
Appendix D

Topics in harmonic analysis

D.1 Pointwise convergence of Fourier series

Let f ∈ L1(T), and suppose that

f̂ (k) =
∫

T

f (x)e(−kx) dx (D.1)

are the Fourier coefficients of f . Here e(θ ) = e2π iθ is the complex exponential
with period 1. It is a familiar fact in the theory of Fourier series that if f has
bounded variation on T, then

lim
K→∞

K∑
k=−K

f̂ (k)e(kα) = f (α+) + f (α−)

2
. (D.2)

Less familiar is the strong quantitative version of this that we now derive.
Let DK (x) =∑K

k=−K e(kx). This is the Dirichlet kernel. We multiply both
sides of (D.1) by e(kα) and sum, to see that

K∑
k=−K

f (k)e(kα) =
∫

T

f (x)DK (α − x) dx =
∫

T

DK (x) f (α − x) dx .

Since DK is an even function, the above is

=
∫

T

DK (x) f (α + x) dx . (D.3)

Clearly DK (0) = 2K + 1. If x /∈ Z, then DK (x) is the sum of a segment of a
geometric progression, which permits us to write DK in closed form,

DK (x) = e ((K + 1)x) − e(−K x)

e(x) − 1
= e

((
K + 1

2

)
x
)− e

(−(K + 1
2

)
x
)

e(x/2) − e(−x/2)

= sin(2K + 1)πx

sinπx
. (D.4)
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Figure D.1 Graph of s(x) and its Fourier approximation −∑15
k=1 sin 2πkx/(πk).

Our analysis of the pointwise convergence of Fourier series is based on the
behaviour of the the Fourier series of one particular function, namely the ‘saw-
tooth function’ s(x) given by

s(x) =
{{x} − 1

2 (x /∈ Z),
0 (x ∈ Z)

.

Lemma D.1 Let

EK (x) = s(x) +
K∑

k=1

sin 2πkx

πk
.

Then |EK (x)| ≤ min (1/2, 1/((2K + 1)π | sinπx |)).
It is easy to compute the Fourier coefficients of s(x); we find that ŝ(0) = 0,

and that ŝ(k) = −1/(2π ik) for k �= 0. Thus the above lemma constitutes a
quantitative form of (D.2), for the function s(x). A numerical example of Lemma
D.1 is graphed in Figure D.1.

Proof All terms comprising EK (x) are odd, and hence EK is odd. Thus we
may suppose that 0 ≤ x ≤ 1/2. The case x = 0 is clear. We observe that if
x /∈ Z , then

E ′
K (x) = 1 + 2

K∑
k=1

cos 2πkx = DK (x).
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D.1 Pointwise convergence of Fourier series 537

Hence if 0 < x ≤ 1/2, then by (D.4) we see that

EK (x) = − 1

2

∫ 1−x

x
DK (z) dz

= −1

2

∫ 1−x

x

sin(2K + 1)π z

sinπ z
dz

= i

2

∫ 1−x

x

e
((

K + 1
2

)
z
)

sinπ z
dz.

The integrand is analytic in the rectangle x ≤ �z ≤ 1 − x , 0 ≤ �z ≤ Y , so
by letting Y → ∞ and applying Cauchy’s theorem we see that the above
is

= i

2

∫ x+i∞

x

e
((

K + 1
2

)
z
)

sinπ z
dz − i

2

∫ 1−x+i∞

1−x

e
((

K + 1
2

)
z
)

sinπ z
dz.

On writing z = x + iy in the first integral, and z = 1 − x + iy in the second,
we see that the above is

= −1

2

∫ ∞

0

(
e
((

K + 1
2

)
x
)

sinπ (x + iy)
− e

(−(K + 1
2

)
x
)

sinπ (1 − x + iy)

)
e−(2K+1)πy dy. (D.5)

But sinπ (x + iy) = (sinπx) coshπy − i(cosπx) sinhπy, so that | sin
π (x + iy)| ≥ sinπx for all real y. Hence the expression above has absolute
value not exceeding

1

sinπx

∫ ∞

0
e−(2K+1)πy dy = 1

(2K + 1)π sinπx
.

This gives the second part of the bound. The first bound, |EK (x)| ≤ 1/2,
is weaker if 1/(2K + 1) ≤ x ≤ 1/2, since sinπx ≥ 2x in this range. Thus
it suffices to show that |EK (x)| ≤ 1/2 when 0 < x < 1/(2K + 1). Since
0 < sin u < u for 0 ≤ u ≤ π , it follows from the definition of EK (x)
that

x − 1

2
≤ EK (x) ≤ (2K + 1)x − 1

2

for 0 ≤ x ≤ 1/(2K + 1). This gives the desired bound. �

We now establish an analogue of Lemma D.1 for arbitrary functions of
bounded variation.
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538 Topics in harmonic analysis

Theorem D.2 If f has bounded variation on T, with f̂ (k) given by (D.1),
then for any α,∣∣∣∣ f (α+) + f (α−)

2
−

K∑
k=−K

f̂ (k)e(kα)

∣∣∣∣
≤
∫ 1−

0+
min

(
1

2
,

1

(2K + 1)π sinπx

)
|d f (α + x)|.

Since the right-hand side here tends to 0 as K → ∞, this inequality implies
the qualitative relation (D.2).

Proof As E ′
K (x) = DK (x) when x /∈ Z, the integral (D.3) is∫ 1−

0+
E ′

K (x) f (α + x) dx =
∫ 1−

0+
f (α + x) d EK (x),

by Theorem A.3. But EK (0+) = −1/2, EK (1−) = 1/2. Hence by integrating
by parts (as in Theorem A.2) we see that the above is

1

2
f (α+) + 1

2
f (α−) −

∫ 1−

0+
EK (x) d f (α + x).

To complete the proof it suffices to apply the triangle inequality (as in Theorem
A.4) and the bound of Lemma D.1. �

D.2 The Poisson summation formula

The formula in question asserts that under suitable conditions,
∞∑

n=−∞
f (n) =

∞∑
k=−∞

f̂ (k) (D.6)

where f is a function of a real variable, and f̂ is its Fourier transform,

f̂ (t) =
∫

R

f (x)e(−t x) dx . (D.7)

To ensure that f̂ is well-defined, we impose the condition f ∈ L1(R), i.e., that
the integral

∫
R | f (x)| dx is finite. Put

F(α) =
∑
n∈Z

f (n + α). (D.8)

This sum is absolutely convergent for almost all α, since∫ 1

0

∑
n∈Z

| f (n + α)| dα =
∑
n∈Z

∫ n+1

n
| f (α)| dα =

∫
R

| f (α)| dα < ∞.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.021 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.021
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Moreover, F(α) has period 1,
∫

T |F(α)| dα < ∞, and F has Fourier coefficients

f̂ (k) =
∫ 1

0
F(α)e(−kα) dα =

∑
n∈Z

∫ 1

0
f (n + α)e(−kα) dα

=
∫

R

f (x)e(−kx) dx (D.9)

= f̂ (k).

Here the interchange of the integral and the sum is justified by absolute con-
vergence. Thus the Fourier expansion of F is∑

k∈Z

f̂ (k)e(kα).

The Poisson summation formula (D.6) is simply the assertion that this Fourier
expansion converges to F(α) whenα = 0. Our hypotheses thus far do not ensure
this, but in this direction we establish the following two precise results.

Theorem D.3 Suppose that f ∈ L1(R), and that f is of bounded variation
on R. Then ∑

n∈Z

f (n+) + f (n−)

2
= lim

K→∞

K∑
k=−K

f̂ (k).

If in addition f is continuous, then we have a result which is close to (D.6),
although it is still necessary to restrict ourselves to symmetric partial sums on
the right-hand side.

Proof We first note that if n ≤ α ≤ n + 1, then

f (α) =
∫ n+1

n
f (x) dx +

∫ α

n
(x − n) d f (x) +

∫ n+1

α

(x − n − 1) d f (x),

as can readily be seen by integration by parts. Hence

| f (α)| ≤
∫ n+1

n
| f (x)| dx + var[n,n+1] f, (D.10)

and it follows from our hypotheses that the sum∑
n∈Z

f (n + α)

is absolutely convergent for allα, and uniformly convergent in compact regions.
Hence F(α) can be taken to be the value of this sum for all α, not merely for
almost all α. By the triangle inequality, varT F ≤ varR f , so that F is of bounded
variation on T, and hence the relation (D.2) applies to F . Thus we see that the
Fourier series of F converges to (F(α+) + F(α−))/2 for allα. Using the fact that
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540 Topics in harmonic analysis

f is of bounded variation once more, we see that F(α+) =∑n∈Z f ((n + α)+),
and similarly for F(α−). Hence we have the stated result. �

Theorem D.4 Suppose that f is continuous, and that the series
∑

n∈Z f (n +
α) is uniformly convergent for 0 ≤ α ≤ 1. Then∑

n∈Z

f (n) = lim
K→∞

K∑
k=−K

(
1 − |k|

K

)
f̂ (k).

Proof Clearly F(α) given in (D.8) is continuous. Since we have not assumed
that f ∈ L1(R), the Fourier transform f̂ (t) may not exist. However, if k is an
integer, then f̂ (k) exists as a convergent improper integral. To see this we first
note that

∑N
n=M f (n + α) is small if M and N are large integers and 0 ≤ α ≤ 1.

Then ∫ 1

0

N∑
M

f (n + α)e(−kα) dα =
∫ N+1

M
f (x)e(−kx) dx

is small. The hypothesis that
∑

n f (n + α) converges uniformly implies that
f (x) → 0 as |x | → ∞. Hence

∫ v
u f (x)e(−kx) dx → 0 as u, v tend to infinity

through real values. The calculation of f̂ (k) in (D.9) is still valid, but is now
justified by uniform convergence. Next we appeal to a theorem of Fejér, which
asserts that the Fourier series of a continuous function F(α) with period 1 is
uniformly (C, 1)-summable to F (see Katznelson (2004), p.19). That is,

K∑
k=−K

(
1 − |k|

K

)
f̂ (k)e(kα) −→ F(α)

uniformly as K → ∞. The stated identity follows on taking α = 0. �

Exercises

1. Show that if f satisfies the hypotheses of Theorem D.2, and α and β are
real numbers, then the function f (x + α)e(βx) does also. Specify conditions
under which∑

n

f (n + α)e(βn) =
∑

k

f̂ (k − β)e((k − β)α).

2. Suppose that f has bounded variation on [−A, A], for every A > 0. Show
that

lim
N→∞

N∑
n=−N

f (n) = lim
T →∞

∞∑
k=−∞

∫ T

−T
f (x)e(−kx) dx

provided that either limit exists.
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D.2 The Poisson summation formula 541

3. Suppose that f ∈ L1(Rn), and for x ∈ Tn put

F(x) =
∑
λ∈Zn

f (λ + x) .

(a) Show that the sum F(x) is absolutely convergent for almost all x.

(b) Show that F ∈ L1(Tn) and that ‖F‖L1(Tn ) ≤ ‖ f ‖L1(Rn ).

(c) Define the Fourier transform of f , and the Fourier coeffi-
cient of F, respectively, to be f̂ (t) = ∫Rn f (x)e(−t · x) dx, F̂(k) =∫

Tn F(x)e(−k · x) dx. Show that F̂(k) = f̂ (k).
4. (a) Suppose that there is a δ > 0 such that c(k) 	 (1 + |k|)−n−δ . Show that∑

k∈Zn

c(k)e(k · x)

is a continuous function of x ∈ Tn .
(b) Suppose that there is a δ > 0 such that f (x) 	 (1 + |x|)−n−δ for x ∈ Rn .

Suppose also that f (x) is continuous. Show that

F(x) =
∑
λ∈Zn

f (λ + x)

is a continuous function for x ∈ Tn .
(c) Suppose that in addition to the hypotheses in (b), the function f also has

the property that f̂ (t) 	 (1 + |t |)−n−δ . Show that∑
λ∈Zn

f (λ + x) =
∑
k∈Zn

f̂ (k)e(k · x)

for all x ∈ Tn .
5. A lattice in Rn is a set of points of the form AZn where A is a non-singular

n × n matrix. Thus Zn is an example of a lattice, called the lattice of integral
points.
(a) Suppose that�1 = AZn and�2 = BZn are two lattices. Show that�2 ⊆

�1 if and only if there is an n × n matrix K with integral entries such
that B = AK .

(b) An n × n matrix U is said to be unimodular if (i) its entries are integers,
and (ii) detU = ±1. Show that if �1 = AZn and �2 = BZn are two
lattices, then �1 = �2 if and only if there is a unimodular matrix U
such that B = AU .

(c) Let a1, . . . , an denote the columns of A. These vectors are said to form a
basis for�1, because every member of�1 has a unique representation in
the form c1a1 + · · · cnan where the ci are integers. If � = AZn , we say
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542 Topics in harmonic analysis

that the determinant of � is d(�) = |det A|. Show that the determinant
of a lattice is independent of the basis by which it is presented.

(d) Suppose that � = AZn is a lattice in Rn . Let �∗ be the set of all those
points µ ∈ Rn such that µ · λ ∈ Z for all λ ∈ �. Show that �∗ is a
lattice, and indeed that �∗ = (A−1

)T
Zn .

(e) Suppose that f is a continuous function on Rn such that

f (x) 	 (1 + |x|)−n−δ,

f̂ (t) 	 (1 + |t |)−n−δ

for some δ > 0. Let � = AZn be a lattice. Show that∑
λ∈�

f (λ + x) = 1

d(�)

∑
µ∈�∗

f̂ (µ)e(µ · x)

for all x.

D.3 Notes

Section D.1. The relation (D.2) is the famous Dirichlet–Jordan test, which is
usually derived with much less effort. Theorem D.2 generalizes and refines an
argument of Pólya (1918), who estimated the rate of convergence of the Fourier
series (9.18). For more on the convergence of Fourier series, see Katznelson
(2004, Chapter 2), Körner (1988, Part I), or Zygmund (2002, Chapter II).

Section D.2. For more on the Poisson summation formula, see Katznelson
(2004, VI.1.15), Körner (1988, Section 27), or Zygmund (2002, Chapter 2,
Section 13). For a discussion of the Poisson summation formula in higher
dimensions, see Stein & Weiss (1971, Chapter VII Section 2). Siegel (1935)
showed that Minkowski’s convex body theorem could be derived by applying
the Poisson summation formula. Cohn & Elkies (2003), Cohn (2002) and Cohn
& Kumar (2004) have applied the Poisson summation formula in Rn to limit
the density of sphere packings.
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