
14

Zeros

14.1 General distribution of the zeros

If T > 0 is not the ordinate of a zero of the zeta function, then we let N (T ) denote
the number of zerosρ = β + iγ of ζ (s) in the rectangle 0 < β < 1, 0 < γ < T .
If T is the ordinate of a zero, then we set N (T ) = (N (T +) + N (T −))/2. By
the argument principle we obtain

Theorem 14.1 For any real t , put

S(t) = 1

π
arg ζ (1/2 + i t). (14.1)

If T > 0, then

N (T ) = 1

π
arg�(1/4 + iT/2) − T

2π
logπ + S(T ) + 1. (14.2)

Proof Since

N (T ) = 1

2
(N (T +) + N (T −)), S(T ) = 1

2
(S(T +) + S(T −)),

it suffices to prove (14.2) when T is not the ordinate of a zero. Let C denote the
contour that proceeds by straight lines from 2 to 2 + iT to −1 + iT to −1 to
2. Then by the argument principle,

N (T ) = 1

2π i

∫
C

ξ ′

ξ
(s) ds.

Now let C1 denote the contour that proceeds by line segments from 1/2
to 2 to 2 + iT to 1/2 + iT , and let C2 be the contour that proceeds from
1/2 + iT to −1 + iT to −1 to 1/2. Thus

∫
C = ∫C1

+ ∫C2
. For s ∈ C2 we use the

identity

ξ ′

ξ
(s) = − ξ ′

ξ
(1 − s),

452
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14.1 General distribution of the zeros 453

and thus we see that∫
C2

ξ ′

ξ
(s) ds = −

∫
C2

ξ ′

ξ
(1 − s) ds =

∫
C3

ξ ′

ξ
(s) ds

where C3 proceeds from 1/2 − iT to 2 − iT to 2 to 1/2. On adding this to the
integral over C1, we see that the contribution of the interval [1/2, 2] cancels,
and hence

N (T ) = 1

2π i

∫
C4

ξ ′

ξ
(s) ds

where C4 runs from 1/2 − iT to 2 − iT to 2 + iT to 1/2 + iT . By (10.25) we
see that the above is

= 1

2π i

[
log s + log(s − 1) + log ζ (s) + log�(s/2) − s

2
logπ

∣∣∣1/2+iT

1/2−iT
.

By the Schwarz reflection principle, the real parts cancel and the imaginary
parts reinforce. Thus the above is

= 1

π

(
arg(1/2 + iT ) + arg(−1/2 + iT ) + arg ζ (1/2 + iT )

+ arg�(1/4 + iT/2) − T

2
logπ

)
.

Here arg(1/2 + iT ) + arg(−1/2 + iT ) = π , so we have the stated result. �

By Stirling’s formula (Theorem C.1) we know that

log�(s) = (s − 1/2) log s − s + 1

2
log 2π + O(1/|s|). (14.3)

By using this, we obtain

Corollary 14.2 For T ≥ 2,

N (T ) = T

2π
log

T

2π
− T

2π
+ 7

8
+ S(T ) + O(1/T ).

Proof Clearly

�
(
(−1/4 + iT/2) log(1/4 + iT/2) − (1/4 + iT/2)

)
= − 1

4
arg
(

1
4 + i T

2

)+ T

4
log
(

1
16 + T 2

4

)− T

2
.

But arg(1/4 + iT/2) = π/2 + O(1/T ), and log(1/16 + T 2/4) = 2 log T/2 +
O(1/T 2), so we obtain the stated result. �

By combining the above with Lemma 12.3 or Theorem 13.20, we obtain
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Corollary 14.3 For T ≥ 4,

N (T ) = T

2π
log

T

2π
− T

2π
+ O(log T ).

Corollary 14.4 If the Riemann Hypothesis is true, then

N (T ) = T

2π
log

T

2π
− T

2π
+ O

(
log T

log log T

)
.

Note that these estimates imply the estimates of Theorem 10.13 and
Lemma 13.18, respectively. In addition, from the first estimate above we see
that there is an absolute constant C > 0 such that

N (T + h) − N (T ) � h log T (14.4)

uniformly for C ≤ h ≤ T . Similarly, there is an absolute constant C > 0 such
that if RH is true, then (14.4) holds for C/ log log T ≤ h ≤ T , T ≥ 4. By mod-
ifying our method we obtain corresponding estimates for the number of zeros
of a Dirichlet L-function.

Theorem 14.5 Let χ be a primitive character modulo q, with q > 1. For
T > 0, let N (T, χ ) denote the number of zeros ρ = β + iγ of L(s, χ ) with
0 < β < 1 and 0 ≤ γ ≤ T . Any zeros with γ = 0 or γ = T should be counted
with weight 1/2. Also, for any real number T , put

S(T, χ ) = 1

π
arg L(1/2 + iT, χ ). (14.5)

Then

N (T, χ ) = 1

π
arg�(1/4 + κ/2 + iT/2) + T

2π
log

q

π
+ S(T, χ ) − S(0, χ )

where κ = 0 or 1 according as χ (−1) = 1 or −1.

There is no need to establish a separate result pertaining to zeros with γ < 0,
since the number of zeros of L(s, χ ) with −T ≤ γ ≤ 0 is N (T, χ ).

Proof We may assume that T is not the ordinate of a zero, for if it were, then
we have only to replace T by T ±, and average. However, we must take some
precautions against the possibility that L(s, χ) has a zero on the real axis in
the interval (0, 1). Let C± be the contour from 2 ± iε to 2 + iT to −1 + iT to
−1 ± iε to 2 ± iε, let C±

1 be the contour from 1/2 ± iε to 2 ± iε to 2 + iT to
1/2 + iT , let C±

2 be the path from 1/2 + iT to −1 + iT to −1 ± iε to 1/2 ± iε,
and let C±

3 be the path from 1/2 − iT to 2 − iT to 2 ∓ iε to 1/2 ∓ iε. By the
argument principle, the number of zeros with 0 < γ ≤ T is

1

2π i

∫
C+

ξ ′

ξ
(s, χ ) ds = 1

2π i

∫
C+

1

ξ ′

ξ
(s, χ) ds + 1

2π i

∫
C+

2

ξ ′

ξ
(s, χ ) ds.
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For s ∈ C+
2 we write

ξ ′

ξ
(s, χ ) = − ξ ′

ξ
(1 − s, χ ),

and thus we find that∫
C+

2

ξ ′

ξ
(s, χ ) ds = −

∫
C+

2

ξ ′

ξ
(1 − s, χ ) ds =

∫
C+

3

ξ ′

ξ
(s, χ ) ds.

By (10.33), it follows that∫
C+

1

ξ ′

ξ
(s, χ ) ds =

[
log L(s, χ ) + log�((s + κ)/2) + s

2
log q/π

∣∣∣1/2+iT

1/2+iε

= log L(1/2 + iT, χ ) − log L(1/2 + iε, χ )

+ log�(1/4 + κ/2 + iT/2) − log�(1/4 + κ/2 + iε/2)

+ i
T − ε

2
log

q

π
,

and that∫
C+

3

ξ ′

ξ
(s, χ ) ds =

[
log L(s, χ ) + log�((s + κ)/2) + s

2
log q/π

∣∣∣1/2−iε

1/2−iT

= log L(1/2 − iε, χ ) − log L(1/2 − iT, χ )

+ log�(1/4 + κ/2 − iε/2) − log�(1/4 + κ/2 − iT/2)

+ i
T − ε

2
log

q

π
.

When these quantities are added, the real parts cancel and the imaginary parts
are doubled, so after dividing by 2π i we find that the number of zeros with
0 < γ ≤ T is

1

π
arg�(1/4 + κ/2 + iT/2) + S(T, χ ) − S(0+, χ) + T

2π
log

q

π
.

By proceeding similarly with the opposite sign, we find that the number of zeros
with 0 ≤ γ ≤ T is

1

π
arg�(1/4 + κ/2 + iT/2) + S(T, χ ) − S(0−, χ) + T

2π
log

q

π
.

We form the average of these two identities to obtain the stated result. �

Corollary 14.6 Let χ be a primitive character modulo q, with q > 1. Then
for T > 0,

N (T, χ ) = T

2π
log

qT

2π
− T

2π
+ S(T, χ) − S(0, χ)− χ (−1)/8 + O(1/(T +1)).

Proof If 0 < T ≤ 2, then arg�(1/4 + κ/2 + iT/2) 	 1 and T log T/2 −
T 	 1, so the estimate is immediate in this case. Suppose that T ≥ 2.
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Clearly

�((−1/4 + κ/2 + iT/2) log(1/4 + κ/2 + iT/2) − (1/4 + κ/2 + iT/2))

= (−1/4 + κ/2) arg(1/4 + κ/2 + iT/2) + T

4
log((1/4 + κ/2)2+T 2/4)− T

2
.

Here arg(1/4 + κ/2 + iT/2) = π/2 + O(1/T ), log((1/4 + κ/2)2 + T 2/4) =
2 log T/2 + O(1/T 2), and 2κ − 1 = −χ (−1), so the result follows by Stir-
ling’s formula in the form (14.3). �

By combining the above with Lemma 12.8 we obtain

Corollary 14.7 Let χ be a primitive character modulo q, q > 1. Then for
T ≥ 4,

N (T, χ) = T

2π
log

qT

2π
− T

2π
+ O(log qT ).

14.1.1 Exercise

1. Letχ be a primitive character modulo q with q > 1. Show that if L(s, χ ) �= 0
for σ > 1/2, then

N (T, χ ) = T

2π
log

qT

2π
− T

2π
+ O

(
log qT

log log qT

)
for T ≥ 2.

14.2 Zeros on the critical line

At present we are unable to prove the Riemann Hypothesis, which asserts that all
non-trivial zeros of the zeta function lie on the critical line σ = 1/2. However,
we are able to show that infinitely many zeros lie on this line.

Theorem 14.8 (Hardy) There exist infinitely many real numbers γ such that
ζ (1/2 + iγ ) = 0.

For real t , let

Z (t) = ζ (1/2 + i t)
�(1/4 + i t/2)π−1/4−i t/2

|�(1/4 + i t/2)π−1/4−i t/2| . (14.6)

Thus, as depicted in Figure 14.1, Z (t) is real-valued, |Z (t)| = |ζ (1/2 + i t)|,
and Z (t) changes sign at γ if and only if ζ (s) has a zero at 1/2 + iγ of odd
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–

–

0
0 0 0 0 100

Figure 14.1 Graph of Z (t) for 0 ≤ t ≤ 100.

multiplicity. If T > 0 is a real number such that∣∣∣ ∫ 2T

T
Z (t) dt

∣∣∣ < ∫ 2T

T
|Z (t)| dt, (14.7)

then Z (t) is not of constant sign in the interval (T, 2T ), which is to say that ζ (s)
has at least one zero 1/2 + iγ of odd multiplicity, with T < γ < 2T . Although
it is possible to show that (14.7) holds for all large T , the requisite arguments
involve technical tools that we have not yet developed. Fortunately, there is a
family of weights W (t) such that the integral

∫
W (t)Z (t) dt can be evaluated

by interpreting it as an inverse Mellin transform with a familiar kernel. Thus we
are able to establish a weighted variant of (14.7), which suffices for our purpose.
In preparation for the main argument, we establish two preliminary results.

Lemma 14.9 If �z > 0 and σ0 > 1, then

1

2π i

∫ σ0+i∞

σ0−i∞
ζ (s)�(s/2)(π z)−s/2 ds = 2

∞∑
n=1

e−πn2z .

This is the inverse of the Mellin transform relationship (10.7) that Riemann
used to establish the functional equation.

Proof By Theorem C.4 we see that if �w > 0 and σ0 > 0, then

1

2π i

∫ σ0+i∞

σ0−i∞
�(s/2)w−s/2 ds = 2e−w.

We take w = πn2z, and sum over n, to obtain the desired identity. Here the
exchange of summation and integration is permissible since the Dirichlet series
for ζ (s) is uniformly convergent on the abscissa σ0, and since∫ ∞

−∞

∣∣�((σ0 + i t)/2)(π z)−s/2
∣∣ dt < ∞.

�
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Lemma 14.10 We have∫ T

1
ζ (1/2 + i t) dt = T + O

(
T 1/2

)
uniformly for T ≥ 2.

Proof Let C denote the rectangular contour with vertices 1/2 + i , 2 + i ,
2 + iT , 1/2 + iT . Since ζ (s) is analytic in this rectangle, we have∫

C
ζ (s) ds = 0

by Cauchy’s theorem. The integral from 1/2 + i to 2 + i is an absolute constant,
and by Corollary 1.17 the integral from 1/2 + iT to 2 + iT is

	
∫ 2

1/2

(
1 + T 1−σ

)
(log T ) dσ 	 T 1/2.

Thus ∫ T

1
ζ (1/2 + i t) dt =

∫ T

1
ζ (2 + i t) dt + O

(
T 1/2

)
.

This latter integral is

=
∞∑

n=1

n−2
∫ T

1
n−i t dt = T − 1 +

∞∑
n=2

n−i − n−iT

in2 log n
= T + O(1),

so we have the stated result. �

Proof of Theorem 14.8 The integrand in Lemma 14.9 has a pole at s = 1
with residue z−1/2, but is otherwise analytic for σ > 0. We move the path of
integration to the line σ = 1/2, and multiply both sides by z1/4 to see that

1

2π

∫ ∞

−∞
ζ (1/2 + i t)�(1/4 + i t/2)π−1/4−i t/2z−i t/2 dt

(14.8)

= −z−1/4 + 2z1/4
∞∑

n=1

e−πn2z .

Here the left-hand side is of the form
∫∞
−∞ W (t)Z (t) dt with

W (t) = |�(1/4 + i t/2)|
2π5/4zit/2

.

Write z in polar coordinates, z = reiθ . Then z−i t/2 = r−i t/2eθ t/2. For our app-
roach to work, W (t) must have constant argument. Accordingly, we take r = 1,
and set θ = π/2 − δ where δ is small and positive. By (C.19) we see that

|�(s/2)| � τ (σ−1)/2e−πτ/4.
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Hence

W (t) � τ−1/4eπ (t−τ )/4e−δt/2 �
{
τ−1/4e−(π−δ)τ/2 if t ≥ 0,
τ−1/4e−(1−δ)πτ/2 if t ≤ 0.

Thus W (t) tends to 0 very rapidly as t → −∞, but relatively slowly as t →
+∞. In particular,

W (t) � τ−1/4

uniformly for 0 ≤ t ≤ 1/δ.
By the above and Lemma 14.10 we see that∫ ∞

−∞
W (t)|Z (t)| dt 
 δ1/4

∫ 1/δ

1/(2δ)
|Z (t)| dt = δ1/4

∫ 1/δ

1/(2δ)
|ζ (1/2 + i t)| dt


 δ−3/4.

In order to exhibit a disparity, we must show that the right-hand side
of (14.8) is o

(
δ−3/4

)
. To this end it suffices to argue fairly crudely. Since

z = ie−iδ = sin δ + i cos δ, by the triangle inequality the right-hand side of
(14.8) is

	
∞∑

n=1

e−πn2 sin δ.

By the integral test this is

≤
∫ ∞

0
e−πu2 sin δ du = (sin δ)−1/2

∫ ∞

0
e−πv2

dv 	 δ−1/2.

If ζ (s) had only finitely many zeros on the critical line, then we would have∣∣∣ ∫ ∞

−∞
W (t)Z (t) dt

∣∣∣ = ∫ ∞

−∞
W (t)|Z (t)| dt + O(1)

uniformly as δ → 0+. On the contrary, we have shown that∫ ∞

−∞
W (t)Z (t) dt 	 δ−1/2,

∫ ∞

−∞
W (t)|Z (t)| dt 
 δ−3/4,

so the theorem is proved. �

14.2.1 Exercise

1. (a) Show that the right-hand side of (14.8) is

= −z−1/4 − z1/4 + z1/4ϑ(z),

in the notation of (10.8).
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(b) Show that if z = ie−iδ = sin δ + i cos δ, then

ϑ(z) =
∞∑

n=−∞
(−1)n(1 + O(n2δ2))e−πn2 sin δ.

(c) Show that
∞∑

n=−∞
n2e−πn2 sin δ � δ−3/2

for 0 < δ ≤ 1.
(d) By taking α = 1/2 in Theorem 10.1, or otherwise, show that

∞∑
n=−∞

(−1)ne−πn2x � x−1/2e−π/(4x)

uniformly for 0 < x ≤ 1.
(e) Show that if z is taken as in (b), then ϑ(z) 	 δ1/2.
(f) Conclude that the right-hand side of (14.8) is = −2 cosπ/8 + O(δ1/2).

14.3 Notes

Section 14.1. Theorem 14.1 and Corollary 14.2 are due to Backlund (1914,
1918), and this gave a shorter proof of Corollary 14.3 which had been ob-
tained by von Mangoldt (1905). Earlier von Mangoldt (1895) had the error
term O((log T )2). Riemann (1859) proposed Corollary 14.3 but with no indica-
tion of a proof. It is remarkable that Corollary 14.3 is perhaps the only theorem
on the Riemann zeta function that has not seen some significant improvement
in the last 100 years.

Although the maximum order of S(t) is unclear, even assuming the Riemann
Hypothesis, we have considerable (unconditional) knowledge of its moments
and distribution. Selberg (1944) showed that if k is a fixed non-negative even
integer, then∫ T

0
S(t)k dt = k!

(k/2)!(2π )k
T (log log T )k/2 + O(T (log log T )k/2−1).

Although Selberg did not mention it, his techniques can also be used to show
that ∫ T

0
S(t)k dt = o(T (log log T )k/2)

when k is odd. From these estimates it follows that the distribution of S(t) is
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asymptotically normal, in the sense that

lim
T →∞

1

T
meas{t ∈ [0, T ] : 2π S(t) ≤ c log log T } = 1√

2π

∫ c

∞
e−t2/2 dt

for any given real number c. Similar results apply to the distribution of the real
part of log ζ (1/2 + i t), and indeed Selberg (unpublished) showed that the real
and imaginary parts can be treated simultaneously. Specifically,∫ T

0
(log ζ (1/2 + i t))h(log ζ (1/2 − i t))kdt = δh,kk!T (log log T )k

+ Oh,k
(
T (log log T )(h+k−1)/2

)
where

δh,k =
{

1 if h = k,
0 otherwise.

From this it follows that log ζ (1/2 + i t) is asymptotically normally distributed
in the complex plane, in the sense that if � is a set in the complex plane with
Jordan content, then

lim
T →∞

1

T
meas

{
t ∈ [4, T ] :

log ζ (1/2 + i t)√
log log t

∈ �
}

= 1

π

∫ ∫
�

e−|z|2 dx dy.

Section 14.2. Theorem 14.8 was announced and a proof sketched in Hardy
(1914). Further details are given in Hardy & Littlewood (1917). Let N0(T )
denote the number of zeros of the form 1/2 + iγ with 0 < γ ≤ T . Hardy
& Littlewood (1921) showed that N0(T ) 
 T . Later Selberg improved this,
first (1942a) to N0(T ) 
 T log log T and then (1942b) to N0(T ) 
 T log T ,
so that a positive proportion of the zeros are on the 1

2 -line. Levinson (1974)
introduced an alternative method that enabled him to show that at least one-
third of the non-trivial zeros are on the 1

2 -line. Selberg’s method detects only
zeros of odd multiplicity. This should not be a handicap, since presumably all
zeros are simple. Heath-Brown (1979) has observed that Levinson’s method
detects only simple zeros. Conrey (1989) used Levinson’s method to show that
N0(T ) � 2

5 N (T ).
The proof we have given of Hardy’s Theorem 14.8 is but one of several

described by Titchmarsh (1986, Chapter 10).
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