
Appendix A

The Riemann–Stieltjes integral

We generalize the Riemann integral
∫ b

a f (x) dx by defining an integral∫ b
a f (x) dg(x) as a limit of Riemann sums

∑
n f (ξn)g(xn). More precisely,

for a < b suppose that we have a partition

a = x0 ≤ x1 ≤ · · · ≤ xN = b. (A.1)

For ξn in the interval xn−1 ≤ ξn ≤ xn we form the sum

S(xn, ξn) =
N∑

n=1

f (ξn)(g(xn) − g(xn−1)).

We say that the Riemann–Stieltjes integral
∫ b

a f (x) dg(x) exists and has the
value I if for every ε > 0 there is a δ > 0 such that

|S(xn, ξn) − I | < ε

whenever the xn and the ξn are as above and

mesh{xn} = max
1≤n≤N

(xn − xn−1) ≤ δ.

The values taken on by f and g may be either real or complex. We do not
determine precisely the pairs ( f, g) for which the Riemann–Stieltjes integral
exists. For our purposes it is enough to prove

Theorem A.1 The Riemann–Stieltjes integral
∫ b

a f (x) dg(x) exists if f is
continuous on [a, b] and g is of bounded variation on [a, b].

Proof We recall that by definition

Var[a,b] (g) = sup
N∑

n=1

|g(xn) − g(xn−1)|
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The Riemann–Stieltjes integral 487

where the supremum is taken over all {xn} satisfying (A.1). Since f is uniformly
continuous on [a, b], there is a δ > 0 such that | f (ξ ) − f (ξ ′)| < ε whenever
|ξ − ξ ′| ≤ δ. We show that

|S(xn, ξn) − S(x ′
n, ξ

′
n)| ≤ 2εVar[a,b] (g) (A.2)

provided that mesh{xn} ≤ δ and that mesh{x ′
n} ≤ δ. This clearly suffices.

Suppose first that the partition {xn} is a subsequence of a second partition-
ing {x ′′

n }. Let M(n) = {m : xn−1 < x ′′
m ≤ xn}. The sets M(n) partition the set

{1, 2, . . . , M}, so we may write

S(xn, ξn) − S(x ′′
m, ξ

′′
m)

=
N∑

n=1

(
f (ξn)(g(xn) − g(xn−1)) −

∑
m∈M(n)

f (ξ ′′
m)(g(x ′′

m) − g(x ′′
m−1))

)
.

Since the sequence {xn} is an increasing subsequence of the increasing sequence
{x ′′

m}, it follows that

g(xn) − g(xn−1) =
∑

m∈M(n)

g(x ′′
m) − g(x ′′

m−1).

On inserting this in the former expression, we find that it is

N∑
n=1

∑
m∈M(n)

( f (ξn) − f (ξ ′′
m))(g(x ′′

m) − g(x ′′
m−1)).

Since |ξn − ξ ′′
m | ≤ δ, it follows that

|S(xn, ξn) − S(x ′′
m, ξ

′′
m)| ≤ ε

∑
n

∑
m∈M(n)

|g(x ′′
m) − g(x ′′

m−1)|

= ε

M∑
m=1

|g(x ′′
m) − g(x ′′

m−1)|

≤ εVar[a,b] g. (A.3)

We now take {x ′′
m} to be the union of {xn} and {x ′

n}, so that both {xn} and {x ′
n}

are subsequences of {x ′′
m}. Since

|S(xn, ξn) − S(x ′
n, ξ

′
n)| = |S(xn, ξn) − S(x ′′

m, ξ
′′
m) + S(x ′′

m, ξ
′′
m) − S(x ′

n, ξ
′
n)|

≤ |S(xn, ξn) − S(x ′′
m, ξ

′′
m)| + |S(x ′′

m, ξ
′′
m) − S(x ′

n, ξ
′
n)|

by the triangle inequality, the desired bound (A.2) follows by applying (A.3)
twice. �

The main negative feature of the Riemann–Stieltjes integral is that
∫ b

a f dg
does not exist if f and g have a common discontinuity in (a, b). However,
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488 The Riemann–Stieltjes integral

if f is continuous, the Riemann–Stieltjes integral enables us to express the
sum

∑N
n=1 an f (n) in terms of the unweighted partial sums A(x) =∑1≤n≤x an .

Indeed,
N∑

n=1

an f (n) =
∫ N

0
f (x) d A(x). (A.4)

There is some freedom in the interval of integration, since the left endpoint
can be any number in [0, 1), and the right endpoint can be any number in
[N , N + 1) without affecting the value of the integral. Frequently it is useful
to integrate from 1− to N , i.e. to consider limε→0+

∫ N
1−ε

. Some care must be
exercised in choosing the endpoints of integration, since for example∫ N

1
f (x) d A(x) =

N∑
n=2

an f (n).

Theorem A.2 If
∫ b

a f dg exists, then
∫ b

a g d f also exists, and∫ b

a
g d f = f (b)g(b) − f (a)g(a) −

∫ b

a
f dg.

As we see in the above, we lose no information by writing
∫ b

a f dg instead

of the longer
∫ b

a f (x) dg(x). On combining Theorems A.1 and A.2 we see that∫ b
a f dg exists if f is of bounded variation on [a, b] and g is continuous on

[a, b].

Proof Put ξ0 = a and ξN+1 = b. Then
N∑

n=1

g(ξn)( f (xn) − f (xn−1))

= f (b)g(b) − f (a)g(a) −
N+1∑
n=1

f (xn−1)(g(ξn) − g(ξn−1)).

Here the sum on the right-hand side is a Riemann–Stieltjes sum S(ξn, xn−1)
approximating to

∫ b
a f dg, since xn−1 ∈ [ξn−1, ξn]. Moreover, mesh{ξn} ≤

2mesh{xn}, so that the sum on the right tends to
∫ b

a f dg as mesh{xn} tends
to 0. �

This proof displays the close relation between partial summation and inte-
gration by parts. Rather than sum the series

∑
an f (n) by parts, we can integrate

by parts in (A.4) to see that
N∑

n=1

an f (n) = A(N ) f (N ) −
∫ N

0
A(x) d f (x). (A.5)
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It is to be expected that if g is differentiable, then
∫ b

a f dg should resemble∫ b
a f g′ dx . In this direction we establish

Theorem A.3 If g′ is continuous on [a, b], then

Var[a,b] g =
∫ b

a
|g′(x)| dx .

If in addition f is Riemann integrable, then∫ b

a
f (x) dg(x) =

∫ b

a
f (x)g′(x) dx .

Proof By the mean value theorem there is a ζn ∈ [xn−1, xn] such that

g(xn) − g(xn−1) = g′(ζn)(xn − xn−1).

Hence
N∑

n=1

|g(xn) − g(xn−1)| =
N∑

n=1

|g′(ζn)|(xn − xn−1),

which tends to
∫ b

a |g′| dx as mesh{xn} tends to 0. Since g′(x) is uniformly
continuous on [a, b], there is a δ > 0 such that |g′(ξ ) − g′(ζ )| < ε whenever
|ξ − ζ | < δ. Clearly

N∑
n=1

f (ξn)(g(xn) − g(xn−1)) =
N∑

n=1

f (ξn)g′(ζn)(xn − xn−1)

=
N∑

n=1

f (ξn)g′(ξn)(xn − xn−1)

+
N∑

n=1

f (ξn)(g′(ζn) − g′(ξn))(xn − xn−1)

= �1 + �2,

say. The function f g′ is Riemann integrable, and hence �1 tends to
∫ b

a f g′ dx
as mesh{xn} tends to 0. Suppose that M is chosen so that | f (x)| ≤ M for all
x ∈ [a, b]. If mesh{xn} < δ, then |�2| ≤ Mε(b − a). Hence

∫ b
a f dg exists and

has the value
∫ b

a f g′ dx . �

Continuing from (A.4), we see that if f ′ is continuous, then
N∑

n=1

an f (n) = A(N ) f (N ) −
∫ N

0
A(x) f ′(x) dx . (A.6)

This useful identity can be verified without mention of Riemann–Stieltjes in-
tegration, but its formulation and derivation is most natural through (A.4) and
(A.5).
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490 The Riemann–Stieltjes integral

Suppose that f is Riemann integrable. A version of the triangle inequal-
ity asserts that | ∫ b

a f | ≤ ∫ b
a | f |. We now derive an analogue of this for the

Riemann–Stieltjes integral.

Theorem A.4 Suppose that g has bounded variation, and put g∗(x) =
Var[a,x] g. Then ∣∣∣∣ ∫ b

a
f (x) dg(x)

∣∣∣∣ ≤ ∫ b

a
| f (x)| dg∗(x).

provided that both integrals exist.

Proof Clearly

|S(xn, ξn)| ≤
N∑

n=1

| f (ξn)||g(xn) − g(xn−1)|

≤
N∑

n=1

| f (ξn)|(g∗(xn) − g∗(xn−1)),

which gives the result. �

The differential dg∗ is sometimes abbreviated |dg|. From Theorem A.4
we see that if | f (x)| ≤ M for a ≤ x ≤ b and g is of bounded variation,
then ∣∣∣∣ ∫ b

a
f (x) dg(x)

∣∣∣∣ ≤ MVar[a,b] g (A.7)

provided that the integral exists. As with Riemann integrals, we set
∫ a

a f dg =
0. If a > b we set

∫ b
a f dg = − ∫ a

b f dg, so that
∫ c

a + ∫ b
c = ∫ b

a for any real
numbers a, b, c. Finally, improper Riemann–Stieltjes integrals are defined as
limits of proper integrals, e.g.∫ ∞

a
f (x) dg(x) = lim

b→∞

∫ b

a
f (x) dg(x).

Exercises

1. Suppose that ϕ(t) is continuous and strictly increasing for α ≤ t ≤ β, and
that ϕ(α) = a, ϕ(β) = b. Put F(t) = f (ϕ(t)), G(t) = g(ϕ(t)). Show that∫ b

a
f (x) dg(x) =

∫ β

α

F(t) dG(t)

provided that either integral exists.
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2. Let f and g be continuous, and h have bounded variation. Put I (x) =∫ x
a g dh. Show that∫ b

a
f (x)g(x) dh(x) =

∫ b

a
f (x) d I (x).

3. The proof of Theorem A.2 depends on summation by parts. We now
show that, conversely, summation by parts can be recovered from Theorem
A.2. Suppose that the numbers a1, . . . , aN and b1, . . . , bN are given. Put
An = a1 + · · · + an for 1 ≤ n ≤ N . For 1 ≤ x < N + 1 put A(x) = A[x];
set A(x) = 0 for x < 1. For 1/2 ≤ x ≤ N + 1/2 let B(x) = b[x+1/2]. (The
discontinuities of B(x) are displaced in order to ensure that A(x) and B(x)
do not have a common discontinuity.)
(a) Show that

N∑
n=1

anbn =
∫ N

1−
B(x) d A(x).

(b) Show that
N−1∑
n=1

An(bn − bn+1) = −
∫ N

1−
A(x) d B(x).

(c) Use Theorem 2 to derive Abel’s lemma:
N∑

n=1

anbn = AN bN +
N−1∑
n=1

An(bn − bn+1).

4. Show that ∣∣∣∣ ∫ b

a
f g dh

∣∣∣∣2 ≤
(∫ b

a
| f |2 |dh|

)(∫ b

a
|g|2 |dh|

)
provided that these integrals exist.

5. Suppose that f is non-negative and decreasing, that g(a) = h(a), and that
g(x) ≤ h(x) for a ≤ x ≤ b. Show that∫ b

a
f dg ≤

∫ b

a
f dh

provided that these integrals exist.
6. (First mean value theorem) Suppose that f and g are real-valued functions

with f continuous on [a, b], and g weakly increasing on this interval. Put
m = minx∈[a,b] f (x), M = maxx∈[a,b] f (x).
(a) Show that

m(g(b) − g(a)) ≤
∫ b

a
f dg ≤ M(g(b) − g(a)) .
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492 The Riemann–Stieltjes integral

(b) Show that there is an x0 ∈ [a, b] such that∫ b

a
f dg = f (x0)(g(b) − g(a)) .

7. (Second mean value theorem) Suppose that f and g are real-valued functions
with f weakly increasing on [a, b], and g continuous on this interval. Show
that there is an x0 ∈ [a, b] such that∫ b

a
f dg = f (a)(g(x0) − g(a)) + f (b)(g(b) − g(x0)) .

8. (Darst & Pollard 1970) Suppose that f and g are real-valued functions with
f of bounded variation on [a, b], and g continuous on this interval. (a) Show
that if ξ ∈ [a, b] and f (ξ ) = 0, then∫ b

ξ

f dg ≤ Var[ξ,b]( f ) max
ξ≤x≤b

(g(b) − g(x)),∫ ξ

a
f dg ≤ Var[a,ξ ]( f ) max

ξ≤x≤b
(g(x) − g(a)).

(b) Show that if infa≤x≤b f (x) = 0, then∫ b

a
f dg ≤ Var[a,b]( f ) max

a≤α≤β≤b
(g(β) − g(α)).

(c) Show that in general,∫ b

a
f dg ≤ (g(b) − g(a)) inf

a≤x≤b
f (x) + Var[a,b]( f ) max

a≤α≤β≤b
(g(β) − g(α)).

9. Suppose that

f (x) =
{

1 if 0 < x ≤ 1,
0 otherwise;

g(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise.

Show that
∫ 0
−1 f dg and

∫ 1
0 f dg both exist, but that

∫ 1
−1 f dg does not exist.

A.1 Notes

Our treatment follows that of Ingham in his lectures at Cambridge University.
Several variants of the Riemann–Stieltjes (R-S) integral have been proposed.
The integral as we have defined it is known as the uniform Riemann–Stieltjes
integral. A slightly more powerful variant is the refinement Riemann–Stieltjes
integral, in which

∫ b
a f dg is said to have the value I if for every ε > 0 there is a

partition {xn} such that if {x ′
m} is a refinement of {xn}, then |S(x ′

m, ξ
′
m) − I | < ε
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for all choices of ξ ′
m ∈ [x ′

m−1, x ′
m]. The refinement Riemann–Stieltjes integral is

developed in considerable detail by Apostol (1974, Chapter 9) and Bartle (1964,
Section 22), and is used by Bateman & Diamond (2004). If

∫ b
a f dg exists in

the sense of uniform R–S integration, then it also exists in the refinement R–S
sense, and has the same value. The refinement integral has the attractive prop-
erty that if a < b < c, and if

∫ b
a f dg,

∫ c
b f dg both exist, then

∫ c
a f dg exists

and ∫ c

a
f dg =

∫ b

a
f dg +

∫ c

b
f dg .

This is not true for the uniform R–S integral, as we see by the example in
Exercise A.9.

We mention without proof two more advanced properties of the Riemann–
Stieltjes integral: If f is continuous on [a, b], and if g is absolutely continuous
on the same interval, then ∫ b

a
f dg =

∫ b

a
f g′

where the integral on the right is a Lebesgue integral. Secondly, the Riesz
representation theorem, which is fundamental to functional analysis, asserts that
if G is a positive bounded linear functional on the space C[a, b] of continuous
functions on [a, b], then there exists a weakly increasing function g on [a, b]
such that

G( f ) =
∫ b

a
f dg

for all f ∈ C[a, b]. An account of this is given in Kestelman (1960, pp. 265–
269).

For more extensive accounts of Riemann–Stieltjes integration, see Apostol
(1974, Chapter 9), Hildebrandt (1938), Kestelman (1960, Chapter 11), Rankin
(1963, Section 29), or Widder (1946, Chapter 1).
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