
13

Conditional estimates

13.1 Estimates for primes

From the explicit formula for ψ0(x) we see that the contribution to the error
termψ0(x) − x made by a typical zero ρ = β + iγ is −xρ/ρ. This has absolute
value � xβ/|γ |, which diminishes as |γ | increases, but it depends much more
sensitively on the value of β. We recall that if ρ is a zero, then so also is
1 − ρ. Since at least one of these has real part ≥ 1/2, we see that the Riemann
Hypothesis represents the best of all possible worlds, in the sense that the error
term in the Prime Number Theorem is smallest when the Riemann Hypothesis
is true. By Theorem 10.13 we find that∑

ρ
|γ |≤T

1

|ρ| 	
∑

1≤n≤T

log 2n

n
	 (log T )2. (13.1)

Thus by taking T = x in Theorem 12.5, we obtain

Theorem 13.1 Assume RH. Then for x ≥ 2,

ψ(x) = x + O
(
x1/2(log x)2

)
, (13.2)

ϑ(x) = x + O
(
x1/2(log x)2

)
, (13.3)

π (x) = li(x) + O
(
x1/2 log x

)
. (13.4)

In Chapter 15 we shall show that these estimates for the error term are within
a factor (log x)2 of being best possible, which is not surprising since each zero
individually contributes an amount of the order x1/2.

Proof The second assertion follows from the first by Corollary 2.5. By inte-
gration by parts we find that

π (x) =
∫ x

2

1

log u
du + ϑ(x) − x

log x
+ 2

log 2
+
∫ x

2

ϑ(u) − u

u(log u)2
du, (13.5)

and so the third assertion follows from the second. �
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420 Conditional estimates

The factor (log x)2 in (13.2) can be avoided if we take smoother weights.
For example, put

ψ1(x) =
∑
n≤x

(x − n)�(n). (13.6)

Then we have the explicit formula

ψ1(x) = x2

2
−
∑
ρ

xρ+1

ρ(ρ + 1)
− ζ ′

ζ
(0)x + ζ ′

ζ
(−1) + O

(
x−1/2

)
(13.7)

for x ≥ 2. Assuming RH, it follows easily that

ψ1(x) = 1

2
x2 + O

(
x3/2

)
. (13.8)

Assuming RH, we can also describe more precisely the relationships between
the three standard prime-counting functions ψ(x), ϑ(x), and π (x).

Theorem 13.2 Assume RH. Then

ϑ(x) = ψ(x) − x1/2 + O
(
x1/3

)
, (13.9)

and

π (x) − li(x) = ϑ(x) − x

log x
+ O

(
x1/2

(log x)2

)
. (13.10)

Proof By an easy elaboration on Corollary 2.5, we see that

ϑ(x) = ψ(x) − ψ
(
x1/2

)+ O
(
x1/3

)
.

Hence (13.9) follows immediately from (13.2). To obtain (13.10), put

ϑ1(x) =
∑
p≤x

(x − p) log p =
∫ x

2
ϑ(u) du.

By (13.8) and (13.9) it follows that ϑ1(x) = x2/2 + O
(
x3/2

)
. By integration by

parts we see that the final integral in (13.5) is[
ϑ1(u) − u2/2

u(log u)2

∣∣∣∣x
2

+
∫ x

2

ϑ1(u) − u2/2

(u log u)2
(1 + 2/ log u) du

	 x1/2

(log x)2
+
∫ x

2
u−1/2(log u)−2 du

	 x1/2

(log x)2
.

Thus (13.10) follows from (13.5). �
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13.1 Estimates for primes 421

As for primes in short gaps, we see from (13.4) that

π (x + h) − π (x) =
∫ x+h

x

1

log u
du + O

(
x1/2 log x

)
.

Here the main term on the right is larger than the error term if h ≥ Cx1/2(log x)2.
We can do slightly better than this by counting primes between x and x + h
with a smoother weight.

Theorem 13.3 (Cramér) There is a constant C > 0 such that if the Rie-
mann Hypothesis is true, then for every x ≥ 2 the interval (x, x + Cx1/2 log x)
contains at least x1/2 prime numbers.

Proof Let h be a parameter to be determined, and put w(u) = 1 − |u − x |/h
when |u − x | ≤ h, andw(u) = 0 otherwise. Then by three applications of (13.7)
we see that∑

n

�(n)w(n) = 1

h
(ψ1(x + h) − 2ψ1(x) + ψ1(x − h))

= h − 1

h

∑
ρ

(x + h)ρ+1 − 2xρ+1 + (x − h)ρ+1

ρ(ρ + 1)
+ O

(
1

hx

)
.

(13.11)

Assuming RH, we note that the summand here is obviously

	 x3/2

γ 2
. (13.12)

Moreover, if γ > x/h, then the three terms in the numerator may have quite
different arguments, in which case the above estimate is the best that we can
assert in general. On the other hand, if γ is smaller, then some cancellation
must occur in the numerator. To see this, note that the summand may be written∫ x+h

x−h
(h − |x − u|)uρ−1 du 	 h2x−1/2 (13.13)

assuming RH. This improves on (13.12) when |γ | < x/h. We use this estimate
for the size of the summand together with Theorem 10.13 to see that the sum
in (13.11) is 	 hx1/2 log x/h. Hence if h = Cx1/2 log x , then∑

x−h<n<x+h

�(n) ≥ h

2
.

To complete the proof it remains to estimate the contribution made by higher
powers of primes on the left-hand side. The number of squares in this interval is
	 log x , so the squares of the primes contribute an amount that is 	 (log x)2.
For each k > 2 there is at most one k th power in the interval. Moreover, if pk is
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422 Conditional estimates

in the interval, then k 	 log x . Hence the higher powers contribute an amount
	 (log x)2, and the proof is complete. �

Although Cramér’s theorem is highly non-trivial, and is significantly stronger
than anything that we know how to prove unconditionally, it is nevertheless
disappointing that it falls so far short of what we conjecture to be true, namely
that for every ε > 0 the interval [x, x + xε] contains a prime, for all x > x0(ε).
In order to understand the weakness in our approach, write

ψ(x + h) − ψ(x) − h = −
∑
ρ

(x + h)ρ − xρ

ρ
+ · · · . (13.14)

The contribution of zeros with |γ | > x/h can be attenuated by employing a
smoother weight, but no amount of smoothing will eliminate the smaller zeros.
However, if |γ | ≤ x/h then the argument of (x + h)ρ is near that of xρ , so there
is some significant cancellation in the numerators above. Indeed,

(x + h)ρ − xρ

ρ
=
∫ x+h

x
uρ−1 du 	 hx−1/2

if 0 ≤ h ≤ x and β = 1/2. Taking this a step further, we see that the above is

= hxρ−1 + O(h2|γ |xβ−2).

Thus the left-hand side of (13.14) bears a passing resemblance to

−hx−1/2
∑

|γ |≤x/h

xiγ , (13.15)

if we assume RH. Here the sum has � xh−1 log x/h terms, and with sums of
independent random variables in mind, we might guess that the above sum is
	 (x/h)1/2+ε, which suggests

Conjecture 13.4 If 2 ≤ h ≤ x , then

ψ(x + h) − ψ(x) = h + Oε

(
h1/2xε

)
.

Although we expect there to be considerable cancellation in (13.15), any such
cancellation that might occur among the contributions of the zeros is discarded
in the proof of Theorem 13.3. Thus it seems that if we are to argue through
zeta zeros to obtain an improvement of Theorem 13.3, then we need not just
RH but also some deeper information concerning the distribution of the γ –
more precisely that the numbersγ log x are approximately uniformly distributed
modulo 2π . Although we cannot demonstrate that the desired cancellation
occurs for all x , we can show that there is considerable cancellation in mean
square.
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13.1 Estimates for primes 423

Theorem 13.5 Assume RH. Then for X ≥ 2,∫ 2X

X
(ψ(x) − x)2 dx 	 X2.

Note that if we were to use the pointwise bound of Theorem 13.1 to bound
the left-hand side above, then we would obtain an estimate that is larger than
the above by a factor (log X )4. From the above we see that ψ(x) = x + O(x1/2)
on average.

Proof Take T = X in the explicit formula of Theorem 12.5. Then

ψ(x) = x −
∑

|γ |≤X

xρ

ρ
+ R(x)

where∫ 2X

X
R(x)2 dx 	 X (log X )4 +

∑
X/2<pk<3X

(
log pk

)2 (
1 +

∫ ∞

1
u−2 du

)
	 X (log X )4.

On the other hand, the sum over zeros contributes∫ 2X

X

∣∣∣ ∑
|γ |≤X

xρ

ρ

∣∣∣2 dx =
∑
γ1,γ2|γi |≤X

1

ρ1ρ2

∫ 2X

X
x1+i(γ1−γ2) dx

	 X2
∑
γ1,γ2

1

|ρ1ρ2| |2 + i(γ1 − γ2)| .

To complete the proof it suffices to show that∑
γ1,γ2

1

|γ1γ2|(1 + |γ1 − γ2|) < ∞. (13.16)

In view of the symmetry of zeros about the real axis, we may confine our
attention to γ1 > 0. For each such zero, we consider γ2 in various ranges. By
Theorem 10.13, the sum over γ2 < −γ1 is∑

γ2
γ2<−γ1

1

|γ2|(1 + |γ1 − γ2|) 	
∑
γ2

γ2<−γ1

1

γ 2
2

	
∑
n>γ1

log n

n2
	 log γ1

γ1
.

Similarly, the sum over those γ2 for which |γ2| ≤ 1
2γ1 is

	 1

γ1

∑
γ2

0<γ2≤γ1

1

γ2
	 1

γ1

∑
1≤n≤γ1

log n

n
	 (log γ1)2

γ1
.
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424 Conditional estimates

The sum over those γ2 for which 1
2γ1 < γ2 <

3
2γ1 is

	 1

γ1

∑
γ2|γ2−γ1|≤γ1/2

1

1 + |γ1 − γ2| 	 log γ1

γ1

∑
1≤n≤γ1

1

n
	 (log γ1)2

γ1
,

and finally the sum over γ2 ≥ 3
2γ1 is

	
∑
γ2

γ2≥ 3
2 γ1

1

γ 2
2

	
∑
n>γ1

log n

n2
	 log γ1

γ1
.

We sum these estimates, multiply by 1/γ1, and sum over γ1 to see that the
expression (13.16) is

	
∑
γ1>0

(log γ1)2

γ 2
1

	
∞∑

n=1

(log n)3

n2
< ∞.

This completes the proof. �

The oscillations of xiγ = eiγ log x become slower as x increases, since
d

dx log x = 1/x → 0 as x → ∞. However, with the change of variable x = eu

we have xiγ = eiγ u , which is a periodic function of u. Put

f (u) = ψ
(
eu
)− eu

eu/2
. (13.17)

Assuming RH, the explicit formula of Theorem 12.5 gives

f (u) = −
∑
ρ

eiγ u

ρ
+ o(1)

as u → ∞. This provides a kind of Fourier expansion of f (u). Since∫ U+1

U
| f (u)|2 du =

∫ eU+1

eU

(ψ(x) − x)2 dx

x2
� e−2U

∫ eU+1

eU

(ψ(x) − x)2 dx,

Theorem 13.5 is equivalent (assuming RH) to the estimate∫ U+1

U
| f (u)|2 du 	 1. (13.18)

By averaging | f (u)|2 over a longer interval we obtain not just an upper bound,
but an asymptotic formula.

Theorem 13.6 Assume RH, and let f (u) be defined as in (13.17). Then

lim
U→∞

1

U

∫ U

0
| f (u)|2 du =

∑
distinct γ

m2
ρ

|ρ|2

where mρ denotes the multiplicity of the zero ρ.
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13.1 Estimates for primes 425

Proof Since the explicit formula forψ0(x) is uniformly convergent in intervals
free of prime powers, and is boundedly convergent in a neighbourhood of a
prime power, it follows that

1

U

∫ U

1
| f (u)|2 du

= lim
T →∞

∑
γ1,γ2|γi |≤T

1

ρ1ρ2U

∫ U

1
ei(γ1−γ2)u du + o(1)

=
(

1 − 1

U

) ∑
γ1,γ2
γ1=γ2

1

|ρ1|2 + O

( ∑
γ1,γ2
γ1 �=γ2

1

|γ1γ2| min

(
1,

1

U |γ1 − γ2|
))

+ o(1).

Here the sum over γ1 �= γ2 is finite already when U = 1, in view of (13.16).
Since each term in this sum tends to 0 as U → ∞, it follows that

lim
U→∞

1

U

∫ U

1
| f (u)|2 du =

∑
γ1,γ2
γ1=γ2

1

|ρ1|2 .

Suppose that ρ = 1/2 + iγ is a zero, and that its multiplicity is mρ . Then the
equation γi = γ has mρ solutions for i = 1 and for i = 2. Thus there are m2

ρ

pairs (γ1, γ2) such that γ1 = γ2 = γ , so we have the result. �

We now return to the distribution of primes in arithmetic progressions.

Theorem 13.7 Let q be given, and suppose that GRH holds for all L-functions
modulo q. Then for x ≥ 2,

ψ(x, χ ) = E0(χ )x + O
(
x1/2(log x)(log qx)

)
, (13.19)

ϑ(x, χ ) = E0(χ )x + O
(
x1/2(log x)(log qx)

)
, (13.20)

π (x, χ) = E0(χ )li(x) + O
(
x1/2 log qx

)
(13.21)

where E0(χ ) = 1 or 0 according as χ = χ0 or not.

Proof For χ0 these relations follow from Theorem 1 and (12.14). Suppose
that χ is non-principal, and that χ! is a primitive character that induces χ . Thus
χ! is a character modulo d for some d|q, 1 < d ≤ q. By taking T = x in the
explicit formula for ψ(x, χ!), and appealing to Theorem 10.17, we see that

ψ(x, χ!) 	 x1/2(log qx)(log x),

and then by (12.14) we have (13.19). By the triangle inequality, |ψ(x, χ ) −
ϑ(x, χ )| ≤ ψ(x) − ϑ(x). From Corollary 2.5 we know that this latter quantity
is 	 x1/2, so (13.20) follows from (13.19). On inserting (13.20) into the identity

π (x, χ ) = ϑ(x, χ )

log x
+
∫ x

2

ϑ(u, χ )

u(log u)2
du,

we obtain (13.21). �
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426 Conditional estimates

Corollary 13.8 Let q be given, and assume GRH for all L-functions modulo
q. Suppose that (a, q) = 1. Then for x ≥ 2,

ψ(x ; q, a) = x

ϕ(q)
+ O

(
x1/2(log x)2

)
, (13.22)

ϑ(x ; q, a) = x

ϕ(q)
+ O

(
x1/2(log x)2

)
, (13.23)

π (x ; q, a) = li(x)

ϕ(q)
+ O

(
x1/2 log x

)
. (13.24)

Note that trivially,

0 ≤ ψ(x ; q, a) ≤ (log x)
∑

0<n≤x
n≡a (q)

1 ≤ (log x)(1 + x/q).

Thus we see that the bound (13.22) is worse than trivial if q > x1/2. However,
if q is smaller, say q ≤ xθ with θ < 1/2, then (13.22) provides a form of the
Prime Number Theorem for arithmetic progressions with a much better error
term than we were able to prove unconditionally (cf. Corollary 11.17).

Proof In view of the remarks above, we may assume that q ≤ x1/2. By (11.22)
we see that

ψ(x ; q, a) − x

ϕ(q)
= ψ(x, χ0) − x

ϕ(q)
+ 1

ϕ(q)

∑
χ �=χ0

χ (a)ψ(x, χ ). (13.25)

Thus by the triangle inequality,

|ψ(x ; q, a) − x

ϕ(q)
| ≤ |ψ(x, χ0) − x |

ϕ(q)
+ 1

ϕ(q)

∑
χ �=χ0

|ψ(x, χ )|, (13.26)

and so (13.22) follows from (13.19). The other relations are proved
similarly. �

Since L(s, χ) has � log q zeros with γ 	 1, we expect (assuming GRH) that
ψ(x, χ ) is usually about (x log q)1/2 in size. Thus the estimates of Theorem 13.7
are close to what we presume would be best possible. On the right-hand side
of (13.25), we have ϕ(q) terms. With sums of independent random variables in
mind, we would expect therefore that the right-hand side of (13.25) is usually
	 (x(log q)/ϕ(q))1/2. Since we are unable to prove that there is cancellation
in (13.25), we have no recourse but to use the triangle inequality, as in (13.26).
However, we conjecture that a lot has been lost at this point.

Conjecture 13.9 If (a, q) = 1 and q ≤ x , then

ψ(x ; q, a) = x

ϕ(q)
+ Oε

(
x1/2+ε/q1/2

)
.
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Although we are unable to confirm our speculations concerning cancellation
in (13.25) for any individual a, we can show that such cancellation must occur
on average.

Corollary 13.10 Assume GRH for all L-functions modulo q. If 2 ≤ q ≤ x,
then

q∑
a=1

(a,q)=1

(ψ(x ; q, a) − x/ϕ(q))2 	 x(log x)4.

Proof We claim that
q∑

a=1
(a,q)=1

∣∣∣∑
χ

c(χ )χ (a)
∣∣∣2 = ϕ(q)

∑
χ

|c(χ )|2 (13.27)

for arbitrary complex numbers c(χ ). To understand why this holds, expand the
left-hand side and take the sum over a inside, to see that it is

=
∑
χ1

∑
χ2

c(χ1)c(χ2)
q∑

a=1
(a,q)=1

χ1(a)χ2(a).

By the basic orthogonality property of Dirichlet characters (cf (4.14)), the inner
sum here is ϕ(q) if χ1 = χ2, and is 0 otherwise, and this gives (13.27). By
taking c(χ ) = (ψ(x, χ ) − E0(χ )x)/ϕ(q), it follows by (11.22) that

q∑
a=1

(a,q)=1

(ψ(x ; q, a) − x/ϕ(q))2 = 1

ϕ(q)

∑
χ

|ψ(x, χ) − E0(χ )x |2,

The stated estimate now follows from (13.19). �

For non-principal χ let n(χ ) denote the least character non-residue of χ ,
which is to say the least positive integer n such that χ (n) �= 1 and χ (n) �= 0.
Since

ψ(x, χ0) = ψ(x) + O((log q)(log x)) � x

for x ≥ C(log q)(log log q), it follows by taking x = C(log q)2(log log q)2 in
(13.19) that n(χ ) 	 (log q)2(log log q)2. As was the case with Cramér’s the-
orem (Theorem 13.3), we can do slightly better by using a weighted sum of
primes.

Theorem 13.11 Let χ be a non-principal character modulo q, and assume
that L(s, χ ) �= 0 for σ > 1/2. Then n(χ ) 	 (log q)2.
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Proof By taking k = 1 in (5.17)–(5.19), we see that∑
n≤x

χ (n)�(n)(x − n) = −1

2π i

∫ σ0+i∞

σ0−i∞

L ′

L
(s, χ )

xs+1

s(s + 1)
ds.

On pulling the contour to the line σ = 1/4, we see that the above is

−
∑
ρ

xρ+1

ρ(ρ + 1)
− x5/4

2π

∫ ∞

−∞

L ′

L
(1/4 + i t, χ )

xit

(1/4 + i t)(5/4 + i t)
dt.

By Theorem 10.17, the sum over ρ is 	 x3/2 log q. By Theorem 10.17 with
Lemma 12.7, we see that L ′

L (1/4 + i t, χ ) 	 log qτ . Hence the second term
above is 	 x5/4 log q . Thus∑

n≤x

χ (n)�(n)(x − n) 	 x3/2 log q. (13.28)

On the other hand,∑
n≤x

χ0(n)�(n)(x − n) =
∑
n≤x

�(n)(x − n) + O(x(log x)(log q)) 
 x2

(13.29)

if x ≥ C(log q)(log log q). If χ (n) = χ0(n) for all prime powers n ≤ x , then
the left-hand sides of (13.28) and (13.29) are equal. However, the right-
hand sides are inconsistent if we take x = C(log q)2, so we obtain the stated
result. �

Weaker hypotheses concerning the zeros of L(s, χ ) also imply bounds for
n(χ ). The argument here depends on a careful selection of the kernel in the
inverse Mellin transform.

Theorem 13.12 Let χ be a non-principal character (mod q), and suppose
that δ is chosen, 1/ log q ≤ δ ≤ 1/2, so that L(s, χ ) �= 0 for 1 − δ < σ < 1,
0 < |t | ≤ δ2 log q. Then n(χ ) < (Aδ log q)1/δ . Here A is a suitable absolute
constant.

Proof First we show that if 1/ log q ≤ R ≤ 1, then∑
|ρ−1|>R

1

|ρ − 1|2 	 log q

R
. (13.30)

To see this, note that∑
R<|ρ−1|≤2R

1

|ρ − 1|2 	 1

R2
n(2R; 0, χ ) 	 log q

R
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by Theorems 11.5 and 10.17. On replacing R by 2k R, and summing, we deduce
that ∑

R<|ρ−1|≤1

1

|ρ − 1|2 	 log q

R
.

As for zeros farther from 1, we note by Theorem 10.17 that∑
|ρ−1|>1

1

|ρ − 1|2 	
∞∑

n=1

log 2qn

n2
	 log q,

and so we have (13.30) for all R ≥ 1/ log q.
Let x and y be parameters to be chosen later so that 2 < y ≤ x1/3. For x/y2 ≤

u ≤ xy2 set w(u) = (2 log y − | log(x/u)|)x/u, and put w(u) = 0 otherwise.
Then∑

n

w(n)χ (n)�(n) = −1

2π i

∫ σ0+i∞

σ0−i∞

L ′

L
(s, χ)

(
ys−1 − y1−s

s − 1

)2

xs ds (13.31)

for σ0 > 1. We move the contour to the abscissa σ0 = −1/2, and find that the
above is

= −
∑
ρ

(
yρ−1 − y1−ρ

ρ − 1

)2

xρ − (1 − κ)(y − 1/y)2

(13.32)

− 1

2π i

∫ −1/2+i∞

−1/2−i∞

L ′

L
(s, χ )

(
ys−1 − y1−s

s − 1

)2

xs ds.

Here the second term arises because L(s, χ ) has a trivial zero at s = 0 if
χ (−1) = 1. Suppose that χ is induced by a primitive character χ!. Then by
(10.20) we see that

L ′

L
(s, χ ) = L ′

L
(s, χ!) +

∑
p|q

χ!(p) log p

ps − χ!(p)
.

When σ = −1/2, the summand above is 	 log p, and so by Lemma 12.9
we see that L ′

L (−1/2 + i t, χ ) 	 log qτ . Hence the last term in (13.32) is
	 x−1/2 y3 log q . If χ is imprimitive, then L(s, χ ) may have infinitely many
zeros on the imaginary axis. Such zeros are to be included in the sums in (13.30)
and (13.32). If a zero ρ is real, then its contribution in (13.32) is negative. If ρ
is a zero for which β ≤ 1 − δ, then its contribution to (13.32) is

	 x1−δ y2δ

|ρ − 1|2 .

From (13.30) with R = δ we see that the total contribution of such zeros is

	 x1−δ y2δ(log q)/δ.
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If ρ is a zero for which β > 1 − δ and ρ is not real, then by hypothesis we have
|γ | ≥ δ2 log q . The summand in (13.32) is 	 x/|ρ − 1|, so that from (13.30)
with R = δ2 log q we see that such zeros contribute an amount 	 x/δ2. On
combining these estimates we find that there is an absolute constant c1 > 0
such that

�
∑

n

w(n)χ (n)�(n) ≤ c1
(
x1−δ y2δδ−1 log q + xδ−2

)
. (13.33)

If we replace χ by χ0 in (13.31) and argue as in the proof of the Prime Number
Theorem, we find that∑

n

w(n)χ0(n)�(n) = 4(log y)2x + O
(
x exp

(− c
√

log x
))+ O(y2 log q).

(13.34)

Here the second error term reflects the possible contribution of zeros of L(s, χ0)
on the imaginary axis. If χ (n) = χ0(n) for all n for which w(n) �= 0, then the
left-hand side in (13.33) is identical with that in (13.34). Thus we wish to show
that the right-hand sides cannot be equal, with a choice of x and y for which
xy2 is as small as possible. To this end, note that if x = (C3δ log q)1/δ and
y = C1/δ , then the right-hand side of (13.33) is � (1 + 1/C)x/δ2, while the
right-hand side of (13.34) is � (log C)2x/δ2, uniformly for C ≥ 2. Thus if C
is a sufficiently large absolute constant, then the left-hand members of (13.33)
and (13.34) cannot be identical, and we have the stated result. �

13.1.1 Exercises

1. Let � = supρ β where ρ runs over all non-trivial zeros of ζ (s). Show that

ψ(x) = x + O(x�(log x)2),

ϑ(x) = x + O(x�(log x)2),

π (x) = = li(x) + O(x� log x).

2. Let F(x) be as in the proof of Theorem 13.3. Suppose that 2 ≤ 
 ≤ h ≤ x ,
and put w(u) = 0 for u ≤ x − 
, w(u) = (u − x + 
)/
 for x − 
 ≤
u ≤ x , w(u) = 1 for x ≤ u ≤ x + h, w(u) = (x + h + 
 − u)/
 for x +
h ≤ u ≤ x + h + 
, w(u) = 0 for u ≥ x + h + 
.
(a) Show that∑

n

�(n)w(n) = 1



(F(x + h + 
) − F(x + h) − F(x) + F(x − 
))

= h + 
 − 1




∑
ρ

S(ρ) + O

(
1


x

)
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where

S(ρ) = (x + h + 
)ρ+1 − (x + h)ρ+1 − xρ+1 + (x − 
)ρ+1

ρ(ρ + 1)
.

(b) Show that if RH holds, then S(ρ) 	 h
x−1/2 for |γ | ≤ x/h, that
S(ρ) ≤ 
x1/2/|γ | for x/h ≤ |γ | ≤ x/
, and that S(ρ) 	 x3/2/γ 2 for
γ | ≥ x/
.

(c) Show that if RH holds, then

ψ(x + h) − ψ(x) = h + O

(
x1/2(log x) log

2h

x1/2 log x

)
uniformly for x1/2 log x ≤ h ≤ x .

3. Assume RH. Show that∫ X

2
(ψ(x) − x)2 dx

x2
∼ (log X )

∑
ρ

m2
ρ

|ρ|2

as X → ∞.
4. Assume RH. Suppose that T is given, T ≥ 2, and let f (u) be defined as in

(13.17). Show that

lim
U→∞

1

U

∫ U

1

∣∣∣ f (u) +
∑
ρ

|γ |≤T

eiγ u

ρ

∣∣∣2 du =
∑
ρ

|γ |>T

m2
ρ

|ρ|2 .

5. Assume GRH for all L-functions modulo q. (a) Show that∑
n≤x

χ (n)�(n)(x − n) = E0(χ )x2/2 + O
(
x3/2 log q

)
,∑

p≤x

χ (p)(log p)(x − p) = E0(χ )x2/2 + O
(
x3/2 log q

)
.

(b) Show that if (a, q) = 1, then∑
n≤x

n≡a (q)

�(n)(x − n) = x2

2ϕ(q)
+ O

(
x3/2 log q

)
,

∑
p≤x

p≡a (q)

(log p)(x − p) = x2

2ϕ(q)
+ O

(
x3/2 log q

)
.

(c) Deduce that if (a, q) = 1, then the least prime p ≡ a (mod q) is
	 ϕ(q)2(log q)2.

6. Assume Conjecture 13.9. Show that if (a, q) = 1, then there is a prime
number p ≡ a (mod q) such that p 	ε q1+ε.

7. Let χ be a non-principal character, and let n(χ ) denote the least positive
integer n such that χ (n) �= 1, χ (n) �= 0. Show that n(χ ) is a prime number.
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8. (Montgomery 1971, p. 121) Let χ be a character modulo q, and let d denote
the order of χ .
(a) Show that

1

d

d∑
k=1

χ k(n)e(−ak/d) =
{

1 if χ (n) = e(a/d),
0 otherwise.

(b) Assume that GRH holds for the d − 1 L-functions L(s, χ k) where
0 < k < d . Show that for each d th root of unity e(a/d) there is a prime
p such that χ (p) = e(a/d), with p 	 d2(log q)2.

9. (Montgomery 1971, p. 122) Let P(y) denote the set of those primes p such
that

(
n
p

) = 1 for all n ≤ y, and let P(y) be the product of all primes not
exceeding y. Suppose that 2 ≤ y ≤ x .
(a) Explain why∑

x<p≤2x
p∈P(y)

log p = 2−π (y)
∑

x<p≤2x

(log p)
∏
p1≤y

(
1 +

(
p1

p

))
.

(b) For each m|P(y), m > 1, let χm be the quadratic character determined
by quadratic reciprocity so that χm(p) =∏p1|m

( p1

p

)
. Also, let χ1(n) =

1 for all n. Explain why the above is

= 2−π (y)
∑

m|P(y)

(ϑ(2x, χm) − ϑ(x, χm)).

(c) Assume GRH for all quadratic L-functions. Show that the above is

= 2−π (y)x(1 + o(1)) + O
(
x1/2(log x)2

)
.

(d) Show that if y = 2
3 (log x)(log log x), then the above is positive, for all

sufficiently large x .
(e) Let n2(p) denote the least quadratic non-residue of p, which is to say

the least positive integer n such that
(

n
p

) = −1. Show that if GRH
is true for all quadratic L-functions, then there exist infinitely many
primes p such that n2(p) > 2

3 (log p)(log log p).
10. (Littlewood 1924a; cf. Goldston 1982)

(a) Show (unconditionally) that

ψ(x) ≤ x −
∑
ρ

(x + h)ρ+1 − xρ+1

hρ(ρ + 1)
+ O(h)

for 2 ≤ h ≤ x/2.
(b) Show (unconditionally) that

ψ(x) ≥ x −
∑
ρ

xρ+1 − (x − h)ρ+1

hρ(ρ + 1)
− O(h)

for 2 ≤ h ≤ x/2.
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(c) Now, and in the following, assume RH. Show that∑
ρ

|γ |>x/h

(x + h)ρ+1 − xρ+1

hρ(ρ + 1)
	 x1/2 log x/h.

(d) Show that if |γ | ≤ x/h, then

(x + h)ρ+1 − xρ+1

hρ(ρ + 1)
= xρ

ρ
+ O

(
x−1/2h

)
.

(e) Show that∑
ρ

|γ |≤x/h

(x + h)ρ+1 − xρ+1

hρ(ρ + 1)
=

∑
ρ

|γ |≤x/h

xρ

ρ
+ O

(
x1/2 log x/h

)
.

(f) Show that

ψ(x) = x −
∑

|γ |≤√
x/ log x

xρ

ρ
+ O

(
x1/2 log x

)
.

13.2 Estimates for the zeta function

We now show that our estimates of ζ (s) and of ζ ′
ζ

(s) can be improved if we
assume RH. To this end, we begin with a useful explicit formula. For x ≥ 2,
y ≥ 2, put

w(u) = w(x, y; u) =

⎧⎪⎨⎪⎩
1 if 1 ≤ u ≤ x ;
1 − log u/x

log y if x ≤ u ≤ xy;

0 if u ≥ xy.

Then by two applications of (5.20) we find that∑
n≤xy

w(n)
�(n)

ns
= −1

2π i log y

∫ σ0+i∞

σ0−i∞

ζ ′

ζ
(s + w)

(xy)w − xw

w2
dw,

and on pulling the contour to the left we see that this is

= − ζ ′

ζ
(s) + (xy)1−s − x1−s

(1 − s)2 log y

−
∑
ρ

(xy)ρ−s − xρ−s

(ρ − s)2 log y
−

∞∑
k=1

(xy)−2k−s − x−2k−s

(2k + s)2 log y
(13.35)

provided that s �= 1 and that ζ (s) �= 0. This much is true unconditionally, but
from now on we assume RH, and show that the sum on the left provides a useful
approximation to − ζ ′

ζ
(s) when σ > 1/2.
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Theorem 13.13 Assume RH. Then∣∣∣ζ ′

ζ
(s)
∣∣∣ ≤ ∑

n≤(log τ )2

�(n)

nσ
+ O((log τ )2−2σ ) (13.36)

uniformly for 1/2 + 1/ log log τ ≤ σ ≤ 3/2, |t | ≥ 1.

Proof If σ ≥ 1/2, then |yρ−s − 1| ≤ 2. Hence for σ > 1/2, the sum over ρ
in (13.25) has absolute value not exceeding

2x1/2−σ

log y

∑
ρ

1

|s − ρ|2 .

By (10.29) and (10.30) we see that

(σ − 1/2)
∑
ρ

1

(σ − 1/2)2 + (t − γ )2

= �ζ ′

ζ
(s) + 1

2
��′

�
(s/2 + 1) − 1

2
logπ + σ − 1

(σ − 1)2 + t2
,

and by Theorem C.1 this is

= �ζ ′

ζ
(s) + 1

2
log τ + O(1).

On inserting this in (13.35), we find that

ζ ′

ζ
(s) = −

∑
n≤xy

w(n)
�(n)

ns
+ θ2x1/2−σ

(σ − 1/2) log y

∣∣∣�ζ ′

ζ
(s)
∣∣∣

(13.37)

+ O

(
x1/2−σ log τ

(σ − 1/2) log y

)
+ O

(
(xy)1−σ

τ 2

)
+ O

(
y1−σ

τ 2

)
where θ is a complex number satisfying |θ | ≤ 1. Thus

ζ ′

ζ
(s) 	

∣∣∣ ∑
n≤xy

w(n)
�(n)

ns

∣∣∣+ x1/2−σ log τ

(σ − 1/2) log y
+ (xy)1−σ

τ 2
+ y1−σ

τ 2
(13.38)

provided that

2x1/2−σ

(σ − 1/2) log y
≤ c < 1. (13.39)

We take

y = exp

(
1

σ − 1/2

)
, x = (log τ )2/y.

Then the left-hand side of (13.39) is 2e(log τ )1−2σ , and so (13.39) holds with
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c = 2/e for σ ≥ 1/2 + 1/ log log τ . We observe that∑
n≤xy

w(n)
�(n)

ns
	

∑
n≤(log τ )2

�(n)

n1/2
	 log τ

uniformly for σ ≥ 1/2. On inserting this in (13.38), we find that

ζ ′

ζ
(s) 	 log τ

uniformly for σ ≥ 1/2 + 1/ log log τ , |t | ≥ 1. We insert this on the right-hand
side of (13.37) to obtain the stated estimate. �

Corollary 13.14 Assume RH. Then

ζ ′

ζ
(s) 	 ((log τ )2−2σ + 1) min

(
1

|σ − 1| , log log τ

)
uniformly for 1/2 + 1/ log log τ ≤ σ ≤ 3/2, |t | ≥ 1.

Proof By Chebyshev’s estimate (Theorem 2.4) we know that∑
U≤n<eU

�(n)

nσ
	 U 1−σ .

On summing this over U = ek for 0 ≤ k ≤ 2 log log τ , we obtain the stated
bound from Theorem 13.13. �

Corollary 13.15 Assume RH. Then

| log ζ (s)| ≤
∑

n≤(log τ )2

�(n)

nσ log n
+ O

(
(log τ )2−2σ

log log τ

)
(13.40)

uniformly for 1/2 + 1/ log log τ ≤ σ ≤ 3/2, |t | ≥ 1.

Proof Since

log ζ (σ + i t) = log ζ (3/2 + i t) −
∫ 3/2

σ

ζ ′

ζ
(α + i t) dα,

it follows by the triangle inequality that

| log ζ (σ + i t)| ≤ | log ζ (3/2 + i t)| +
∫ 3/2

σ

∣∣∣ζ ′

ζ
(α + i t)

∣∣∣ dα,
which by Corollary 13.13 is

≤ | log ζ (3/2 + i t)| +
∑

n≤(log τ )2

�(n)

log n

(
n−σ − n−3/2

)+ O

(
(log τ )2−2σ

log log τ

)
.
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But

| log ζ (3/2 + i t)| =
∣∣∣ ∞∑

n=1

�(n)

log n
n−3/2−i t

∣∣∣ ≤ ∞∑
n=1

�(n)

log n
n−3/2,

so it follows that

| log ζ (σ + i t)| ≤
∑

n≤(log τ )2

�(n)

log n
n−σ +

∑
n>(log τ )2

�(n)

log n
n−3/2 + O

(
(log τ )2−2σ

log log τ

)
.

(13.41)
By the Chebyshev estimate ψ(x) 	 x we see that∑

U<n≤2U

�(n)

log n
n−3/2 	 U−1/2(log U )−1.

By taking U = (log τ )22k , and summing over k ≥ 0, we deduce that∑
n>(log τ )2

�(n)

log n
n−3/2 	 (log τ )−1(log log τ )−1.

Since this is majorized by the error term in (13.41), we have (13.40). �

Corollary 13.16 Assume RH. If |t | ≥ 1, then

| log ζ (s)| ≤ log
1

σ − 1
+ O(σ − 1) (13.42)

for 1 + 1/ log log τ ≤ σ ≤ 3/2,

| log ζ (s)| ≤ log log log τ + O(1) (13.43)

for 1 − 1/ log log τ ≤ σ ≤ 1 + 1/ log log τ , and

| log ζ (s)| ≤ log
1

1 − σ
+ O

(
(log τ )2−2σ

(1 − σ ) log log τ

)
(13.44)

for 1/2 + 1/ log log τ ≤ σ ≤ 1 − 1/ log log τ .

Proof To establish (13.42), we note that if 1 < σ ≤ 3/2, then

| log ζ (s)| =
∣∣∣ ∞∑

n=1

�(n)

log n
n−s
∣∣∣ ≤ ∞∑

n=1

�(n)

log n
n−σ = log ζ (σ )

= log
(
1/(σ − 1) + O(1)

) = log
1

σ − 1
+ O(σ − 1).

As for (13.43), we note first that∑
n≤z

�(n)

n log n
= log log z + O(1)
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by Mertens’ estimates (Theorem 2.7). Also, if σ = 1 + O(1/ log z), then

n−σ − n−1 =
∫ σ

1
n−α dα log n 	 |σ − 1|n−1 log n

for 1 ≤ n ≤ z, so that∑
n≤z

�(n)

log n
(n−σ − n−1) 	 |σ − 1|

∑
n≤z

�(n)

n
	 |σ − 1| log z 	 1.

On combining these estimates with z = (log τ )2, we see that the sum in (13.40)
is ≤ log log log τ + O(1), which gives the desired estimate.

Concerning (13.44), we note that∑
n≤z

�(n)

log n
n−σ =

∫ z

2−

1

uσ log u
dψ(u)

=
∫ z

2

1

uσ log u
du + ψ(z) − z

zσ log z
+ 21−σ/ log 2

+
∫ z

2

ψ(u) − u

uσ+1 log u

(
σ + 1

log u

)
du. (13.45)

By the change of variable v = u1−σ , the first integral immediately above is
li(z1−σ ) − li(21−σ ) . But

li(z1−σ ) 	 z1−σ

(1 − σ ) log z

for σ ≤ 1 − 1/ log z, and

−li
(
21−σ

) =
∫ 2

21−σ

dv

log v
=
∫ 2

21−σ

(
1

v − 1
+ O(1)

)
dv

= − log(21−σ − 1) + O(1) = log
1

σ − 1
+ O(1).

By Theorem 13.1, the second term in (13.45) is 	 z1/2−σ log z, and the final
integral in (13.45) is

	
∫ ∞

2
u−σ−1/2 log u du 	 (σ − 1/2)−2.

On combining these estimates, we find that∑
n≤z

�(n)

nσ log n
= log

1

1 − σ
+ O

(
z1−σ

(1 − σ ) log z

)
,

uniformly for 1/2 < σ ≤ 1 − 1/ log z. On taking z = (log τ )2, the desired
estimate now follows from (13.40). �
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From Corollary 13.16 we see that if RH holds, then

1

log log τ
	 |ζ (1 + i t)| 	 log log τ

for |t | ≥ 1. We can make this more precise by taking a little more care.

Corollary 13.17 Assume RH. Then |ζ (1 + i t)| ≤ 2eC0 log log τ + O(1).

Proof We observe that∑
n≤z

�(n)

n log n
=
∑
pk≤z

�(n)

n log n
≤
∑
p≤z

∞∑
k=1

1

kpk
= log

∏
p≤z

(
1 − 1

p

)−1

= C0 + log log z + O(1/ log z)

by Mertens’ estimate (Theorem 2.7). We take z = (log τ )2, insert this in Corol-
lary 13.15, and exponentiate to obtain the stated bound. �

To complete the picture, we estimate |ζ (s)| and argζ (s) when σ is near 1/2.
Of these estimates, the upper bound for |ζ (s)| is the most immediate.

Theorem 13.18 Assume RH. There is an absolute constant C > 0 such that

|ζ (s)| < exp

(
C log τ

log log τ

)
uniformly for σ ≥ 1/2, |t | ≥ 1.

Note that this is a quantitative form of the Lindelöf Hypothesis (LH).

Proof Put σ1 = 1/2 + 1/ log log τ . For σ ≥ σ1, the above is contained in
Corollary 13.14. Suppose that 1/2 ≤ σ ≤ σ1. Since �1/(s − ρ) ≥ 0 for all
zeros ρ, from Lemma 12.1 it follows that there is an absolute constant A > 0
such that

�ζ ′

ζ
(s) ≥ −A log τ

uniformly for 1/2 ≤ σ ≤ 2, |t | ≥ 1. Hence

log |ζ (s)| = log |ζ (σ1 + i t)| −
∫ σ1

σ

�ζ ′

ζ
(α + i t) dα

≤ log |ζ (σ1 + i t)| + A(σ1 − σ ) log τ.

Here the first member on the right-hand side is bounded by Corollary 13.15,
and 0 ≤ σ1 − σ ≤ 1/ log log τ , so we have the stated bound. �

To obtain the remaining estimates, we first establish two lemmas, which are
of interest in their own right.
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Lemma 13.19 Assume RH. Then for T ≥ 4,

N (T + 1/ log log T ) − N (T ) 	 log T

log log T
.

Proof Take s = 1/2 + 1/ log log T + iT . Then ζ ′
ζ

(s) 	 log T by Corollary
13.14. Hence by Lemma 12.1 it follows that∑

ρ

|γ−T |≤1

1

s − ρ
	 log T .

Here each summand has positive real part, and for T ≤ γ ≤ T + 1/ log log T
the real part is ≥ 1

2 log log T , so we obtain the stated bound. �

By mimicking the proof of Lemma 12.1, we obtain

Lemma 13.20 Assume RH. If |σ − 1/2| ≤ 1/ log log τ , then

ζ ′

ζ
(s) =

∑
ρ

|γ−t |≤1/ log log τ

1

s − ρ
+ O(log τ ).

In applying the above, one is free to replace the condition |γ − t |
≤ 1/ log log τ by a different condition, say |γ − t | ≤ δ, provided that
δ � 1/ log log τ . To see why this is so, note that a summand in one sum that is
missing in the other has absolute value � log log τ , and that by Lemma 13.19
there are 	 (log τ )/ log log τ such summands. Hence the total contribution
made by terms in one sum but not the other is 	 log τ , and a discrepancy of
this size may be absorbed in the error term.

Proof Put σ1 = 1/2 + 1/ log log τ , and set s1 = σ1 + i t . We apply
Lemma 12.1 at s1 and at s, and difference, to see that

ζ ′

ζ
(s) = ζ ′

ζ
(s1) +

∑
|γ−t |≤1

(
1

s − ρ
− 1

s1 − ρ

)
+ O(log τ ).

Here the first term on the right-hand side is 	 log τ , by Corollary 13.14. Let
k be a positive integer, and consider zeros for which k/ log log τ ≤ |γ − t | ≤
(k + 1)/ log log τ . By the preceding lemma, there are 	 (log τ )/ log log τ such
zeros, each one of which contributes an amount 	 (log log τ )/k2 to the above
sum. On summing over k we see that the contribution of zeros for which |γ −
t | > 1/ log log τ is 	 log τ . Finally, for the zeros with |γ − t | ≤ 1, we observe
that |1/(s1 − ρ)| ≤ log log τ , and there are 	 (log τ )/ log log τ such zeros, so
we have the stated result. �

If t is not the ordinate of a zero of the zeta function, then we define arg ζ (s)
by continuous variation along the ray α + i t where α runs from σ to +∞,
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and arg(+∞ + i t) = 0. If t is the ordinate of a zero, then we put arg ζ (s) =
(arg ζ (σ + i t+) + arg ζ (σ + i t−))/2.

Theorem 13.21 Assume RH. Then

arg ζ (s) 	 log τ

log log τ

uniformly for σ ≥ 1/2, |t | ≥ 1.

Proof We may assume that t is not the ordinate of a zero. Let σ1 and s1

be defined as in the preceding proof. If σ ≥ σ1, then the above follows from
Corollary 13.16. Suppose now that 1/2 ≤ σ ≤ σ1. Then

arg ζ (s) = arg ζ (s1) −
∫ σ1

σ

�ζ ′

ζ
(α + i t) dα.

Since 0 ≤ σ1 − σ ≤ 1/ log log τ , by Lemma 13.20 the right-hand side above is

= −
∑

|γ−t |≤1/ log log τ

∫ σ1

σ

� 1

α + i t − ρ
dα + O

(
log τ

log log τ

)
.

Here the summand is

arctan
σ − 1/2

γ − t
− arctan

σ1 − 1/2

γ − t
.

If γ > t , then the above lies between 0 and π/2, while if γ < t , then it lies
between −π/2 and 0. In either case, the contribution is bounded, and there are
	 (log τ )/ log log τ summands by Lemma 13.19, so we have the result. �

Although a lower bound for |ζ (s)| at all heights is out of the question, we
can show, assuming RH, that there are heights for which a lower bound can be
established.

Theorem 13.22 Assume RH. There is an absolute constant C such that for
every T ≥ 4 there is a t, T ≤ t ≤ T + 1, such that

|ζ (s)| ≥ exp

(−C log T

log log T

)
uniformly for −1 ≤ σ ≤ 2.

Proof By Corollary 10.5 we see that if −1 ≤ σ ≤ 1/2, then |ζ (s)| 
 |ζ (1 −
σ + i t)|. Thus we may restrict our attention to 1/2 ≤ σ ≤ 2. Put σ1 = 1/2 +
1/ log log T . From Corollary 13.16 we have the desired lower bound for all
heights, for σ1 ≤ σ ≤ 2. For the remaining interval, I = [1/2, σ1], we show
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that ∫ T +1

T
log

1

min
σ∈I

|ζ (s)| dt 	 log T

log log T
. (13.46)

Put s1 = σ1 + i t . Then

log |ζ (s)| = log |ζ (s1)| −
∫ σ1

σ

�ζ ′

ζ
(α + i t) dα.

By Corollary 13.16 and Lemma 13.20, this is

= −
∫ σ1

σ

∑
ρ

|γ−t |≤δ

� 1

α + i t − ρ
dα + O

(
log T

log log T

)

where δ = 1/ log log T . The summands are non-negative, so the above is

≥ −
∫ σ1

1/2

∑
ρ

|γ−t |≤δ

� 1

α + i t − ρ
dα + O

(
log T

log log T

)
.

Since this lower bound applies for all σ ∈ I , the above provides a lower bound
for log minσ∈I |ζ (s)|. We note that∫ σ1

1/2

∫ γ+δ

γ−δ

� 1

α + i t − ρ
dt dα =

∫ δ

0

∫ δ

−δ

x

x2 + y2
dy dx

≤
∫ π/2

−π/2

∫ 2δ

0

r cos θ

r2
rdr dθ = 4δ.

Hence∫ T +1

T

∫ σ1

1/2

∑
ρ

|γ−t |≤δ

� 1

α + i t − ρ
dα dt 	

∑
ρ

T −1≤γ≤T +2

δ 	 log T

log log T
,

so we have (13. 46), and the proof is complete. �

By Theorem 5.2 and Corollary 5.3 with σ0 = 1 + 1/ log x and 1 ≤ T ≤ x ,
we see that

M(x) = 1

2π i

∫ σ0+iT

σ0−iT

xs

ζ (s)s
ds + O

(
x log x

T

)
. (13.47)

By Corollary 13.16 we see (assuming RH) that |ζ (1/2 + ε + i t)| 
ε τ
−ε.

Hence, by moving the contour to the abscissa 1/2 + ε, we deduce that
M(x) 	ε x1/2+ε. This can be made more precise, by determining ε as a
function of x , but in order to do so we need a lower bound for |ζ (s)| when
1/2 < σ ≤ 1/2 + 1/ log log τ .
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Theorem 13.23 Assume RH. There is a constant C > 0 such that if |t | ≥ 1,
then∣∣∣ 1

ζ (s)

∣∣∣ ≤
⎧⎨⎩exp

(
C log τ

log log τ

)
for σ ≥ 1/2 + 1/ log log τ,

exp
(

C log τ
log log τ log e

(σ−1/2) log log τ

)
for 1/2 < σ ≤ 1/2 + 1/ log log τ.

Proof The first part follows from Corollary 13.14. Let σ1 and s1 be defined
as in the proof of Lemma 13.20, and suppose that 1/2 < σ ≤ σ1. Then

log ζ (s) = log ζ (s1) −
∫ σ1

σ

ζ ′

ζ
(α + i t) dα.

Here the first term on the right is 	 (log τ )/ log log τ , by Corollary 13.16. By
Lemma 13.19 we know that the sum in Lemma 13.20 has 	 (log τ )/ log log τ
terms. Since each term has absolute value ≤ 1/(σ − 1/2), it follows that

ζ ′

ζ
(α + i t) 	 log τ

(α − 1/2) log log τ

for 1/2 < α ≤ σ1. Hence

log ζ (s) 	
(

1 + log
σ1 − 1/2

σ − 1/2

)
log τ

log log τ
,

which gives the stated bound. �

Theorem 13.24 Assume RH. Then there is an absolute constant C > 0 such
that

M(x) 	 x1/2 exp

(
C log x

log log x

)
for x ≥ 4.

Proof Put σ1 = 1/2 + 1/ log log x , and let C denote the contour that passes
by straight line segments from σ0 − i x to σ1 − i x to σ1 + i x to σ0 + i x . Then∫ σ0+i x

σ0−i x

xs

ζ (s)s
ds =

∫
C

xs

ζ (s)s
ds,

since the integrand is analytic in the rectangle enclosed by these contours. By
the first case of Theorem 13.22 we see that∫ σ0+i x

σ1+i x

xs

ζ (s)s
ds 	 exp

(
C log x

log log x

)∫
σ1

σ0xσ−1 dσ 	 exp

(
C log x

log log x

)
,

and the same estimate applies to the integral from σ1 − i x to σ0 − i x . Similarly,
by the second part of Theorem 13.22 we see that∫ σ1+i x

σ1−i x

xs

ζ (s)s
ds 	 xσ1

∫ x

0
exp

(
C log τ

log log τ
log

e log log x

log log τ

)
dt

τ
.
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By logarithmic differentiation we may confirm that the argument of the expo-
nential is an increasing function of t for 0 ≤ t ≤ x . Thus we obtain the stated
bound by taking T = x in (13.47). �

13.2.1 Exercises

1. (a) Show (unconditionally) that

�ξ ′

ξ
(s) =

∑
ρ

� 1

s − ρ

whenever ξ (s) �= 0.
(b) Show (unconditionally) that

�ξ ′

ξ
(1/2 + i t) = 0

for all t such that ξ (1/2 + i t) �= 0.
(c) Assume RH. Show that

�ξ ′

ξ
(s)

⎧⎨⎩
> 0 if σ > 1/2,
= 0 if σ = 1/2 and ξ (s) �= 0,
< 0 if σ < 1/2.

(d) Assume RH. Show that if ξ ′(s) = 0, then �s = 1/2.
(e) Assume RH, and let t be any fixed real number. Show that |ξ (σ +

i t)| is a strictly increasing function of σ for 1/2 ≤ σ < ∞, and that
|ξ (σ + i t)| is a strictly decreasing function of σ for −∞ < σ ≤ 1/2.

(f) Assume RH, and suppose that t is a fixed real number. Show that
(σ − 1/2)� ξ ′

ξ
(σ + i t) is an increasing function ofσ for 1/2 ≤ σ < ∞.

(g) Assume RH. Show that if 1/2 < σ2 ≤ σ1, then

|ξ (σ2 + i t)| ≥ |ξ (σ1 + i t)| ·
(
σ2 − 1/2

σ1 − 1/2

)(σ1−1/2)� ξ ′
ξ

(σ1+i t)

.

2. (a) Show (unconditionally) that if ξ (s) �= 0, then

ξ ′′

ξ
(s) −

(
ξ ′

ξ
(s)

)2

= −
∑
ρ

1

(s − ρ)2
.

(b) Show (unconditionally) that if t is real, then ξ ′(1/2 + i t) ∈ iR.
(c) Show (unconditionally) that if t is real, then ξ ′′(1/2 + i t) ∈ R.
(d) Show (unconditionally) that if t is real, then∑

ρ

1

(1/2 + i t − ρ)2

is real.
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(e) Assume RH. Show that if ξ (1/2 + i t) �= 0, then

ξ ′′

ξ
(1/2 + i t) >

(
ξ ′

ξ

)2

(1/2 + i t).

(f) Assume RH. Show that if ξ (1/2 + i t) �= 0 and ξ ′(1/2 + i t) = 0, then
sgn ξ ′′(1/2 + i t) = sgn ξ (1/2 + i t).

(g) Assume RH. Show that if ξ (1/2 + i t) �= 0 and ξ ′(1/2 + i t) = 0, then

sgn
∂2

∂t2
ξ (1/2 + i t) = −sgn ξ (1/2 + i t).

(h) Assume RH. Suppose that ξ (1/2 + iγ ) = ξ (1/2 + iγ ′) = 0, and that
ξ (1/2 + i t) �= 0 for γ < t < γ ′. Show that ξ ′(1/2 + i t) has exactly
one zero with γ < t < γ ′, and that this zero is necessarily simple.

(i) Assume RH. In the above notation, show that the number of zeros of
ξ ′(1/2 + i t) in the interval [γ, γ ′), counting multiplicity, is the same
as the number of zeros of ξ (1/2 + i t) in the same interval.

(j) Assume RH. Let N1(T ) denote the number of zeros of ξ ′(s) with imag-
inary part in the interval [0, T ]. Show that N1(T ) = N (T ) + O(1).

3. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ ) �=
0 for σ > 1/2. Show that∣∣∣ L ′

L
(s, χ )

∣∣∣ ≤ ∑
n≤(log qτ )2

�(n)

nσ
+ O

(
(log qτ )2−2σ

log log τ

)
uniformly for 1/2 + 1/ log log qτ ≤ σ ≤ 3/2.

4. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ ) �=
0 for σ > 1/2. Show that

L ′

L
(s, χ) 	 ((log qτ )2−2σ + 1) min

(
1

|σ − 1| , log log qτ

)
uniformly for 1/2 + 1/ log log qτ ≤ σ ≤ 3/2.

5. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ) �=
0 for σ > 1/2. Show that

| log L(s, χ )| ≤
∑

n≤(log qτ )2

�(n)

nσ log n
+ O

(
(log qτ )2−2σ

log log qτ

)
uniformly for 1/2 + 1/ log log qτ ≤ σ ≤ 3/2.

6. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ) �=
0 for σ > 1/2.
(a) Show that

|L(s, χ )| ≤ log
1

σ − 1
+ O(σ − 1)
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uniformly for 1 + 1/ log log qτ ≤ σ ≤ 3/2.
(b) Show that

|L(s, χ )| ≤ log log qτ + O(1)

uniformly for 1 − 1/ log log qτ ≤ σ ≤ 1 + 1/ log log qτ .
(c) Show that

|L(s, χ )| ≤ log
1

1 − σ
+ O

(
(log qτ )2−2σ

(1 − σ ) log log qτ

)
uniformly for 1/2 + 1/ log log qτ ≤ σ ≤ 1 − 1/ log log qτ .

7. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ ) �=
0 for σ > 1/2. Show that |L(1 + i t, χ)| ≤ 2eC0 log log qτ .

8. Let χ be a primitive Dirichlet character modulo q with q > 1, and suppose
that L(s, χ ) �= 0 forσ > 1/2. Show that there is an absolute constant C > 0
such that

|L(s, χ )| ≤ exp

(
C log qτ

log log qτ

)
uniformly for 1/2 ≤ σ ≤ 3/2.

9. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ ) �=
0 forσ > 1/2. Show that the number of zerosρ = 1/2 + iγ of L(s, χ) with
T ≤ γ ≤ T + 1/ log log qτ is 	 (log qτ )/(log log qτ ) uniformly in T .

10. Letχ be a primitive character modulo q, q > 1, and suppose that L(s, χ ) �=
0 for σ > 1/2. Show that if |σ − 1/2| ≤ 1/ log log qτ , then

L ′

L
(s, χ) =

∑
|γ−t |≤1/ log log qτ

1

s − ρ
+ O(log qτ ).

11. (Selberg 1946b, Section 5) Let χ be a primitive character modulo q, q > 1,
and suppose that L(s, χ ) �= 0 for σ > 1/2. Show that

arg L(s, χ ) 	 log qτ

log log qτ

uniformly for σ ≥ 1/2.
12. Let χ be a character modulo q, and suppose that χ is induced by a primitive

character χ! where χ! is a character modulo d for some d|q. Show that

L ′

L
(s, χ ) − L ′

L
(s, χ!) 	 (

(log q)1−σ + 1
)

min

(
1

|σ − 1| , log log q

)
.

13. (Vorhauer 2006) Let χ be a primitive character modulo q, q > 1, and
suppose that L(s, χ ) �= 0 for σ > 1/2. Show that

lim
T →∞

∑
|r |≤T

1

ρ
= 1

2
log q + O(log log q).
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14. (Axer 1911) Assume RH.
(a) Show that if c = 1/4 + ε, then∫ c+iT

c−iT

∣∣∣ ζ (s)xs

ζ (2s)s

∣∣∣ |ds| 	 x1/4+εT 1/4+ε.

(b) Let Q(x) denote the number of square-free integers not exceeding x .
Show that if RH is true, then

Q(x) = 6

π2
x + O

(
x2/5+ε

)
.

(A better estimate is obtained in Exercise 16 below.)
15. Assume RH.

(a) Show that if c = 1/2 + ε, then∫ c+iT

c−iT

∣∣∣ ζ (s)xs

ζ (2s)s(s + 1)

∣∣∣ |ds| 	 x1/4+εT ε.

(b) Show that if RH is true, then∑
n≤x

µ(n)2(1 − n/x) = 3

π2
x + O

(
x1/4+ε

)
.

16. (Montgomery & Vaughan 1981)
(a) Show that

Q(x) =
∑
d,m

d2m≤x

µ(d).

Let �1 denote the sum of the above terms for which d ≤ y, and let
�2 denote the sum of the above terms for which d > y. Here y is a
parameter to be determined later, 1 ≤ y ≤ x1/2.

(b) Put

S(x, y) =
∑
d≤y

µ(d)B1(x/d2)

where B1(u) = u − 1/2 is the first Bernoulli polynomial. Show that

�1 = x
∑
d≤y

µ(d)

d

2

− 1

2
M(y) − S(x, y).

(c) Assume RH. Show that if σ ≥ 1/2 + 2ε, then∑
d≤y

µ(d)

ds
= 1

2π i

∫
C0

yw−s

ζ (w)(w − s)
dw
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where C0 is a contour running from σ0 − i∞ to σ0 − iy to 1/2 + ε − iy
to 1/2 + ε + iy to σ0 + iy to σ0 + i∞ and σ0 = 1 + 1/ log y. Deduce
that ∑

d≤y

µ(d)

ds
= 1

ζ (s)
+ O

(
y1/2−σ+ετ ε

)
.

(d) Put fy(s) = 1/ζ (s) −∑d≤y µ(d)/ds . Show that

�2 = 1

2π i

∫ σ1+i∞

σ1−i∞
ζ (s) fy(2s)

xs

s
ds

where σ1 = 1 + 1/ log x .
(e) Show (unconditionally) that

�2 = fy(2) + 1

2π i

∫
C1

ζ (s) fy(2s)
xs

s
ds

where C1 is a contour running from σ1 − i∞ to σ1 − i x to 1/2 − i x to
1/2 + i x to σ1 + i x to σ1 + i∞.

(f) Assume RH. Show that �2 	 x1/2+ε y−1/2.
(g) Note that the estimate S(x, y) 	 y is trivial.
(h) Show that if RH is true, then

Q(x) = 6

π2
x + O

(
x1/3+ε

)
.

13.3 Notes

Section 13.1. Theorem 13.1 is due to von Koch (1901). Theorems 13.3 and
13.5 are due to Cramér (1921). The order of magnitude of the estimate in
Theorem 13.5 is optimal, in view of Theorem 13.6, which is from Cramér
(1922). Wintner (1941) showed (assuming RH) that the function f (u) defined
in (13.17) has a limiting distribution. That is, there is a weakly monotonic
function F(x) with limx→−∞ F(x) = 0, limx→+∞ F(x) = 1, such that

lim
U→∞

1

U
meas{u ∈ [0,U ] : f (u) ≤ x} = F(x)

whenever x is a point of continuity of F . The result of Exercise 13.1.4 is
useful in this connection. If in addition to RH, the ordinates γ > 0 are linearly
independent over the field Q of rational numbers, then this distribution function
is the same as the distribution function of the random variable

X = 2
∑
γ>0

cos 2πXγ

ρ
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where the Xγ are independent random variables, each one uniformly distributed
on [0, 1]. It can be shown (unconditionally) that the distribution function FX of
X satisfies the inequalities

exp
(
−c1

√
xe

√
2πx
)
< 1 − FX (x) < exp

(
−c2

√
xe

√
2πx
)

(13.48)

for x ≥ 2 where c1 and c2 are positive absolute constants.
Concerning the mean square distribution of primes in short intervals, Selberg

(1943) showed (assuming RH) that∫ X

0
(ψ((1 + δ)x) − ψ(x) − δx)2 dx

x2
	 δ(log X )2

uniformly for 1/X ≤ δ ≤ 1/ log X . Theorem 13.7 and Corollary 13.8 are due
to Titchmarsh (1930). Corollary 13.10 is due to Turán (1937). Theorem 13.11,
in the case of the Legendre symbol, is due to Ankeny (1952), who used deeper
estimates of Selberg (1946b) found in Exercise 13.1.11. Our simpler proof, and
the extension to general non-principal characters, is from Montgomery (1971,
p. 120). Theorem 13.12 is from Montgomery (1994, p. 164). See also Lagarias,
Montgomery & Odlyzko (1979).

Section 13.2. All results here from Theorem 13.13 through Theorem 13.21
are due to Littlewood (1922, 1924b, 1926, 1928), although our proofs are much
simpler than in the original ones. Indeed, referring to Theorem 13.21, Littlewood
commented that, ‘The proof of this theorem is long and difficult, and depends on
a singularly varied set of ideas.’ Precursors to Theorem 13.21 were established
by Bohr, Landau & Littlewood (1913), Cramér (1918), and Landau (1920).
See Titchmarsh (1927) for an alternative proof. Our simpler approach is that
of Selberg (1944). Littlewood (1928) not only established Corollary 13.17, but
also showed (assuming RH) that

|ζ (1 + i t)| ≥ π2

12eC0 log log τ
+ O((log log τ )−2).

In the opposite direction, Titchmarsh (1928) showed (unconditionally) that

lim sup
t→+∞

|ζ (1 + i t)|
log log t

≥ eC0 .

Also, Titchmarsh (1933) showed (unconditionally) that

lim inf
t→+∞ |ζ (1 + i t)| log log t ≥ π2

6eC0
.

Here we see a factor of 2 between the two sets of bounds. The same factor of
2 arises when we consider what is known concerning large values of the zeta
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function in the critical strip. Let α(σ ) denote the least number such that

ζ (σ + i t) 	 exp
(
(log τ )α(σ )+ε

)
as t → ∞. From Corollary 13.16 we see that α(σ ) ≤ 2 − 2α, assuming RH.
In the opposite direction, Titchmarsh (1928) showed (unconditionally) that
α(σ ) ≥ 1 − α. More precisely, it is known that if 1/2 ≤ σ < 1, then there is a
c(σ ) > 0 such that

|ζ (σ + i t)| = �

(
exp

(
c(σ )(log τ )1−σ

(log log τ )σ

))
.

For 1/2 < σ < 1 this is due to Montgomery (1977); the case σ = 1/2 is due
to Balasubramanian & Ramachandra (1977). Opinions as to where the truth
lies between these bounds vary widely among experts. For more on the value
distribution of the zeta function and L-functions, see Titchmarsh (1986), Joyner
(1986), and Laurinčikas (1996).

That the estimate M(x) 	 x1/2+ε is equivalent to RH was proved by
Littlewood (1912). Theorems 13.22 through 13.24 are due to Titchmarsh (1927).
Theorem 13.24 has been improved upon by Maier & Montgomery (2006), who
showed (assuming RH) that

M(x) 	 x1/2 exp
(
(log x)39/61

)
.
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Turán, P., (1937). Über die Primzahlen der Arithmetischen Progression, I, Acta Sci.

Szeged 8, 226–235; Collected Papers, Vol. 1. Budapest: Akadémiai Kiadó, 1990,
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