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Oscillations of error terms

15.1 Applications of Landau’s theorem

In this section we make repeated use of the following simple analogue of Lan-
dau’s theorem (Theorem 1.7) concerning Dirichlet series with non-negative
coefficients.

Lemma 15.1 Suppose that A(x) is a bounded Riemann-integrable function
in any finite interval 1 ≤ x ≤ X, and that A(x) ≥ 0 for all x > X0. Let σc

denote the infimum of those σ for which
∫∞

X0
A(x)x−σ dx < ∞. Then the

function

F(s) =
∫ ∞

1
A(x)x−s dx

is analytic in the half-plane σ > σc, but not at the point s = σc.

Proof Write

F(s) =
∫ X0

1
A(x)x−s dx +

∫ ∞

X0

A(x)x−s dx = F1(s) + F2(s),

say. Then the function F1(s) is entire, and the proof of Theorem 1.7 can be
adapted to F2(s) to give the stated result. �

In Exercise 13.1.1 we saw that if� denotes the supremum of the real parts of
the zeros of the zeta function, then ψ(x) = x + O(x�(log x)2). Conversely, if
ψ(x) = x + O(xα+ε), then by Theorem 1.3 the Dirichlet series

∑∞
n=1(�(n) −

1)n−s converges for σ > α, and hence ζ (s) �= 0 in this half-plane. That is,
ψ(x) − x = �(x�−ε). We now sharpen this, by showing that ψ(x) − x must
be large in both signs.

463
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464 Oscillations of error terms

Theorem 15.2 Let � denote the supremum of the real parts of the zeros of
the zeta function. Then for every ε > 0,

ψ(x) − x = �±(x�−ε) (15.1)

and

π (x) − li(x) = �±(x�−ε) (15.2)

as x → ∞.

Proof By Theorem 1.3 we have

− ζ ′

ζ
(s) = s

∫ ∞

1
ψ(x)x−s−1 dx

for σ > 1. Hence

− ζ ′(s)

sζ (s)
− 1

s − 1
=
∫ ∞

1
(ψ(x) − x)x−s−1 dx

for σ > 1. Suppose that

ψ(x) − x < x�−ε for all x > X0(ε). (15.3)

Then we apply Lemma 15.1 to the function

1

s − � + ε
+ ζ ′(s)

sζ (s)
+ 1

s − 1
=
∫ ∞

1
(x�−ε − ψ(x) + x)x−s−1 dx .

Here the left-hand side has a pole at � − ε, but is analytic for real s > � − ε,
in view of Corollary 1.14. Hence the above identity holds for σ > � − ε,
and both sides are analytic in this half-plane. But by the definition of �,
the function ζ ′/ζ has poles with real part > � − ε. From this contradiction
we deduce that the assertion (15.3) is false. That is, ψ(x) − x = �+(x�−ε).
To obtain the corresponding �− estimate we argue similarly using the
identity

1

s − � + ε
− ζ ′(s)

sζ (s)
− 1

s − 1
=
∫ ∞

1
(x�−ε + ψ(x) − x)x−s−1 dx .

In contrast to the situation of Corollary 2.5 or Theorem 13.2, it does not seem
possible to derive (15.2) from (15.1) by integrating by parts. Instead, we pursue
an argument modelled on the one just given. First we examine the Mellin
transform of li(x). By integrating by parts we see that

s
∫ ∞

2
li(x)x−s−1 dx =

∫ ∞

2

dx

xs log x
=
∫ ∞

(s−1) log 2
e−u du

u
.
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Clearly this is

=
∫ ∞

1
e−u du

u
+
∫ 1

(s−1) log 2

e−u − 1

u
du − log(s − 1) − log log 2.

By (7.31) we see that this is

= −
∫ (s−1) log 2

0

e−u − 1

u
du − C0 − log(s − 1) − log log 2.

Thus we find that

s
∫ ∞

2
li(x)x−s−1 dx = − log(s − 1) + r (s)

where r (s) is an entire function. Put

�(x) =
∑
n≤x

�(n)

log n
.

By Theorem 1.3 we know that

s
∫ ∞

2
�(x)x−s−1 dx = log ζ (s)

for σ > 1. Hence

1

s − � + ε
− 1

s
log(ζ (s)(s − 1)) + r (x)

s

=
∫ ∞

2
(x�−ε − �(x) + li(x))x−s−1 dx

for σ > 1. We observe that this function is analytic on the real axis for s > � −
ε. Thus by Lemma 1, if�(x) − li(x) < x�−ε for all sufficiently large x , then the
identity above holds in the half-plane σ > � − ε. However, we are assuming
that the zeta function has a zero ρ = β + iγ with β > � − ε, and the left-hand
side above has a logarithmic singularity at s = ρ. Thus we have a contradiction,
and so �(x) − li(x) = �+(x�−ε). Since π (x) = �(x) + O(x1/2/ log x), and
since� ≥ 1/2, it follows thatπ (x) − li(x) = �+(x�−ε). For the corresponding
�− estimate, we argue similarly from the identity

1

s − � + ε
+ 1

s
log(ζ (s)(s − 1)) − r (x)

s

=
∫ ∞

2
(x�−ε + �(x) − li(x))x−s−1 dx .

�

Next we show that if there is a zero of ζ (s) on the line σ = �, then we may
draw a stronger conclusion.
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466 Oscillations of error terms

Theorem 15.3 Suppose that � is the supremum of the real parts of the zeros
of ζ (s), and that there is a zero ρ with �ρ = �, say ρ = � + iγ . Then

lim sup
x→∞

ψ(x) − x

x�
≥ 1

|ρ| , (15.4)

and

lim inf
x→∞

ψ(x) − x

x�
≤ − 1

|ρ| . (15.5)

Proof Suppose that ψ(x) ≤ x + cx� for all x ≥ X0. Then by Lemma 15.1,

c

s − �
+ ζ ′(s)

sζ (s)
+ 1

s − 1
=
∫ ∞

1
(cx� − ψ(x) + x)x−s−1 dx (15.6)

for σ > �. Call this function F(s). Then

F(s) + 1

2
eiφ F(s + iγ ) + 1

2
e−iφ F(s − iγ )

=
∫ ∞

1
(cx� − ψ(x) + x)(1 + cos(φ − γ log x))x−s−1 dx

for σ > �. We now consider the behaviour of these two expressions as s tends
to � from above through real values. On the right-hand side, the integral from
1 to X0 is uniformly bounded, while the integral from X0 to ∞ is non-negative.
Thus the lim inf of the right-hand side is > −∞ as s → �+. On the other hand,
the left-hand side is a meromorphic function that has a pole at s = � with
residue

c + meiφ

2ρ
+ me−iφ

2ρ

where m ≥ 1 denotes the multiplicity of the zeroρ. We chooseφ so that eiφ/ρ =
−1/|ρ|. Then the above is c − m/|ρ|. This quantity must be non-negative, for if
it were negative, then the left-hand side would tend to −∞ as s → �+. Hence
c ≥ 1/|ρ|, and we have (15.4). The proof of (15.5) is similar. �

Corollary 15.4 As x tends to +∞,

ψ(x) − x = �±
(
x1/2

)
, (15.7)

ϑ(x) − x = �−
(
x1/2

)
, (15.8)

and

π (x) − li(x) = �−
(
x1/2(log x)−1

)
. (15.9)

The problem of proving�+ companions of (15.8) and (15.9) is more difficult,
and is dealt with in the next section.
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15.1 Applications of Landau’s theorem 467

Proof We first prove (15.7). If RH is false, then � > 1/2, and we have a
stronger result by Theorem 15.2. If RH holds, then we have (15.7) by Theo-
rem 15.3, and the remaining assertions follow by Theorem 13.2. �

Many similar results can be proved using the above ideas. For example, for
M(x) =∑n≤x µ(n) we find, in the manner of Theorem 15.2, that

M(x) = �±(x�−ε). (15.10)

In analogy to (15.6) we put

G(s) = 1

sζ (s)
− c

s − �
=
∫ ∞

1
(M(x) − cx�)x−s−1 dx .

Then in the manner of the proof of Theorem 15.3, we find that if � + iγ is a
zero of ζ (s), then

lim sup
x→∞

M(x)

x�
≥ 1

|ρζ ′(ρ)| , (15.11)

and

lim inf
x→∞

M(x)

x�
≤ − 1

|ρζ ′(ρ)| . (15.12)

Here we are assuming that ζ ′(ρ) �= 0. In the contrary case ρ would be a multiple
zero of ζ (s), and our method would allow us to replace the right-hand side of
(15.11) by +∞ and that of (15.12) by −∞. In fact we can prove still more, by
considering the function

H (s) = 1

sζ (s)
− c(m − 1)!

(s − �)m
=
∫ ∞

1
(M(x) − cx�(log x)m−1)x−s−1 dx .

Then our method allows us to deduce that if � + iγ is a zero of multiplicity
m ≥ 1, then

M(x) = �±(x�(log x)m−1).

Then in the manner of Corollary 15.4 we find that in any case

M(x) = �±
(
x1/2

)
, (15.13)

and that if ζ (s) has a multiple zero, then

M(x) = �±
(
x1/2 log x

)
. (15.14)

In the explicit formula for ψ(x) − x , or for M(x), the arguments of the terms in
the sum over the zeros are governed by the quantities xiγ . If the ordinates γ > 0
are linearly independent over Q, then these arguments will tend to be statistically
independent as x runs over a long range. Numerical experiments have failed
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468 Oscillations of error terms

to disclose any linear dependences, and in the absence of any indication to the
contrary, we presume that the ordinates γ > 0 are linearly independent. Under
this assumption, we can improve on the estimate (15.13).

Theorem 15.5 Let 0 < γ1 < γ2 < · · · < γK and γ be ordinates of zeros of
ζ (s). For 1 ≤ k ≤ K let εk take one of the values −1, 0, 1. Suppose that

K∑
k=1

εkγk = 0 (15.15)

for such εk only when εk = 0 for all k. Suppose also that the equation

K∑
k=1

εkγk = γ (15.16)

has a solution only if γ is one of the γk , say γ = γk0 and that in this case the
only solution is obtained by taking εk0 = 1, εk = 0 for k �= k0. Then

lim sup
x→∞

M(x)

x1/2
≥

K∑
k=1

1

|ρkζ ′(ρk)| (15.17)

and

lim inf
x→∞

M(x)

x1/2
≤ −

K∑
k=1

1

|ρkζ ′(ρk)| . (15.18)

Proof In view of (15.10) and (15.14), we may assume that RH holds and that
all zeros of the zeta function are simple. We suppose that M(x) ≤ cx1/2 for all
large x and consider the integral

I (s) =
∫ ∞

1

M(x) − cx1/2

xs+1

K∏
k=1

(1 + cos(φk − γk log x)) dx .

With G(s) defined as above (with � = 1/2), we multiply out the product to
see that this integral is a linear combination of G at various arguments. More
precisely, we see that

I (s) = G(s) + 1

2

K∑
k=1

(eiφk G(s + iγk) + e−iφk G(s − iγk)) + J (s)

where J (s) is a linear combination of G at arguments of the form

s + i
K∑

k=1

εkγk

with more than one of the εk non-zero. The function G(s) is analytic in the
half-plane σ > 0, except for poles at s = 1/2 and at the non-trivial zeros ρ.
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15.1 Applications of Landau’s theorem 469

Hence by Landau’s theorem we see that I (s) converges for σ > 1/2, and our
hypotheses (15.15), (15.16) imply that J (s) is analytic at the point s = 1/2.
Thus the integral I (s) has a pole at s = 1/2 with residue

−c + �
K∑

k=1

eiφk

ρkζ ′(ρk)
.

We choose the φk so that the summands here are positive real. Since I (s) is
bounded above uniformly for s > 1/2, by letting s tend to 1/2 from above we
deduce that

c ≥
K∑

k=1

1

|ρkζ ′(ρk)| .

This gives (15.17), and the proof of (15.18) is similar. �

It is not known whether it is possible to choose zeros ρ in such a way that the
hypotheses (15.15), (15.16) hold, and for which the sum in (15.17) and (15.18)
is large, but at least we are able to establish

Theorem 15.6 Suppose that the Riemann Hypothesis is true and that the zeros
of the zeta function are simple. Then∑

0<γ≤T

1

|ζ ′(ρ)| 
 T

as T → ∞.

From this it follows by partial summation that∑
0<γ≤T

1

|ρζ ′(ρ)| 
 log T

as T → ∞. Thus by combining Theorems 15.5 and 15.6 we have

Corollary 15.7 If the ordinates γ > 0 of the Riemann zeta function are lin-
early independent over Q, then

lim sup
x→∞

M(x)

x1/2
= +∞

and

lim inf
x→∞

M(x)

x1/2
= −∞.

Proof of Theorem 15.6 It is enough to prove the inequality with T restricted
to the special sequence of values Tν of Theorem 13.21, for which |ζ (s)| 
 τ−ε
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470 Oscillations of error terms

uniformly for −1 ≤ σ ≤ 2. By the calculus of residues we see that∑
0<γ≤Tν

1

ζ ′(ρ)
= 1

2π i

∫
C

1

ζ (s)
ds

where C is the rectangular contour with vertices 2 + i , 2 + iTν , −1 + iTν ,
−1 + i . The top of this rectangle contributes an amount 	 T ε

ν . For s on the
left side of this contour, |ζ (s)| � τ 3/2 by Corollary 10.5, so that the integral
along the left-hand side is 	 1. The integral along the bottom of the rectangle
is clearly 	 1 as well. To estimate the integral along the right-hand side, we
expand 1/ζ (s) in its Dirichlet series, and integrate term by term. The integral
of 1 contributes Tν − 1, while for n > 1 the integral of n−2−i t is 	 n−2/ log n.
On summing over n we find that the integral of 1/ζ (s) over the right-hand side
of the rectangle is Tν + O(1). On combining these estimates we see that the
sum above is Tν + O(T ε

ν ), and this gives the stated result. �

15.1.1 Exercises

1. (a) Suppose that ε is small and positive, and let Li(x) be defined as in
Exercise 6.2.22. Explain why

s
∫ ∞

1+ε

Li(x)x−s−1 dx = Li(1 + ε)(1 + ε)−s +
∫ ∞

1+ε

dx

xs log x
= T1 + T2.

(b) Show that Li(1 − ε) = Li(1 + ε) + O(ε).
(c) Show that

Li(1 − ε) = −
∫ ∞

ε

e−v dv

v
.

(d) Show that Li(1 + ε) 	 log 1/ε.
(e) Deduce that

T1 = −
∫ ∞

ε

e−v dv

v
+ O

(
ε log

1

ε

)
.

(f) Show that

T2 =
∫ ∞

(s−1) log(1+ε)
e−v dv

v
.

(g) Show that

T2 =
∫ ∞

(s−1)ε
e−v dv

v
+ O(ε) .
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(h) Show that

T1 + T2 = − log(s − 1) −
∫ (s−1)ε

ε

(e−v − 1)
dv

v
+ O(ε log 1/ε).

(i) Conclude that

s
∫ ∞

1
Li(x)x−s−1 dx = − log(s − 1)

for σ > 1.
2. Let ψ1(x) =∑n≤x �(n)(x − n). Show that ψ1(x) − 1

2 x2 = �±(x3/2).
3. Show that ψ(2x) − 2ψ(x) = �±(x1/2).
4. (a) Show that as x → ∞,∑

n≤x

(1 − n/x)µ(n) = �±
(
x1/2

)
.

(b) Show that as x → ∞,∑
n≤x

µ(n)/n = �±
(
x−1/2

)
.

(c) Show that as x → ∞,
∞∑

n=1

µ(n)e−n/x = �±
(
x1/2

)
.

5. Let Q(x) denote the number of square-free numbers not exceeding x .
(a) Show that

Q(x) − 6

π2
x = �±

(
x1/4

)
.

(b) Show that

Q(2x) − 2Q(x) = �±
(
x1/4

)
.

6. (a) Suppose that ζ (1/2 + iγ ) = 0 and that ζ (1/2 + 2iγ ) �= 0. Show that

lim sup
x→∞

ψ(x) − x

x1/2
≥ 4

3|ρ|
and that

lim inf
x→∞

ψ(x) − x

x1/2
≤ − 4

3|ρ| .

(b) Show that if ζ (1/2 + iγ1) = ζ (1/2 + iγ2) = 0 but ζ (1/2 + i(γ1 +
γ2)) �= 0 and ζ (1/2 + i(γ1 − γ2)) �= 0, then

lim sup
x→∞

ψ(x) − x

x1/2
≥ 1

|1/2 + iγ1| + 1

|1/2 + iγ2|
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and that

lim inf
x→∞

ψ(x) − x

x1/2
≤ − 1

|1/2 + iγ1| − 1

|1/2 + iγ2| .

7. Show that
∑

n≤x (−1)ω(n) 	 x1/2+ε if and only if (3s − 2)/ζ (s) is analytic
for σ > 1/2.

8. (Ingham 1942; cf. Haselgrove 1958) Let L(x) =∑n≤x λ(n).
(a) Show that if � > 1/2, then for every ε > 0, L(x) = �±(x�−ε) as

x → ∞.
(b) Show that lim infx→∞ L(x)/x1/2 ≤ 1/ζ (1/2) (= −0.685 . . . ).
(c) Show that if ζ (s) has a multiple zero, then L(x) = �±

(
x1/2 log x

)
.

(d) Show that if RH holds and σ is fixed, 1/4 < σ < 1/2, then
|ζ (2s)/ζ (s)| = τσ−1/2+o(1).

(e) Show that if RH holds, then there is a sequence of Tν → ∞ in such a
way that Tν+1 ≤ Tν + 2, and∑

0<γ≤Tν

ζ (2ρ)

ζ ′(ρ)
= Tν + O

(
T 3/4+ε
ν

)
.

(f) Show that if RH holds and the ordinates γ > 0 of the zeros of the zeta
function are linearly independent over Q, then

lim sup
x→∞

L(x)

x1/2
= +∞

and

lim inf
x→∞

L(x)

x1/2
= −∞.

9. (Turán 1948; cf. Haselgrove 1958)
(a) Show that if

∑
n≤x λ(n)/n ≥ 0 for all x ≥ 1, then the Riemann Hy-

pothesis is true.
(b) Show that ∑

n≤x

λ(n)/n = �+
(
x−1/2

)
as x → ∞.

10. Let the positive integer q be fixed. Suppose that if χ is a character (mod
q), then L(σ, χ) �= 0 for 0 < σ < 1. Suppose also that a and b are integers
such that (ab, q) = 1 and a �≡ b (mod q).
(a) Let � = �(q; a, b) denote the supremum of the real parts of the poles

of the function ∑
χ

(χ (a) − χ (b))
L ′

L
(s, χ).
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Show that

ψ(x ; q, a) − ψ(x ; q, b) = �±(x�−ε)

for any ε > 0.
(b) Let r (a) denote the number of solutions of the congruence x2 ≡ a

(mod q). Show that

ϑ(x ; q, a) = ψ(x ; q, a) − r (a)

ϕ(q)
x1/2 + o

(
x1/2

)
.

(c) Show that if �(q; a, b) > 1/2, then

ϑ(x ; q, a) − ϑ(x ; q, b) = �±(x�−ε),

π (x ; q, a) − π (x ; q, b) = �±(x�−ε)

for any ε > 0.
(d) Show that �(q; a, b) ≥ 1/2.
(e) Show that

ψ(x ; q, a) − ψ(x ; q, b) = �±
(
x1/2

)
.

(f) Show that if r (a) ≥ r (b), then

ϑ(x ; q, a) − ϑ(x ; q, b) = �−
(
x1/2

)
,

π (x ; q, a) − π (x ; q, b) = �−
(
x1/2/ log x

)
.

(g) Show that if r (a) ≤ r (b), then

ϑ(x ; q, a) − ϑ(x ; q, b) = �+
(
x1/2

)
,

π (x ; q, a) − π (x ; q, b) = �+
(
x1/2/ log x

)
.

(h) Show that

π (x ; 4, 1) − π (x ; 4, 3) = �−
(
x1/2/ log x

)
.

11. (Hardy & Littlewood 1918; Landau 1918a, b) Let χ−4(n) = (−4
n ) denote

the non-principal character modulo 4, and let

T1(x) =
∑
n≤x

�(n)χ−4(n)(x − n).

(a) Show that

T1(x) = −
∑
ρ

xρ+1

ρ(ρ + 1)
+ O(x)

where ρ runs over the non-trivial zeros of L(s, χ−4). In parts (b)–(l)
below, assume that all these zeros lie on the line σ = 1/2.
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(b) Show that∑
ρ

1

|ρ|2 = 2 log 2 − logπ − C0 + 2
L ′

L
(1, χ−4).

(c) Show that L(1, χ−4) = π/4.
(d) Show that

L ′(1, χ−4) = log 3

6
+

∞∑
k=2

(−1)k

2

( log 2k − 1

2k − 1
− log 2k + 1

2k + 1

)
,

and apply the alternating series test to show that 0.19 < L ′(1, χ−4) <
0.196.

(e) Deduce that

0.148 <
∑
ρ

1

|ρ|2 < 0.164.

(f) Show that |T1(x)| < (0.165)x3/2 for all large x .
(g) Show that ∑

p≤x1/2

(log p)(x − p2) = 2

3
x3/2 + o

(
x3/2

)
.

(h) Let T2(x) =∑2<p≤x (log p)(−1)(p−1)/2(x − p). Show that

− 5

6
x3/2 < T2(x) < − 1

2
x3/2

for all large x .
(i) Let T3(x) =∑2<p≤x (−1)(p−1)/2(x − p). Show that

T3(x) = T2(x)

log x
+
∫ x

3

T2(u)

u2(log u)2

(
x + 2(x − u)

log u

)
du

= T2(x)

log x
+ O

( x3/2

(log x)2

)
.

(j) Let P(x) =∑p>2(−1)(p−1)/2e−p/x . Show that

P(x) = 1

x2

∫ ∞

0
T3(u)e−u/x du.

(k) Show that∫ ∞

2
u3/2(log u)−1e−u/x du = 3

4

√
πx5/2(log x)−1 + O

(
x5/2(log x)−2

)
.
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(l) Deduce that

P(x) < − 3

5

x1/2

log x

for all large x .
(m) Chebyshev (1853) proposed that P(x) < 0 for all sufficiently large x .

Conclude that Chebyshev’s conjecture is equivalent to the assertion
that L(s, χ−4) �= 0 for σ > 1/2.

15.2 The error term in the Prime Number Theorem

We have seen that ψ(x) − x changes sign infinitely often. We now show that
these sign changes can be localized if there is a zero on the abscissa �.

Theorem 15.8 Let � denote the supremum of the real parts of the zeros of
ζ (s). If ζ (s) has a zero with real part �, then there exists a constant C > 0 such
that ψ(x) − x changes sign in every interval [x,Cx] for which x ≥ 2.

Proof For each integer k ≥ 0, put

Rk(y) = 1

k!

∑
n≤ey

(y − log n)k�(n) − ey .

We see easily that Rk(y) is differentiable for k > 1, and that R′
k(y) = Rk−1(y).

By the method used to prove explicit formulæ we see also that

Rk(y) = −
∑
ρ

eρy

ρk+1
+ O(yk+1).

Suppose that the numbers γ j are determined, 0 < γ1 < γ2 < . . . so that the
numbers � ± iγ j constitute all the zeros of ζ (s) on the line σ = �, and let
m j denote the multiplicity of the zero ρ j = � + iγ j . Since

∑
ρ |ρ|−α < ∞ for

α > 1, we see that if k ≥ 1, then

Rk(y) = −2e�y�
∑

j

m j eiγ j y

ρk+1
j

+ o(e�y) (15.19)

as y → ∞. Let K be the least number for which

m1

|ρ1|K
>
∑
j>1

m j

|ρ j |K
.

Chooseφ so that eiγ1φ/ρK
1 > 0. By taking k = K in (15.19) and using the above

inequality, we see that for all large numbers n, RK (φ + πn/γ1) is positive or
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negative according as n is odd or even. Take C = exp(π (K + 2)/γ1). Then any
interval [y0, y0 + log C] contains at least K + 2 points of the form φ + πn/γ1.
Thus if y0 is large, then such an interval contains K + 2 points at which RK (y)
alternates in sign. By the mean value theorem for derivatives we know that if f is
differentiable on an interval [α, β] and f (α) < 0, f (β) > 0, then there must be
a number ξ , α < ξ < β, such that f ′(ξ ) > 0. Thus we can choose K + 1 points
in the interval [y0, y0 + log C] at which RK−1(y) alternates in sign. Continuing
in this manner, we conclude that we can find three points in this interval at
which R1(y) alternates in sign. Now R1(y) is continuous, and R′

1(y) = R0(y)
in intervals containing no prime power, so that R1(y) is an indefinite integral of
R0(y). Thus, although R0(y) is not everywhere differentiable, it is nevertheless
true that R1 will be monotonic in any interval in which R0 is of constant sign.
Since R1 is not monotonic in the interval in question, we deduce that R0 changes
sign. �

The method used to prove Corollary 15.7 could be applied to ψ(x) − x ,
but for this function we have a different approach that succeeds without any
unproved hypothesis. In view of Theorem 15.2 we may assume that the Riemann
Hypothesis is true. By substituting ey for x in the explicit formula for ψ(x), we
see that

ψ(ey) − ey

ey/2
= −

∑
ρ

eiγ y/ρ + O
(
e−y/2

)
uniformly for y ≥ 1. Since 1/ρ = 1/(iγ ) + O(1/γ 2) and

∑
1/γ 2 < ∞, the

above is

−2
∑
γ>0

sin γ y

γ
+ O(1).

Here each term in the sum is periodic, and if γ is large, then both the period and
the amplitude of the term are small. The sum is not absolutely convergent, but
by suitably averaging this with respect to y we may arrange that the γ beyond
a chosen point make a small contribution. Suppose, for simplicity, that by such
an averaging we could truncate the sum, which would leave us to consider the
partial sum

−2
∑

0<γ≤T

sin γ y

γ
. (15.20)

Here the sum of the absolute values of the coefficients is � (log T )2, and the
sum will be of this order of magnitude if we can find a y for which the fractional
parts {γ y/(2π )} are approximately 1/4 for all the above γ . This, however, is an
inhomogeneous problem of Diophantine approximation, and in general such a
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problem has a solution only if the coefficients γ are linearly independent over Q.
Moreover, in order to obtain a quantitative result it would be necessary to have
quantitative lower bounds for the absolute values of linear forms in the γ . Since
we have no such information, we are confined to homogeneous approximation.
Dirichlet’s theorem assures us that there exist large y for which each of the
numbers γ y/(2π ) is near an integer. That is, ‖γ y/(2π )‖ is small for 0 < γ ≤ T ,
where ‖θ‖ denotes the distance from θ to the nearest integer, ‖θ‖ = minn∈Z |θ −
n|. However, the sum (15.20) vanishes when y = 0, and will therefore be small
when the numbers ‖γ y/(2π )‖ are small. On the other hand, if we take y = π/T
in (15.20), then sin γ y � γ /T , and the sum is � N (T )/T � log T . While this
is smaller than the (log T )2 that we might have hoped for, it is definitely large.
This y is small, but by Dirichlet’s theorem there exists a large number y0 for
which the numbers ‖γ y0/(2π )‖ are small, and then we may take y = y0 ± π/T
to make the sum (15.20) large in either sign.

The truth of the matter is that the sum (15.20) is not an average of the error
term in the Prime Number Theorem, but we can form a weighted sum that
resembles (15.20).

Lemma 15.9 If the Riemann Hypothesis is true, then

1

(eδ − e−δ)x

∫ eδx

e−δx
(ψ(u) − u) du = −2x1/2

∑
γ>0

sin γ δ

γ δ
· sin(γ log x)

γ
+ O

(
x1/2

)
uniformly for x ≥ 4, 1/(2x) ≤ δ ≤ 1/2.

The first factor in the sum is near 1 if γ is small compared to 1/δ, and then
becomes small for larger γ . Thus, despite its more complicated appearance, the
above sum behaves like the partial sum (15.20) with T � 1/δ.

Proof We recall that∫ x

0
(ψ(u) − u) du = −

∑
ρ

xρ+1

ρ(ρ + 1)
− ζ ′

ζ
(0)x + O(1)

for x ≥ 2. We replace x by e±δx and difference to see that the left-hand side in
the lemma is

− δ

sinh δ

∑
ρ

(eδ(ρ+1) − e−δ(ρ+1))xρ

2δρ(ρ + 1)
+ O(1). (15.21)

We appeal to RH, and observe that e±δ(ρ+1) = e±iγ δ(1 + O(δ)) = e±iγ δ +
O(δ). Since N (T + 1) − N (T ) 	 log T , we see easily that

∑
γ γ

−2 	 1. Thus
when we replace e±δ(ρ+1) by e±iγ δ in (15.21), we introduce an error term that
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is 	 x1/2. Hence the expression (15.21) is

−i x1/2
( δ

sinh δ

)∑
ρ

sin γ δ

δ
· xiγ

ρ(ρ + 1)
+ O

(
x1/2

)
.

The factor in parentheses is 1 + O(δ2), and the sum over ρ is

	
∑

0<γ≤1/δ

1

γ
+ 1

δ

∑
γ>1/δ

1

γ 2
	 (log 1/δ)2,

so our expression is

−i x1/2
∑
ρ

sin γ δ

δ
· xiγ

ρ(ρ + 1)
+ O

(
x1/2

)
.

Now 1/ρ = 1/(iγ ) + O(1/γ 2), and the first factor in the above sum is 	 |γ |,
so that if we replace 1/ρ by 1/(iγ ), then we introduce an error term that is
	 x1/2∑

γ 1/γ 2 	 x1/2. Similarly we may replace 1/(ρ + 1) by 1/(iγ ). Thus
we see that the above sum is

−x1/2
∑
ρ

sin γ δ

γ δ
· xiγ

iγ
+ O

(
x1/2

)
.

We now obtain the stated result by combining the contributions of γ

and −γ . �

We now formulate a simple form of Dirichlet’s theorem that is suitable for
our use.

Lemma 15.10 (Dirichlet) If θ1, . . . , θK are real numbers, and N is a positive
integer, then there is a positive integer n ≤ N K such that ‖θkn‖ < 1/N for
1 ≤ k ≤ K .

Proof The point p(n) = ({θ1n}, . . . , {θK n}) lies in the hypercube [0, 1)K . We
partition this hypercube into N K hypercubes of side length 1/N . We allow n
to take the values 0, 1, . . . , N K , which gives us N K + 1 points. Hence by the
pigeon-hole principle there are two values of n, say 0 ≤ n1 < n2 ≤ N K , for
which the points p(n1), p(n2) lie in the same hypercube. Thus

‖θkn1 − θkn2‖ ≤ |{θkn1} − {θkn2}| < 1/N

for 1 ≤ k ≤ K . We take n = n2 − n1 to obtain the desired result. �

Theorem 15.11 (Littlewood) As x → ∞,

ψ(x) − x = �±
(
x1/2 log log log x

)
, (15.22)
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and

π (x) − li(x) = �±
(
x1/2(log x)−1 log log log x

)
. (15.23)

Proof We consider (15.22). If RH is false, then Theorem 15.2 is stronger.
Thus it remains to prove (15.22) if RH holds. Let N be a large integer. We
apply Lemma 15.10 to those numbers γ (log N )/(2π ) for which 0 < γ ≤ T =
N log N . Thus in Lemma 15.10 we have K = N (T ) � T log T , and there exists
an integer n, 1 ≤ n ≤ N K such that∥∥∥γ n

2π
log N

∥∥∥ < 1

N

for 0 < γ ≤ T . We take x = N ne±1/N , δ = 1/N in Lemma 15.9. From the
general inequality | sin 2πα − sin 2πβ| ≤ 2π‖α − β‖ we see that

| sin(γ log x) ∓ sin γ /N | ≤ 2π/N .

Since ∑
γ

∣∣∣∣ sin γ /N

γ /N
· 1

γ

∣∣∣∣	 (log N )2

and
∑

γ>T 1/γ 2 	 T −1 log T 	 1/N , we deduce that the right-hand side in
Lemma 15.9 is

∓2x1/2 N−1
∑
γ>0

(
sin γ /N

γ /N

)2

+ O
(
x1/2

)
.

The sum over γ is � N log N . But x ≤ N N K
e1/N and K = N (T ) � T log T �

N (log N )2, so that

log log x 	 N (log N )3,

and hence log N ≥ (1 + o(1)) log log log x . The left-hand side in Lemma 15.9
is simply the average of ψ(u) − u over a neighbourhood of x . Since x 
 N
and N is arbitrarily large, we have (15.22).

As for (15.23), we note that if RH holds, then (15.22) and (15.23) are equiva-
lent, in view of Theorem 13.2. If RH is false, then Theorem 15.2 gives a stronger
result. �

15.2.1 Exercises

1. Show that

π (x ; 4, 1) − π (x ; 4, 3) = �±
(
x1/2(log x)−1 log log log x

)
as x → ∞.
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2. (a) Show that if f (k−1)(x) is continuous in [a, a + kh] and if f (k)(x) ex-
ists throughout (a, a + kh), then there exists a ξ ∈ (a, a + kh) such
that

hk f (k)(ξ ) =
k∑

j=0

(−1)k
( k

j

)
f (a + jh).

(b) Show that there exist constants C > 0, c > 0 such that if RH holds,
then for all x ≥ 2,

sup
x≤u≤Cx

(ψ(u) − u) ≥ cx1/2

and

inf
x≤u≤Cx

(ψ(u) − u) ≤ −cx1/2.

3. Show that for every C > 1 there is a δ = δ(C) > 0 such that if RH holds,
then

sup
x≤u≤Cx

|ψ(u) − u| ≥ δx1/2

for all x ≥ 2.
4. (Ingham 1936)

(a) Let N be a positive integer, Y a positive real number, and let θ1, . . . , θK

be arbitrary real numbers. By using Dirichlet’s theorem, or otherwise,
show that there is a real number y, Y ≤ y ≤ Y N K such that ‖θk y‖ <

1/N for 1 ≤ k ≤ K .
(b) Let N be an integer > 1, Y a positive real number. Show that there

exist real numbers θ1, . . . , θK such that maxk ‖θk y‖ ≥ 1/N uniformly
for all real y in the interval Y ≤ y ≤ Y (N − 1)K .

(c) Suppose that RH holds. Show that there exists an absolute constant
c > 0 such that for any real numbers X ≥ 2 and Z ≥ 16 there exists
an x , X ≤ x ≤ X Z , for which

π (x) − li(x) > cx1/2(log x)−1 log log log Z ,

and an x ′ in the same interval for which

π (x) − li(x) < −cx1/2(log x)−1 log log log Z .

(d) Deduce that there is an absolute constant C > 0 such that if RH holds,
then π (x) − li(x) changes sign in every interval [X,C X ] for X ≥ 2.
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5. Show that the implicit constant in Littlewood’s theorem can be taken to be
1/2. That is,

lim sup
x→∞

ψ(x) − x

x1/2 log log log x
≥ 1/2,

with similar inequalities for the lim inf and for π (x) − li(x).
6. Suppose that q is an integer such that

∏
χ L(σ, χ) �= 0 for σ > 1/2. Show

that if (b, q) = 1, b �≡ 1 (mod q), then

π (x ; q, 1) − π (x ; q, b) = �±
(
x1/2(log x)−1 log log log x

)
.

7. Suppose that
∑

n |cn| < ∞, and put g(y) =∑n cneiλn y where the λn are
real. Show that for any y0 and any ε > 0, there exist arbitrarily large num-
bers y such that |g(y) − g(y0)| < ε.

8. Suppose that g(y) =∑n cneiλn y is uniformly convergent for y in a neigh-
bourhood of y0, and put

Mδ = 1

δ

∫ δ

−δ

(
1 − |y|

δ

)
g(y0 + y) dy.

(a) Show that

Mδ =
∑

n

cn

(
sin λnδ/2

λnδ/2

)2

eiλn y0

for all small positive δ.
(b) Show that Mδ → g(y0) as δ → 0+.

9. (Jurkat 1973, Anderson 1991) Suppose that there is a constant K such
that M(x) ≤ K x1/2 for all x ≥ 1, or that there is a constant K such that
−K x1/2 ≤ M(x) for all x ≥ 1.
(a) Show that the Riemann Hypothesis is true, that the zeros of ζ (s) are

simple, and that |ζ ′(ρ)| 
 1/|ρ|.
(b) Show that there is a sequence of Tν tending to infinity such that

M(x) = lim
ν→∞

∑
|γ |≤Tν

xρ

ρζ ′(ρ)
− 2 +

∞∑
n=1

(−1)n−1(2π/x)2n

(2n)!nζ (2n + 1)

for x > 0, and that the convergence is uniform in intervals that do not
contain a square-free number.

(c) Let

g(y) = lim
ν→∞

∑
|γ |≤Tν

eiγ y

ρζ ′(ρ)
.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.017 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.017


482 Oscillations of error terms

Show that if g(y) is continuous at y0, then for any ε > 0 there exist
arbitrarily large y such that |g(y) − g(y0)| < ε.

(d) Show that g(0+) − g(0−) = 1.
(e) Deduce that lim supx→∞ |M(x)|/x1/2 ≥ 1/2.

10. (a) Let h(x) = (M(2x) − M(x))/x1/2. Show that h(1+) = −1 and that
h(1−) = 1.

(b) Show that

lim sup
x→∞

∣∣∣ ∑
x<n≤2x

µ(n)
∣∣∣x−1/2 ≥ 1.

15.3 Notes

Theorems 15.2 and 15.3, and Corollary 15.4, are due in substance to E. Schmidt
(1903). Mertens (1897) conjectured that |M(x)| ≤ x1/2 for all x ≥ 1. This
‘Mertens Hypothesis’ was disproved by Odlyzko and te Riele (1984), who
showed that

lim sup
x→∞

M(x)

x1/2
≥ 1.06

and that

lim inf
x→∞

M(x)

x1/2
≤ −1.009.

One would expect that here the lim sup is +∞ and the lim inf is −∞, but
neither of these assertions has been proved. Ingham (1942) proved Theorem
15.5 under the stronger hypothesis that the ordinates γ > 0 are joined by at
most a finite number of linear relations. That one may restrict the coefficients
of the linear relations, and thus in principle verify the hypothesis for the first
several zeros, was shown by Bateman et al. (1971). The product used in the
proof of Theorem 15.5 is very similar to the Riesz products used in the study
of lacunary Fourier series (see Zygmund 1959, pp. 208–212).

The method used to prove Theorem 15.8 was introduced by Littlewood
(1927) for the purpose of providing a simple proof of Theorem 15.3.

Theorem 15.11 was announced by Littlewood (1914), who sketched the
proof. Full details were given later by Hardy and Littlewood (1918). The initial
proofs depended on an appeal to the Phragmén–Lindelöf principle. Ingham
(1936) found that this could be dispensed with. Ingham considered a more
complicated weighted average of ψ(u) − u which led to the simpler weighted
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partial sum ∑
0<γ≤T

(1 − γ /T )
sin γ y

γ

of the sum (15.20). The present exposition was inspired by Ingham’s editorial
remark in Hardy’s Collected Works (1967, p. 99).

The proof given of Theorem 15.11 is non-effective in the sense that it does
not permit one to determine an explicit constant c about which one can assert
that π (x) > li(x) for some x < c. Skewes (1933, 1955) formulated a slightly
different division into cases (RH ‘nearly true’ vs. RH ‘significantly false’),
which permitted him to show that one can take

c = exp(exp(exp(exp(7.705)))).

One of the problems here is to construct a function f (x) about which one can
assert that in any interval [x0, f (x0)] there exist x for which the sum over the non-
trivial zeros is not highly cancelling. That is, the conclusion of Theorem 15.2
must be put in a more quantitative, localized form. In this connection, Littlewood
(1937) was led to consider a question concerning a sum of cosines. Turán
(1946) discovered that the theorem formulated by Littlewood is false – the
argument provided establishes a weaker result than claimed. Turán undertook a
detailed study of such power sums. His ‘power sum method’ has many important
applications to the oscillatory error terms that arise in analytic number theory
(see Turán 1984). In particular, Knapowski (1961) used Turán’s method to
show, without need of extensive numerical calculations, that an effective upper
bound for the constant c can be determined. Subsequently, Lehman (1966)
used extensive numerical information concerning the zeros ρ to show that one
can take c = 1.65 × 101165. Using the same method te Riele (1989) shows that
π (x) > lix for at least 10180 consecutive integers in the interval [6.627 . . . ×
10370, 6.687 . . . × 10370]. More recently Bays & Hudson (2000) have given
some new regions where π (x) > li(x), the first of these being around 1.39 ×
10316. An extension of Littlewood’s theorem to Beurling primes has been given
by Kahane (1999).

Monach & Montgomery (cf. Monach 1980) have conjectured that for every
ε > 0 and every K > 0 there is a T0(ε, K ) such that∣∣∣ ∑

0<γ≤T

kγ γ
∣∣∣ > exp(−T 1+ε) (15.24)

whenever T ≥ T0 and the kγ are integers, not all 0, for which |kγ | ≤ K . From
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this they have shown that

lim sup
x→∞

ψ(x) − x

x1/2(log log log x)2
≥ 1

2π
, (15.25)

and that

lim inf
x→∞

ψ(x) − x

x1/2(log log log x)2
≤ −1

2π
. (15.26)

In view of (13.48), it is plausible that equality holds in (15.25) and (15.26).
Let L(x) =∑n≤x λ(n). It was conjectured by Pólya (1919) that L(x) ≤ 0

for all x ≥ 2, and it has been verified that this inequality holds for 2 ≤ x ≤
106. Pólya’s conjecture was disproved by Haselgrove (1958), whose extensive
computer calculations led to the conclusion that

lim sup
x→∞

L(x)

x1/2
> 0.

Subsequently Lehman (1960) found that L(906,180,359) = 1.
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