

and the Siegel-Walfisz theorem (see, e.g., Chapter 22 of Davenport [4]) in the form

^ . * ) ! <AxQogx)-A-\ (33)

where
A+4 (34)

In view of (33) we can clearly assume that £ > rj. By (31), (32), (33) and (34) the
expression we wish to estimate is

\Q*i(,d\q 0(^)

>l+ J r 2 ( 2 + log-M J(X)dX+x(\ogx)-A+Z<?2,
n

where

max
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MEAN VALUE THEOREMS IN PRIME NUMBER THEORY 161

By Theorem 1 and (34) this is
1'2

+x

Corollary 1.1.1 follows easily from Corollary 1.1 and the prime number theorem
in the form

£ —
<,*=« <p{q)

7. Proofs of Theorem 2 and its corollaries
To prove Theorem 2 we treat the principal character separately. Trivially, this

contributes <̂  x. In view of (31), the sum over the remaining characters can be
replaced by

£ " max |*C, X)\

with an error <̂  ql2. The theorem now follows from Lemma 3, (21), (23) and (25)
with v = q and u = max (1, x 1 / 2 g - 1 / 4 J1/4), in an analogous manner to Theorem 1.

To prove the first corollary we write

ZxHn)e(an/q) =

where

= tx(r)e(r/q).
l

Since \t(x)\ ^q1/z we have
.1/2

A(n)e(an/q)< H

This with Theorem 2 gives Corollary 2.1.
Corollary 2.1.1 is immediate by partial summation.
If \cc — a/q\ < 2*"1, then Corollary 2.1.2 is also immediate by partial summation.

Hence we may assume that

2A;"1 <\<x-a/q\^q-2 (35)
and

q2 < ±x. (36)

Now choose b, r so that (b, r) = 1, r ̂  x/q and \a — b/r\ ̂  qx~x r~x. Then, either
r = q or \b/r—a/q\ ^q~x r~x, and in the latter case, by (35) and (36),

q~2 > \a-a/q\ > q-1 r1 -\a-blr\ ^ r-^q-1 -qx-1) p r-1 q-1.

Hence, in either case q 4.r ^ x/q and \<x—b/r\ <̂  x~x. Therefore, by partial sum-
mation and Corollary 2.1 we have the desired result.
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