
12

Explicit formulæ

12.1 Classical formulæ

When we proved the Prime Number Theorem, we confined the contour of
integration to the zero-free region. If we pull the contour further to the left, then
we encounter a number of poles that leave residues, and thus we can express the
error term in the Prime Number Theorem as a sum over the zeros of ζ (s). Let
ψ0(x) = (ψ(x+) + ψ(x−))/2. By applying Perron’s formula (Theorem 5.1) to
the Dirichlet series − ζ ′

ζ
(s) =∑n �(n)n−s , we see that

ψ0(x) = lim
T →∞

−1

2π i

∫ σ0+iT

σ0−iT

ζ ′

ζ
(s)

xs

s
ds.

Here the integrand has a pole at s = 1, at zeros ρ, at s = 0, and at the trivial
zeros −2k. Since xs decays very rapidly as σ → −∞, it is reasonable to expect
that we can pull the contour to the left, and thus show that the above is

= x − lim
T →∞

∑
ρ

|γ |≤T

xρ

ρ
− ζ ′

ζ
(0) +

∞∑
k=1

x−2k

2k
. (12.1)

Here ζ ′
ζ

(0) = log 2π by (10.11) and (10.14), and the sum over the trivial zeros is

− 1

2
log(1 − 1/x2) ,

which is continuous and tends to 0 as x → ∞. In order to give a rigorous proof
of the above, we first establish estimates for ζ ′

ζ
(s).

Lemma 12.1 We have

ζ ′

ζ
(s) = −1

s − 1
+

∑
ρ

|γ−t |≤1

1

s − ρ
+ O(log τ ) (12.2)

uniformly for −1 ≤ σ ≤ 2.
397
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398 Explicit formulæ

Here the first term on the right is significant only for |t | ≤ 1. We could prove
the above by the same method that we used to prove Lemma 6.4, but we find it
instructive to argue instead from Corollary 10.14.

Proof By combining (10.29) and Theorem C.1, it is immediate that

ζ ′

ζ
(s) = −1

s − 1
+
∑
ρ

(
1

s − ρ
+ 1

ρ

)
− 1

2
log τ + O(1).

On applying this at σ + i t and at 2 + i t , and differencing, it follows that

ζ ′

ζ
(s) = −1

s − 1
+
∑
ρ

(
1

s − ρ
− 1

2 + i t − ρ

)
+ O(1).

By Theorem 10.13 it is clear that∑
ρ

|γ−t |≤1

1

2 + i t − ρ
	

∑
ρ

|γ−t |≤1

1 	 log τ.

Now suppose that n is a positive integer, and consider those zeros ρ for which
n ≤ |γ − t | ≤ n + 1. Since

1

s − ρ
− 1

2 + i t − ρ
= 2 − σ

(s − ρ)(2 + i t − ρ)
	 1

n2
,

it follows that such zeros contribute an amount

	 N (t + n + 1) − N (t + n) + N (t − n) − N (t − n − 1)

n2
	 log(τ + n)

n2
.

On summing over n we obtain the stated estimate. �

Lemma 12.2 For each real number T ≥ 2 there is a T1, T ≤ T1 ≤ T + 1,
such that

ζ ′

ζ
(σ + iT1) 	 (log T )2

uniformly for −1 ≤ σ ≤ 2.

Proof By Theorem 10.13, there is a T1 ∈ [T, T + 1] such that |T1 − γ | 

1/ log T for all zeros ρ. Since each summand in (12.2) is 	 log T , and there
are 	 log T summands, the estimate is immediate. �

The next lemma is useful in Chapter 14, but we establish it here since it is a
also an immediate corollary of Lemma 12.1.

Lemma 12.3 For any real number t,

arg ζ (σ + i t) 	 log τ

uniformly for −1 ≤ σ ≤ 2.
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12.1 Classical formulæ 399

The function log ζ (s) has a branch point at s = 1, and also at zeros ρ of
the zeta function. To obtain a single branch of the logarithm, we remove from
the complex plane the interval (−∞, 1], and also intervals of the form (−∞ +
iγ, β + iγ ]. What remains is simply connected, and in this region we take
that branch of log ζ (s) for which log ζ (s) → 0 as σ → ∞. This is the branch
of the logarithm that we have expanded as a Dirichlet series, for σ > 1 (cf.
Corollary 1.11). Thus, if t is not the ordinate of a zero, we define arg ζ (s) =
� log ζ (s) by continuous variation from ∞ + i t to σ + i t , which is to say
that

arg ζ (s) = −
∫ ∞

σ

�ζ ′

ζ
(α + i t) dα.

If t is the ordinate of a zero then we set arg ζ (s) = (arg ζ (σ + i t+) + arg ζ (σ +
i t−))/2.

Proof Suppose that −1 ≤ σ ≤ 2, and that t is not the ordinate of a zero.
Then

arg ζ (σ + i t) = arg ζ (2 + i t) −
∫ 2

σ

�ζ ′

ζ
(α + i t) dα.

Here arg ζ (2 + i t) 	 1 uniformly in t , by Corollary 1.11. Thus by Lemma 12.1,
the right-hand side above is

−
∑

|γ−t |≤1

∫ 2

σ

� 1

α + i t − ρ
dα + O(log τ ).

Here the summand is

arctan
σ − β

t − γ
− arctan

2 − β

t − γ
.

If t > γ , then this lies between −π and 0, while if t < γ , then the above lies
between 0 and π . Thus in any case the quantity is bounded, and by Theo-
rem 10.13 the number of summands is 	 log τ , so we have the result when t
is not the ordinate of a zero. Since the ordinates of zeros have no finite limit
point, we obtain the same bound when t is the ordinate of a zero, since in that
case arg ζ (s) = (arg ζ (σ + i t+) + arg ζ (σ − i t−))/2. �

Lemma 12.4 Let A denote the set of those points s ∈ C such that σ ≤ −1
and |s + 2k| ≥ 1/4 for every positive integer k. Then

ζ ′

ζ
(s) 	 log(|s| + 1)

uniformly for s ∈ A.
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400 Explicit formulæ

Proof We recall (10.27), in which the first two terms are bounded for s ∈ A.
Also,

�′

�
(1 − s) 	 log(|s| + 1)

by Theorem C.1. Finally

cot
πs

2
= i + 2i

eiπs − 1
	 1

since s is bounded away from even integers, so we have the result. �

We are now in a position to prove the explicit formula (12.1) in a quantitative
form.

Theorem 12.5 Let c be a constant, c > 1, suppose that x ≥ c, that T ≥ 2,
and let 〈x〉 denote the distance from x to the nearest prime power, other than x
itself. Then

ψ0(x) = x −
∑
ρ

|γ |≤T

xρ

ρ
− log 2π − 1

2
log(1 − 1/x2) + R(x, T ) (12.3)

where

R(x, T ) 	 (log x) min

(
1,

x

T 〈x〉
)

+ x

T
(log xT )2. (12.4)

Since 〈x〉 > 0 for all x , we obtain (12.1) by letting T → ∞ in the above.
Moreover, if n1 < n2 are two consecutive prime powers, then from the above
we see that

∑
|γ |≤T xρ/ρ converges uniformly for x in an interval of the form

[n1 + δ, n2 − δ]. This sum, of course, cannot be uniformly convergent for x
in a neighbourhood of a prime power, since ψ0(x) has jump discontinuities
at such points, but we see from the above that it is boundedly convergent in
the neighbourhood of a prime power. The sum over ρ is also convergent when
x = 1, but it is not boundedly convergent near 1, since log(1 − 1/x2) → −∞
as x → 1+.

Proof Let T1 be the number supplied by Lemma 12.2. Then by Theorem 5.2
and its Corollary 5.3, with σ0 = 1 + 1/ log x , we see that

ψ0(x) = −1

2π i

∫ σ0+iT1

σ0−iT1

ζ ′

ζ
(s)

xs

s
ds + R1

where

R1 	
∑

x/2<n<2x
n �=x

�(n) min

(
1,

x

T |x − n|
)

+ x

T

∞∑
n=1

�(n)

nσ0
.
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12.1 Classical formulæ 401

Here the second sum is − ζ ′
ζ

(σ0) � 1/(σ0 − 1) = log x . In the first sum, the
terms for which x + 1 ≤ n < 2x contribute an amount

	
∑

x+1≤n<2x

x log x

T (n − x)
	 x

T
(log x)2.

The terms for which x/2 < n ≤ x − 1 are handled similarly. Finally, any terms
for which x − 1 < n < x + 1 contribute an amount

	 (log x) min

(
1,

x

T 〈x〉
)
,

so

R1 	 (log x) min

(
1,

x

T 〈x〉
)

+ x

T
(log x)2.

Let K denote an odd positive integer, and let C denote the contour consisting
of line segments connecting σ0 − iT1, −K − iT1, −K + iT1, σ0 + iT1. Then
by Cauchy’s residue theorem,

ψ0(x) = x −
∑
ρ

|γ |<T1

xρ

ρ
+

∑
1≤k<K/2

x−2k

2k
− ζ ′

ζ
(0) + R1 + R2

where

R2 = −1

2π i

∫
C

ζ ′

ζ
(s)

xs

s
ds.

Since |σ ± iT1| ≥ T , we see by Lemma 12.2 that∫ σ0±iT1

−1±iT1

ζ ′

ζ
(s)

xs

s
ds 	 (log T )2

T

∫ σ0

−1
xσ dσ 	 x(log T )2

T log x
	 x(log T )2

T
.

Similarly, since (log |σ ± iT1|)/|σ ± iT1| 	 (log T )/T , we see by Lemma
12.4 that∫ −1±iT1

−K±iT1

ζ ′

ζ
(s)xs ds 	 log T

T

∫ −1

−∞
xσ dσ 	 log T

xT log x
	 log T

T
.

As | − K + i t | ≥ K , by Lemma 12.4 we also see that∫ −K+iT1

−K−iT1

ζ ′

ζ
(s)

xs

s
ds 	 log K T

K
x−K

∫ T1

−T1

1 dt 	 T log K T

K x K
.

This tends to 0 as K → ∞, so we obtain the stated result. �

Let ψ0(x, χ ) = (ψ(x+, χ ) + ψ(x−, χ ))/2. Not surprisingly, our treatment
of ψ0(x) extends readily to provide explicit formulæ for ψ0(x, χ ).
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402 Explicit formulæ

Lemma 12.6 Let χ be a primitive character modulo q with q > 1. Then

L ′

L
(s, χ ) =

∑
ρ

|γ−t |≤1

1

s − ρ
+ O(log qτ ) (12.5)

uniformly for −1 ≤ σ ≤ 2.

Proof By combining (10.37) and Theorem C.1, it is immediate that

L ′

L
(s, χ) = B(χ ) +

∑
ρ

(
1

s − ρ
+ 1

ρ

)
+ O(log qτ ).

On applying this at σ + i t and 2 + i t , and differencing, it follows that

L ′

L
(s, χ ) =

∑
ρ

(
1

s − ρ
− 1

2 + i t − ρ

)
+ O(log qτ ).

By Theorem 10.17 it is clear that∑
ρ

|γ−t |≤1

1

2 + i t − ρ
	

∑
ρ

|γ−t |≤1

1 	 log qτ.

Now suppose that n is a positive integer, and consider those zeros ρ for which
n ≤ |γ − t | ≤ n + 1. Since

1

s − ρ
− 1

2 + i t − ρ
= 2 − σ

(s − ρ)(2 + i t − ρ)
	 1

n2
,

it follows that such zeros contribute an amount

	 log q + log(|t + n| + 2) + log(|t − n| + 2)

n2
	 log q(τ + n)

n2
.

On summing over n we obtain the stated estimate. �

Lemma 12.7 Let χ be a primitive character modulo q, and suppose that
T ≥ 2. Then there is a T1, T ≤ T1 ≤ T + 1, such that

L ′

L
(σ ± iT1, χ) 	 (log qT )2

uniformly for −1 ≤ σ ≤ 2.

Proof By Theorem 10.17, there is a T1 ∈ [T, T + 1] such that both |T1 −
γ | 
 1/ log qT and |T1 + γ | 
 1/ log qT for all zeros ρ of L(s, χ ). Since
each summand in (12.5) is 	 log qT , and there are 	 log qT summands, the
estimate is immediate. �

Lemma 12.8 Let χ be a primitive character modulo q, q > 1. Then

arg L(s, χ ) 	 log qτ

uniformly for −1 ≤ σ ≤ 2.
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12.1 Classical formulæ 403

Proof Suppose that −1 ≤ σ ≤ 2, and that t is not the ordinate of a zero. Then

arg L(σ + i t, χ ) = arg L(2 + i t, χ ) −
∫ 2

σ

� L ′

L
(α + i t, χ ) dα.

Here arg L(2 + i t, χ ) 	 1 uniformly in t , by Theorem 4.8. Thus by
Lemma 12.6, the right-hand side above is

−
∑

|γ−t |≤1

∫ 2

σ

� 1

α + i t − ρ
dα + O(log qτ ).

Here the summand is

arctan
σ − β

t − γ
− arctan

2 − β

t − γ
.

If t > γ , then this lies between −π and 0, while if t < γ , then the above lies
between 0 and π . Thus in any case the quantity is bounded, and by Theo-
rem 10.17 the number of summands is 	 log τ , so we have the result when t
is not the ordinate of a zero. Since the ordinates of zeros have no finite limit
point, we obtain the same bound when t is the ordinate of a zero, since in that
case arg L(s, χ ) = (arg L(σ + i t+, χ ) + arg L(σ − i t−, χ ))/2. �

Lemma 12.9 Let χ be a primitive character modulo q with q > 1, put κ = 0
or 1 according as χ (−1) = 1 or −1, and let A(κ) denote the set of points s ∈ C
such that σ ≤ −1 and |s + 2n − κ| ≥ 1/4 for each positive integer n. Then

L ′

L
(s, χ ) 	 log(2q|s|)

uniformly for s ∈ A(κ).

Proof By (10.35) and Theorem C.1 we see that

L ′

L
(s, χ) = π

2
cot

π

2
(s + κ) + O(log q) + O(log(|s| + 2)).

Here

cot
π

2
(s + κ) = i + 2i

eiπ (s+κ) − 1
	 1

since s is bounded away from integers with the parity of κ . �

Theorem 12.10 Let c be a constant, c > 1. Suppose that x ≥ c, that T ≥ 2,
and that χ is a primitive character modulo q with q > 1. Then

ψ0(x, χ ) = −
∑
ρ

|γ |≤T

xρ

ρ
− 1

2
log(x − 1)

− χ (−1)

2
log(x + 1) + C(χ ) + R(x, T ;χ ) (12.6)
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404 Explicit formulæ

where

C(χ ) = L ′

L
(1, χ ) + log

q

2π
− C0 (12.7)

and

R(x, T ;χ ) 	 (log x) min

(
1,

x

T 〈x〉
)

+ x

T
(log qxT )2. (12.8)

Here 〈x〉 denotes the distance from x to the nearest prime power, other than x
itself.

Proof Put σ0 = 1 + 1/ log x . By arguing as in the proof of Theorem 12.5, we
see that

ψ0(x, χ) = −1

2π i

∫ σ0+iT1

σ0−iT1

L ′

L
(s, χ )

xs

s
ds + R1

where

R1 	 (log x) min

(
1,

x

T 〈x〉
)

+ x

T
(log x)2.

Let K be chosen so that K − κ is an odd positive integer, and let C denote
the contour consisting of the line segments connecting σ0 − iT1, −K − iT1,
−K + iT1, σ0 + iT1 where T1 is chosen as in Lemma 12.7. Since K and κ have
opposite parity, the line segment from −K − iT1 to −K + iT1 lies in the region
A(κ) of Lemma 12.9. Thus by Cauchy’s residue theorem,

ψ0(x, χ ) = −
∑
ρ

|γ |<T1

xρ

ρ
+

∑
1≤k<(K+κ)/2

xκ−2k

2k − κ
+ E + R1 + R2

where κ = 0 if χ (−1) = 1 and κ = 1 if χ (−1) = −1, E is the residue of

− L ′

L
(s, χ )

xs

s

at s = 0, and

R2 = −1

2π i

∫
C

L ′

L
(s, χ )

xs

s
ds.

By proceeding as in the latter part of the proof of Theorem 12.5, but using now
Lemma 12.7 and Lemma 12.9 in place of Lemma 12.2 and Lemma 12.4, we
see that

R2 	 x

T
(log qT )2 + T log q K

K x K
.
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12.1 Classical formulæ 405

This last term tends to 0 as K → ∞. Put

R3 = −
∑
ρ

T<|γ |<T1

xρ

ρ
.

Then R(x, T ) = R1 + R2 + R3, and R3 	 xT −1 log qT by Theorem 10.17.
It remains to compute the residue E . By logarithmic differentiation of the

functional equation in the asymmetric form of Corollary 10.9, we find that

L ′

L
(s, χ ) = − L ′

L
(1 − s, χ ) − log

q

2π
− �′

�
(1 − s) + π

2
cot

π

2
(s + κ)

(12.9)

If χ (−1) = −1, then L ′
L (s, χ ) is analytic at s = 0, so

E = − L ′

L
(0, χ ) = L ′

L
(1, χ ) + log

q

2π
− C0,

in view of (C.11). Since cot z is an odd function, its Laurent expansion about
z = 0 is of the form cot z = 1/z +∑∞

k=1 ck z2k−1. Hence if χ (−1) = 1, we see
by (12.8) that the Laurent expansion of L ′

L (s, χ ) begins

L ′

L
(s, χ ) = 1

s
− L ′

L
(1, χ ) − log

q

2π
+ C0 + · · ·

Hence

E = − log x + L ′

L
(1, χ ) + log

q

2π
− C0

in this case.
Finally, we note that

∞∑
k=1

x−2k

2k
= − 1

2
log(1 − x−2),

∞∑
k=1

x1−2k

2k − 1
= 1

2
log

x + 1

x − 1
.

This completes the proof. �

By letting T → ∞ we immediately obtain

Corollary 12.11 Suppose that χ is a primitive character modulo q, q > 1,
and that x > 1. Then

ψ0(x, χ ) = −
∑
ρ

xρ

ρ
− 1

2
log(x − 1) − χ (−1)

2
log(x + 1) + C(χ ). (12.10)

By Theorem 11.4 we see that C(χ ) 	 log q if L(s, χ ) has no exceptional
zero, and that

C(χ ) = 1

1 − β1
+ O(log q)
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if L(s, χ ) has the exceptional zero β1. In this latter case, the sum over ρ includes
a large term due to ρ = 1 − β1. This, however, is largely cancelled by C(χ ),
since

− x1−β1 − 1

1 − β1
= − log x

1 − β1

∫ 1−β1

0
xσ dσ 	 x1−β1 log x . (12.11)

This is quite small compared with the contribution −xβ1/β1 made by ρ = β1,
not to mention the contributions of other zeros with β ≥ 1/2.

In principle, we could derive an explicit formula for ψ0(x, χ ) when χ is
imprimitive, by taking into account the contributions made by zeros on the
imaginary axis. However, we find it simpler to pass from ψ0(x, χ!) to ψ0(x, χ )
by elementary reasoning. Suppose that χ is a character modulo q induced by
the primitive character χ! modulo d, where d|q. (The possibility that d = 1 is
not excluded here.) Then

ψ0(x, χ!) − ψ0(x, χ ) =
∑
p|q
p�d

∑
k

1<pk≤x

χ!
(

pk
)

log p

	
∑
p|q
p�d

[ log x

log p

]
log p (12.12)

≤ ω(q/d) log x

	 (log q/d)(log x).

Note that the distinction between ψ0(x, χ ) and ψ(x, χ ) can be dropped at this
point:

ψ(x, χ ) = ψ0(x, χ!) + O((log 2q)(log x)). (12.13)

This estimate, though somewhat crude, suffices for most purposes.
The explicit formulæ that we have established thus far arise from Perron’s

formula. We may similarly derive other explicit formulæ using other kernels in
the inverse Mellin transform. Examples of such formulæ are found in Exercises
12.1.5–10. In some cases it may not be so easy to apply complex variable
techniques, but for such weighted sums over primes we may use the formulæ
above, with integration by parts. For example, from Theorem 12.5 we see that∑

n≤x

w(n)�(n) =
∫ x

2−
w(u)dψ(u)

=
∫ x

2
w(u) du −

∑
ρ

|γ |≤T

∫ x

2
w(u)uρ−1 du + smaller terms.

To facilitate the estimation of these ‘smaller terms’ it is useful to record a little
more information concerning the error terms in the truncated explicit formula.
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12.1 Classical formulæ 407

Theorem 12.12 Suppose that c is a constant, c > 1, and let χ be a character
modulo q. For x ≥ c and T ≥ 2 there exist functions E1(x, χ) and E2(x, T, χ )
with the following properties:

ψ(x, χ) = E0(χ )x −
∑
ρ

|γ |≤T

xρ

ρ
+ E1(x, χ ) + E2(x, T, χ ); (12.14)

∫ x

c
1 |d E1(u, χ )| 	 (log xq)2; (12.15)

E2(x, T, χ ) 	 log x + x

T
(log xT q)2 ; (12.16)∫ x

c
|E2(u, T, χ )| du 	 x2

T
(log xT q)2. (12.17)

Proof Suppose first that χ is non-principal. Thus χ is induced by a primitive
character χ! (mod d) where 1 < d ≤ q. Put

E1(x, χ ) = ψ0(x, χ ) − ψ0(x, χ!) − 1

2
log(x − 1)

− χ (−1)

2
log(x + 1) + C(χ!), (12.18)

E2(x, T, χ ) = ψ(x, χ ) − ψ0(x, χ ) + R(x, T ;χ!) (12.19)

where R(x, T ;χ!) is defined by taking χ = χ! in (12.6). Thus (12.6) gives
(12.14). By (12.12) we see that∫ x

c
1 |d(ψ0(u, χ) − ψ0(u, χ!))| 	

∑
p|q
p�d

[ log x

log p

]
log p 	 (log x)(log q).

Thus we have (12.15). It is also clear that (12.8) gives (12.16). To obtain (12.17),
we note that∫ x

c
min

(
1,

u

T 〈u〉
)

du ≤ x

T

∑
pk≤2x

(
1 +

∫ x

x/T

1

u
du

)
	 x2 log T

T log x
.

Since ψ(x, χ ) − ψ0(x, χ ) = 0 except for jump discontinuities at the prime
powers, this term makes no contribution to the integral (12.17). Thus we have
(12.17).

Now suppose that χ is principal. Put

E1(x, χ0) = ψ(x, χ0) − ψ0(x) − log 2π − 1

2
log(1 − 1/x2),

E2(x, T, χ0) = ψ(x, χ0) − ψ0(x, χ0) + R(x, T )

where R(x, T ) is defined by (12.3). Then the desired assertions follow from
(12.3) and (12.4) in the same way as in the former case, so the proof is
complete. �
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12.1.1 Exercises

1. Suppose that |s − 1| ≥ 1. Show that

log ζ (s) =
∑
ρ

|γ−t |≤1

log(s − ρ) + O(log τ )

uniformly for −1 ≤ σ ≤ 2, where log ζ (s) is defined by continuous variation
along the ray fromσ + i t to ∞ + i t , with log ζ (∞ + i t) = 0, and |� log(s −
ρ)| < π .

2. (a) By using the Brun–Titchmarsh inequality, show that∑
x+1≤n≤2x

�(n)

n − x
	 (log x)(log log x).

(b) Let R1 be defined as in the proof of Theorem 12.5. Show that

R1 	 (log x) min

(
1,

x

T 〈x〉
)

+ x

T
(log x)(log log x).

3. Let δ be a small positive number. For a given T ≥ 4, let S = {t ∈ [T,
T + 1] : minγ |t − γ | ≥ δ/ log T }, and for T ≤ t ≤ T + 1 define

f (t) = log T +
∑

T −1≤γ≤T +2

1

|t − γ |

where the sum is over ordinates γ of zeros of the zeta function.
(a) Show that if T ≤ t ≤ T + 1, then

max
−1≤σ≤2

∣∣∣ζ ′

ζ
(s)
∣∣∣	 f (t).

(b) Show that meas S � 1 whenever δ is a sufficiently small positive con-
stant.

(c) Show that ∫
S

f (t) dt 	 (log T ) log log T .

(d) Deduce that for every T ≥ 4 there is a T1 ∈ [T, T + 1] such that

max
−1≤σ≤2

∣∣∣ζ ′

ζ
(σ + iT1)

∣∣∣	 (log T ) log log T .

4. Show that if s �= 1, and ζ (s) �= 0, then∑
n≤x

�(n)

ns
= x1−s

1 − s
− ζ ′

ζ
(s) −

∑
ρ

xρ−s

ρ − s
+

∞∑
k=1

x−2k−s

2k + s
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12.1 Classical formulæ 409

where it is understood that the term n = x is counted with weight 1/2 if x
is a prime power, and the sum over ρ is calculated as limT →∞

∑
|γ |≤T .

5. (cf. Ingham 1932, p. 81) By (12.1) we know that∑
ρ

xρ

ρ
= x − ψ0(x) − log 2π − 1

2
log(1 − 1/x2)

for x > 1. Show that if 0 < x < 1, then∑
ρ

xρ

ρ
=
∑

n≤1/x

�(n)

n
+ log x + C0 + x + 1

2
log

1 − x

1 + x
.

6. (de la Vallée Poussin 1896) Show that if x > 1, then∑
n≤x

�(n)(x − n) = 1

2
x2 −

∑
ρ

xρ+1

ρ(ρ + 1)
− (log 2π )x + ζ ′

ζ
(−1)

−
∞∑

k=1

x−2k+1

2k(2k − 1)
.

7. Show that if x > 1, then

∑
n≤x

�(n) log x/n = x −
∑
ρ

xρ

ρ2
− (log 2π ) log x −

(
ζ ′

ζ

)′
(0) − 1

4

∞∑
k=1

x−2k

k2
.

8. (Hardy & Littlewood 1918; Wigert 1920) (a) Let k be a non-negative integer.
Show that for s near −k, the Laurent expansion of �(s) begins

�(s) = (−1)k

k!(s + k)
+ (−1)k

k!

�′

�
(k + 1) + · · · .

(b) Let k be a positive integer. Show that for s near −2k, the Laurent expan-
sion of ζ ′

ζ
(s) begins

ζ ′

ζ
(s) = 1

s + 2k
− ζ ′

ζ
(2k + 1) + log 2π − �′

�
(2k + 1) + · · · .

(c) Show that if �z > 0, then

∞∑
n=1

�(n)e−n/z = z −
∑
ρ

�(ρ)zρ − e−1/z log 2π + (−1 + cosh 1/z) log z

+
∞∑

k=1

(−1)k ζ
′

ζ
(k + 1)

z−k

k!
−

∞∑
k=0

�′

�
(2k + 2)

z−2k−1

(2k + 1)!
.
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9. Suppose that a > 0, that x ≥ 1, and that x is not of the form e2a2k where k
is a positive integer. Show that

1√
2π a

∞∑
n=1

�(n) exp

(−(log x/n)2

2a2

)
= ea2/2x −

∑
ρ

ea2ρ2/2xρ +
∑

0<k< log x
2a2

e2a2k2
x−2k

− 1

2π
exp

(−(log x)2

2a2

)∫ ∞

−∞

ζ ′

ζ
(−(log x)/a2 + i t)e−a2t2/2 dt.

12.2 Weil’s explicit formula

In order to see better the relationship between a sum over zeros and a corre-
sponding sum over primes, we now derive an explicit formula that applies to a
general class of kernels. (The next theorem is not used later, and can be omitted
on a first reading.)

Theorem 12.13 (Weil) Let F(x) be a measurable function such that∫ ∞

−∞
e( 1

2 +δ0)2π |x ||F(x)| dx < ∞, (12.20)

and ∫ ∞

−∞
e( 1

2 +δ0)2π |x | |d F(x)| < ∞ (12.21)

where δ0 > 0 is fixed. Suppose that F(x) = 1
2 (F(x−) + F(x+)) for all x, and

that F(x) + F(−x) = 2F(0) + O(|x |). Put

�(s) =
∫ ∞

−∞
F(x)e−(s−1/2)2πx dx

for −δ0 < σ < 1 + δ0. Let χ be a primitive character modulo q. Then

lim
T →∞

∑
|γ |≤T

�(ρ) = E0(χ ) (�(0) + �(1)) + 1

2π

(
log q/π + �′

�
(1/4 + κ/2)

)
F(0)

− 1

2π

∞∑
n=1

�(n)

n1/2

(
χ (n)F

(−1

2π
log n

)
+ χ (n)F

(
1

2π
log n

))
+
∫ ∞

0

e−(1+2κ)πx

1 − e−4πx
(2F(0) − F(x) − F(−x)) dx . (12.22)

Here E0(χ ) = 1 if χ = χ0, E0(χ ) = 0 otherwise, and κ = 0 if χ (−1) = 1,
κ = 1 if χ (−1) = −1.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.014 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.014


12.2 Weil’s explicit formula 411

We note that if ρ = 1/2 + iγ , then

�(ρ) =
∫ ∞

−∞
F(x)e(−γ x) dx = F̂(γ ).

The values of �′/� can be evaluated explicitly; from Appendix C we see
that

�′

�
(1/4) = −C0 − 3 log 2 − π/2

and

�′

�
(3/4) = −C0 − 3 log 2 + π/2.

Here C0 is Euler’s constant. Since
∫ |d f g| ≤ ∫ | f | |dg| + ∫ |g| |d f |, from

(12.20) and (12.21) we see that ea|x |F(x) is of bounded variation for any a,
0 ≤ a ≤ (1/2 + δ0)2π . Hence F(x) 	 exp(−(1/2 + δ0)2π |x |), and�(s) is an-
alytic in the strip −δ0 < σ < 1 + δ0. For |t | ≤ 1 we note that φ(s) 	 1. For
|t | ≥ 1 we integrate by parts to see that

�(s) = 1

2π i t

∫ ∞

−∞
e(−t x) d (F(x) exp((1 − 2σ )πx)) ;

hence �(s) 	 1/(|t | + 1) uniformly for −δ0 ≤ σ ≤ 1 + δ0. In these estimates,
and in the proof below, implicit constants may depend on F and on δ0.

Proof We note that∑
|γ |≤T1

�(ρ) = 1

2π i

∫
C
�(s)

ξ ′

ξ
(s, χ ) ds

where C is the closed polygonal contour with vertices −δ1 + iT1, −δ1 − iT1,
1 + δ1 − iT1, 1 + δ1 + iT1. Here 0 < δ1 < δ0, and T1 is chosen so that |T −
T1| ≤ 1, and so that

ξ ′

ξ
(σ ± iT1, χ ) 	 (log qT )2

uniformly for −1 ≤ σ ≤ 2. Thus∑
|γ |≤T

�(ρ) = 1

2π i

(∫ 1+δ1+iT

1+δ1−iT
+
∫ −δ1−iT

−δ1+iT

)
�(s)

ξ ′

ξ
(s, χ ) ds + O

(
(log T )2

T

)
.

By the functional equation for ξ (s, χ ), we see that

ξ ′

ξ
(s, χ ) = − ξ ′

ξ
(1 − s, χ ).
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Hence the integral above is

1

2π i

∫ 1+δ1+iT

1+δ1−iT
�(s)

ξ ′

ξ
(s, χ ) + �(1 − s)

ξ ′

ξ
(s, χ ) ds. (12.23)

From (10.25) and (10.33) we see that

ξ ′

ξ
(s, χ ) = E0(χ )

(
1

s
+ 1

s − 1

)
+ 1

2
log

q

π
+ 1

2

�′

�
((s + κ)/2) + L ′

L
(s, χ ).

(12.24)

For 1 < σ < 1 + δ0,

�(s)
L ′

L
(s, χ ) = −�(s)

∞∑
n=1

�(n)χ (n)n−s

(12.25)

= −
∞∑

n=1

�(n)χ (n)n−1/2
∫ ∞

−∞
F

(
x − 1

2π
log n

)
e−(s−1/2)2πx dx,

and similarly

�(1 − s)
L ′

L
(s, χ ) = −

∞∑
n=1

�(n)χ (n)n−1/2

×
∫ ∞

−∞
F

(
−x + 1

2π
log n

)
e−(s−1/2)2πx dx . (12.26)

From the estimate F(x) 	 e−(1/2+δ0)2π |x | we see that∑
n

�(n)n−1/2
∫ ∞

−∞

∣∣F (x − 1
2π log n

) ∣∣e−(1/2+δ1)2πx dx

	
∞∑

n=1

�(n)n−1/2

⎛⎜⎝ ∞∫
(log n)/(2π )

e−(1+δ0+δ1)2πx n1/2+δ0 dx

+
(log n)/(2π )∫

−∞
e(δ0−δ1)2πx n−1/2−δ0 dx

⎞⎠
	
∑

n

�(n)n−1−δ1 	 1.

A similar calculation relates to the second term (12.26), and hence for
s = 1 + δ1 + i t ,

�(s)
L ′

L
(s, χ) + �(1 − s)

L ′

L
(s, χ ) =

∫ ∞

−∞
H (x)e(−t x) dx = Ĥ (t)
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12.2 Weil’s explicit formula 413

where

H (x) = −
∞∑

n=1

�(n)

n1/2

(
χ (n)F

(
x − log n

2π

)
+χ (n)F

(
−x + log n

2π

))
e−(1/2+δ1)2πx .

Now H (x) is of bounded variation, since

VarH ≤
∑

n

�(n)

n1/2
Var

(
F

(
x − log n

2π

)
e−(1/2+δ1)2πx

)
+
∑

n

�(n)

n1/2
Var

(
F

(
−x + log n

2π

)
e−(1/2+δ1)2πx

)

= 2

(∑
n

�(n)n−1−δ1

)
Var
(
F(x)e−(1/2+δ1)2πx

)	 1.

Moreover, H (x) = (H (x+) + H (x−))/2, and thus by the Fourier integral
theorem,

lim
T →∞

∫ T

−T
Ĥ (t) dt = H (0).

That is,

lim
T →∞

1

2π i

∫ 1+δ1+iT

1+δ1−iT
�(s)

L ′

L
(s, χ ) + �(1 − s)

L ′

L
(s, χ ) ds

= −1

2π

∑
n

�(n)

n1/2

(
χ (n)F

(− log n

2π

)
+ χ (n)F

(
log n

2π

))
.

The remaining terms from (12.24) contribute to the integral (12.23) an amount

1

2π i

∫ 1+δ1+iT

1+δ1−iT
G(s) ds.

where

G(s) =
(

E0(χ )

(
1

s
+ 1

s − 1

)
+ 1

2
log

q

π
+ 1

2

�′

�

(
s + κ

2

))
(�(s) + �(1 − s))

By Cauchy’s theorem this is

1

2π i

∫ 1/2+iT

1/2−iT
G(s) ds + E0(χ )(�(0) + �(1)) + O

(
log2 qT

T

)
.
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To treat this latter integral we note that

1

2π i

∫ 1/2+iT

1/2−iT

(
1

s
+ 1

s − 1

)
(�(s) + �(1 − s)) ds

= −4i

π

∫ T

−T

t

1 + 4t2

(
�

(
1

2
+ i t

)
+ �

(
1

2
− i t

))
dt = 0.

Now �(1/2 + i t) = F̂(t), and hence

1

2π i

∫ 1/2+iT

1/2−iT

1

2
(log q/π )(�(s) + �(1 − s)) ds

= log q/π

4π

∫ T

−T
F̂(t) + F̂(−t) dt −→ F(0)

2π
log q/π

as T tends to infinity. Thus to complete the proof of the theorem it suffices to
establish

Lemma 12.14 Let a > 0 and b > 0 be fixed. If J ∈ L1(R), J is of bounded
variation on R, and if J (x) = J (0) + O(|x |), then

lim
T →∞

∫ T

−T

�′

�
(a ± ibt) Ĵ (t) dt

= �′

�
(a)J (0) + 2π

b

∫ ∞

0

e−2πax/b

1 − e−2πx/b
(J (0) − J (∓x)) dx . (12.27)

If G and J are in L1(R), then∫ ∞

−∞
G(t) Ĵ (t) dt =

∫ ∞

−∞
Ĝ(x)J (x) dx,

since both sides are ∫ ∞

−∞

∫ ∞

−∞
G(t)J (x)e(−t x) dx dt.

We cannot apply this with G(t) = �′
�

(a ± ibt), since this function is not in
L1(R). Nevertheless, the right-hand side of (12.27) is a linear functional of J ,
which thus serves as a surrogate for the Fourier transform of �′

�
(a ± ibt), at

least when the test function J is sufficiently well-behaved.

Proof It suffices to consider the + sign on the left-hand side of (12.27),
for if K (x) = J (−x) then K̂ (t) = Ĵ (−t). We suppose first that J (0) = 0. The
integral with respect to t on the left-hand side of (12.27) is∫ ∞

−∞
J (x)

(∫ T

−T

�′

�
(a + ibt)e(−xt) dt

)
dx .
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12.2 Weil’s explicit formula 415

Since �′
�

(a + ibt) 	 log(|t | + 2), the inner integral above is 	 T log T , uni-
formly in x . Put δ = T −2/3. The contribution to the above by those x for which
|x | ≤ δ is

	
∫ δ

−δ

|x |T log T dx 	 δ2T log T = T −1/3 log T .

For |x | ≥ δ we appeal to Theorem C.5 to estimate the inner integral. The error
term in Theorem C.5 contributes an amount

	
∫ ∞

δ

min(x, 1)T −1x−2 dx 	 T −1 log T .

By integrating by parts we see that∫ ∞

δ

J (x)
e(−xT )

x
dx = J (δ)e(−δT )

2π iδT
− 1

2π iT

∫ ∞

δ

J (x)
e(−xT )

x2
dx

+ 1

2π iT

∫ ∞

δ

e(−xT )

x
d J (x)

	 1

T
+ 1

T

∫ ∞

δ

min(x, 1)x−2 dx + 1

δT

∫ ∞

δ

|d J |
	 T −1/3,

and similarly for the three related terms. Hence∫ T

−T

�′

�
(a + ibt) Ĵ (t) dt = −2π

b

∫ −δ

−∞

e2πax/b

1 − e2πx/b
J (x) dx + O

(
T −1/3 log T

)
.

On the right-hand side we see that
∫ 0
−δ

· · · 	 δ, so that

lim
T →∞

∫ T

−T

�′

�
(a + ibt) Ĵ (t) dt = −2π

b

∫ ∞

0

e−2πax/b

1 − e−2πx/b
J (−x) dx

provided that J (0) = 0. To obtain the general case we apply the above to
the function K (x) = J (x) − J (0)e−πx2/A where A > 0 is large. Then K̂ (t) =
Ĵ (t) − J (0)

√
Ae−π At2

, and hence

lim
T →∞

∫ T

−T

�′

�
(a + ibt)K̂ (t) dt = lim

T →∞

∫ T

−T

�′

�
(a + ibt) Ĵ (t) dt

− J (0)
√

A
∫ ∞

−∞

�′

�
(a + ibt)e−π At2

dt.

This last integral is∫ ∞

−∞

(
�′

�
(a) + O(|t |)

)
e−π At2

dt = �′

�
(a)A−1/2 + O(A−1).
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On the other hand,

−2π
∫ ∞

0

e−2πax/b

1 − e−2πx/b
K (−x) dx

= 2π
∫ ∞

0

e−2πax/b

1 − e−2πx/b
(J (0) − J (−x)) dx

+ 2π J (0)
∫ ∞

0

e−2πax/b

1 − e−2πx/b

(
e−πx2/A − 1

)
dx .

Now e−α = 1 + O(α) for α ≥ 0, and hence this last integral is

	
∫ 1

0
x A−1 dx +

∫ ∞

1
e−2πax/bx2 A−1 dx 	 A−1.

On combining these estimates, we see that (12.29) holds apart from an error
term O(A−1/2), and we obtain the result since A can be arbitrarily large. �

12.3 Notes

Section 12.1. Let �(x) =∑n≤x �(n)/ log n. Riemann (1859) gave a heuristic
proof that if x > 1, and x is not a prime power, then

�(x) = Li(x) −
∑
ρ

Li (xρ) − log 2 +
∫ ∞

x

du

(u2 − 1)u log u
.

Here the sum over the zeros is conditionally convergent, and it is to be un-
derstood that it is computed as the limit, as T → ∞, of the sum over those
zeros for which |γ | ≤ T . The above formula was first proved rigorously by von
Mangoldt (1895), and additional proofs were subsequently given by Landau
(1908a, b). For further discussion of the explicit formula in the form given by
Riemann, see Edwards (1974, Chapter 1). von Mangoldt (1895) also proved the
explicit formula (12.1). Landau (1909, Section 89) was the first to show that
the limit in (12.1) is attained uniformly for x in a compact interval not con-
taining a prime power. Cramér (1918) showed that (12.1) can be derived from
the above. von Koch (1910) and Landau (1912) estimated the error term that
arises when the explicit formula is truncated, as in Theorem 12.5. The explicit
formula for ψ0(x, χ ) was first established by Landau (1908b), but with not
so much attention to the constant term. In the customary form of this explicit
formula (cf. Davenport (2000, p. 117)), the constant term is expressed in terms
of the constant B(χ ) that arises in the Hadamard product formula for ξ (s, χ ).
Our presentation, which avoids this, is that of Vorhauer (2006).
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Section 12.2. Although many specific explicit formulæ were derived by vari-
ous authors for a variety of purposes, it was Guinand (1942) who first suggested
that it would be possible to specify a general class of such formulæ. Guinand
(1948) did this assuming the Riemann Hypothesis, but it seems that he im-
posed RH only in order to obtain a wider class of test functions. Theorem
12.13 is a special case of the main result of Weil (1952), who treats general
L-functions associated with Grössencharaktere χ , which are representations
of the group of idèle-classes of an algebraic number field k into the multiplica-
tive group of non-zero complex numbers. Weil also showed that a necessary
and sufficient condition for the Riemann hypothesis to hold for L is that the
right-hand side corresponding to (12.22) is non-negative for all functions F of a
certain class. Gallagher (1987) widened the class of test functions in Guinand’s
formula and gave several applications. See also Besenfelder (1977a, b),
Yoshida (1982), Jorgenson, Lang & Goldfeld (1994), and Bombieri & Lagarias
(1999).
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Birkhäusen, pp. 135–157.

Guinand, A. P. (1937). A class of self-reciprocal functions connected with summation
formulæ, Proc. London Math. Soc. (2) 43, 439–448.

(1938). Summation formulæ and self-reciprocal functions, Quart. J. Math. Oxford
Ser. 9, 53–67.

(1939a). Finite summation formulæ, Quart. J. Math. 10, 38–44.
(1939b). Summation formulæ and self-reciprocal functions (II), Quart. J. Math. 10,

104–118.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.014 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.014


418 Explicit formulæ

(1939c). A formula for ζ (s) in the critical strip, J. London Math. Soc. 14, 97–100.
(1941). On Poisson’s summation formula, Ann. of Math. (2) 42, 591–603.
(1942). Summation formulæ and self-reciprocal functions (III), Quart. J. Math. 13,

30–39.
(1948). A summation formula in the theory of prime numbers, Proc. London Math.

Soc. 50, 107–119.
Hardy, G. H. & Littlewood, J. E. (1918). Contributions to the theory of the Riemann

zeta-function and the theory of the distribution of primes, Acta Math. 41, 119–196;
Collected Papers, Vol. 2. Oxford: Clarendon Press, 1967, pp. 20–97.

Ingham, A. E. (1932). The Distribution of Prime Numbers, Cambridge Tract No. 30.
Cambridge: Cambridge University Press.

Jorgenson, J., Lang, S., & Goldfeld, D. (1994). Explicit Formulas. Lecture Notes in
Math. 1593. Berlin: Springer-Verlag.
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