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Primes in arithmetic progressions: II

11.1 A zero-free region

For a given integer q , the primes not dividing q are distributed in the reduced
residue classes modulo q. As there are no other obvious restrictions on the
primes modulo q , we expect the primes to be uniformly distributed amongst
the reduced residue classes. Let π (x ; q, a) denote the number of primes p ≤ x
such that p ≡ a (mod q). We anticipate that if (a, q) = 1, then

π (x ; q, a) ∼ x

ϕ(q) log x
as x −→ ∞ .

This asymptotic estimate is the Prime Number Theorem for arithmetic pro-
gressions; it can readily be established by adapting the methods of Chapters
4 and 6. For many purposes, however, it is important to have a quantitative
form of this, from which one can tell how large x should be, as a function of
q , to ensure that π (x ; q, a) is near li(x)/ϕ(q). To obtain such an estimate we
must first derive a zero-free region for the Dirichlet L-functions L(s, χ ) that is
explicit in its dependence on both q and t . For the most part our arguments are
natural generalizations of the analysis in Chapter 6, but we shall encounter a
new difficulty in connection with the possible existence of a real zero β near 1
of L(s, χ ) when χ is a quadratic character.

The approximate partial fraction expansion of ζ ′
ζ

(s) (cf. Lemma 6.4) de-
pends on the upper bound for |ζ (s)| provided by Corollary 1.17. By using
Lemma 10.15 in a similar manner, we now derive a corresponding approximate
partial fraction formula for L ′

L (s, χ ) . In order to formulate a unified result for
both the principal and non-principal characters, it is convenient to employ the
notation

E0(χ ) =
{

1 if χ = χ0,

0 otherwise.
(11.1)
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11.1 A zero-free region 359

Lemma 11.1 If χ is a character (mod q) and 5/6 ≤ σ ≤ 2, then

− L ′

L
(s, χ ) = E0(χ )

s − 1
−
∑
ρ

1

s − ρ
+ O(log qτ )

where the sum is over all zeros ρ of L(s, χ ) for which
∣∣ρ − ( 3

2 + i t
)∣∣ ≤ 5/6.

Proof When χ is non-principal we apply Lemma 6.3 to the function

f (z) = L

(
z +

(
3

2
+ i t

)
, χ

)
with R = 5/6 and r = 2/3. By Lemma 10.15 we may take M = Cqτ for a
suitable absolute constant C , and by the Euler product for L(s, χ ) we see that

| f (0)|= ∣∣L( 3
2 + i t, χ

)∣∣ =∏
p

∣∣1 − χ (p)p− 3
2 −i t
∣∣−1 ≥

∏
p

(
1 + p−3/2

)−1 
 1.

Now suppose thatχ = χ0. The zeros of the function 1 − p−s form an arithmetic
progression on the imaginary axis. Hence by (4.22), the zeros of L(s, χ0) are
the zeros of ζ (s) together with the union of several arithmetic progressions on
the imaginary axis. Since these latter zeros all lie at a distance ≥ 3/2 from the
point 3

2 + i t , none of them is included in the sum over ρ. Moreover, by taking
logarithmic derivatives of both sides of (4.22) we see that

L ′

L
(s, χ0) = ζ ′

ζ
(s) +

∑
p|q

log p

ps − 1
.

But (log p)/(ps − 1) 	 1 for σ ≥ 5/6, so the sum over p is 	 ω(q) 	
log q by Theorem 2.10. Hence we obtain the stated identity by appealing to
Lemma 6.4. �

The generalization of Lemma 6.5 is straightforward.

Lemma 11.2 If σ > 1, then

�
(

−3
L ′

L
(σ, χ0) − 4

L ′

L
(σ + i t, χ ) − L ′

L
(σ + 2i t, χ2)

)
≥ 0.

Proof By the Dirichlet series expansion (4.25) for L ′
L (s, χ ) we see that the

left-hand side above is

�
∞∑

n=1
(n,q)=1

�(n)

nσ
(3 + 4χ (n)n−i t + χ (n)2n−2i t ).

The quantity χ (n)n−i t is unimodular when (n, q) = 1, so for such n there is a
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360 Primes in Arithmetic Progressions: II

real number θn such that χ (n)n−i t = eiθn . Thus the above is
∞∑

n=1
(n,q)=1

�(n)

nσ
(3 + 4 cos θn + cos 2θn).

This is non-negative because 3 + 4 cos θ + cos 2θ = 2(1 + cos θ )2 ≥ 0 for
all θ . �

The groundwork laid above enables us to establish a variant of Theorem 6.6
for Dirichlet L-functions.

Theorem 11.3 There is an absolute constant c > 0 such that if χ is a Dirichlet
character modulo q, then the region

Rq = {s : σ > 1 − c/ log qτ }
contains no zero of L(s, χ ) unless χ is a quadratic character, in which case
L(s, χ ) has at most one, necessarily real, zero β < 1 in Rq .

A zero lying in Rq , as described above, is called exceptional. No exceptional
zero is known, and indeed it may be conjectured that if χ is quadratic, then
L(σ, χ ) > 0 for all σ > 0. We give further study to exceptional zeros in the
next section.

Proof The case χ = χ0 is immediate from (4.22) and Theorem 6.6, so we
may assume that χ is non-principal. Also, the Euler product (4.21) for L(s, χ )
is absolutely convergent when σ > 1, and hence L(s, χ) �= 0 for such s. Thus
it suffices to consider a zero ρ0 = β0 + iγ0 of L(s, χ ) with 12/13 ≤ β0 ≤ 1.
We consider several cases, the first of which parallels the proof of Theorem 6.6
most closely. �

Case 1. Complexχ . Ifσ > 1 andρ is a zero of an L-function, then �(s − ρ)> 0
and hence �(1/(s − ρ))> 0. Thus by Lemma 11.1, if 0 < δ ≤ 1, then

−� L ′

L
(1 + δ, χ0) ≤ 1

δ
+ c1 log q,

−� L ′

L
(1 + δ + iγ0, χ ) ≤ −1

1 + δ − β0
+ c1 log q(|γ0| + 4), (11.2)

−� L ′

L
(1 + δ + 2iγ0, χ

2) ≤ c1 log q(2|γ0| + 4)

for some absolute constant c1. The hypothesis that χ is complex is needed for
this last inequality, to ensure that χ2 �= χ0 in the appeal to Lemma 11.1. We
multiply both sides of the first inequality by 3, the second by 4, and sum all
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11.1 A zero-free region 361

three. By Lemma 11.2, the resulting left-hand side is non-negative. That is,
3

δ
− 4

1 + δ − β0
+ c2 log q(|γ0| + 4) ≥ 0

for some constant c2. If β0 = 1, then letting δ → 0+ gives an immediate con-
tradiction, so it may be assumed that β0 < 1. Then, on taking δ = 6(1 − β0), it
follows that

1 − β0 ≥ 1

14c2 log q(|γ0| + 4)
.

Hence ρ0 /∈ Rq if c is chosen sufficiently small.
This argument also applies with only small changes when χ is quadratic,

provided that |γ0| is large. We can even allow |γ0| to be small, as long as it is
large compared with 1 − β0. We now consider such a case.

Case 2. Quadraticχ , |γ0| ≥ 6(1 − β0). By Theorem 4.9, L(1, χ ) �= 0, so γ0 �=
0. Hence we can proceed as above, except that as χ2 = χ0 the third inequality
in (11.2) must be replaced by the weaker inequality

−� L ′

L
(1 + δ + 2iγ0, χ

2) ≤ δ

δ2 + 4γ 2
0

+ c1 log q(2|γ0| + 4).

Again if β0 = 1, then taking δ → 0+ gives a contradiction. Thus it can be
supposed that β0 < 1. Since |γ0| ≥ 6(1 − β0), this implies that

−� L ′

L
(1 + δ + 2iγ0, χ

2) ≤ δ

δ2 + 144(1 − β0)2
+ c1 log q(2|γ0| + 4).

We combine this inequality with the first two inequalities in (11.2) and apply
Lemma 11.2 with σ = 1 + δ = 1 + 6(1 − β0) to see that

1

1 − β0

(
3

6
− 4

7
+ 6

180

)
+ c2 log q(|γ0| + 4) ≥ 0.

The factor in large parentheses above is −4/105 < −1/27, so

1 − β0 ≥ 1

27c2 log q(|γ0| + 4)
.

Case 3. Quadratic χ , 0 < |γ0| ≤ 6(1 − β0). Since L(s, χ) is real when s is
real, it follows by the Schwarz reflection principle that L(β0 − iγ0, χ ) = 0.
Hence by Lemma 11.1 we see that if 1 < σ ≤ 2, then

−� L ′

L
(σ, χ ) ≤ −� 1

σ − ρ0
− � 1

σ − ρ0
+ c1 log 4q

= −2(σ − β0)

(σ − β0)2 + γ 2
0

+ c1 log 4q

≤ −2(σ − β0)

(σ − β0)2 + 36(1 − β0)2
+ c1 log 4q. (11.3)
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Rather than apply Lemma 11.2 we simply observe that if σ > 1, then

− L ′

L
(σ, χ0) − L ′

L
(σ, χ ) =

∞∑
n=1

(n,q)=1

�(n)

nσ
(1 + χ (n)) ≥ 0. (11.4)

We put σ = 1 + δ = 1 + a(1 − β0) and combine the first inequality in (11.2)
and (11.3) in the above to deduce that

1

1 − β0

(
1

a
− 2(a + 1)

(a + 1)2 + 36

)
+ c2 log 4q ≥ 0.

The factor in large parentheses is ∼ −1/a as a → ∞, so it is certainly possible
to choose a value of a so that this factor is negative. Indeed, when a = 13 this
factor is −33/754 < −1/27, and hence

1 − β0 ≥ 1

27c2 log 4q
.

(We note that our supposition that β0 ≥ 12/13 implies that σ = 1 + 13(1 −
β0) ≤ 2, so that Lemma 11.1 is applicable.)

Case 4. Quadratic χ , real zeros. If β0 is a real zero of L(s, χ ), then β0 < 1
by Theorem 4.9. Suppose that β0 ≤ β1 < 1 are two such zeros. Then by Lemma
11.1,

−� L ′

L
(σ, χ ) ≤ − 1

σ − β0
− 1

σ − β1
+ c1 log 4q

≤ − 2

σ − β0
+ c1 log 4q.

On combining the first part of (11.2) and the above in (11.4) with σ = 1 + δ =
1 + a(1 − β0), we find that

1

1 − β0

(
1

a
− 2

a + 1

)
+ c2 log 4q ≥ 0.

On taking a = 2 we deduce that

1 − β0 ≥ 1

6c2 log 4q
.

This completes the proof. �

In the same way that Theorem 6.7 was derived from Theorem 6.6, we now
derive estimates for L ′

L (s, χ ) and log L(s, χ ) in a portion of the critical strip.

Theorem 11.4 Let χ be a non-principal character modulo q, let c be the
constant in Theorem 3, and suppose that σ ≥ 1 − c/(2 log qτ ). If L(s, χ ) has
no exceptional zero, or if β1 is an exceptional zero of L(s, χ ) but |s − β1| ≥
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11.1 A zero-free region 363

1/ log q, then

L ′

L
(s, χ ) 	 log qτ, (11.5)

| log L(s, χ )| ≤ log log qτ + O(1), (11.6)

and

1

L(s, χ)
	 log qτ. (11.7)

Alternatively, if β1 is an exceptional zero of L(s, χ ) and |s − β1| ≤ 1/ log q,
then

L ′

L
(s, χ ) = 1

s − β1
+ O(log q) (s �= β1), (11.8)

| arg L(s, χ )| ≤ log log q + O(1) (s �= β1), (11.9)

and

|s − β1| 	 |L(s, χ )| 	 |s − β1|(log q)2. (11.10)

Proof If σ > 1, then by Corollary 1.11 we see that∣∣∣∣ L ′

L
(s, χ )

∣∣∣∣ ≤ ∞∑
n=1

�(n)n−σ = − ζ ′

ζ
(σ ) 	 1

σ − 1
.

Hence (11.5) is obvious if σ ≥ 1 + 1/ log qτ . Let s1 = 1 + 1/ log qτ + i t .
Then

L ′

L
(s1, χ ) 	 log qτ.

From this and Lemma 11.1 it follows that∑
ρ

1

s1 − ρ
	 log qτ (11.11)

where the sum is over those zeros of L(s, χ) for which |ρ − (3/2 + i t)| ≤ 5/6.
Hence ∑

ρ

1

s − ρ
=
∑
ρ

(
1

s − ρ
− 1

s1 − ρ

)
+ O(log qτ ). (11.12)

Suppose that 1 − c/(2 log qτ ) ≤ σ ≤ 1 + 1/ log qτ and that |s − β1| ≥
1/ log q if L(s, χ ) has an exceptional zero β1. Since |s − ρ| � |s1 − ρ| for
all zeros ρ, it follows that

1

s − ρ
− 1

s1 − ρ
= 1 + 1/ log qτ − σ

(s − ρ)(s1 − ρ)
	 1

|s1 − ρ|2 log qτ
	 � 1

s1 − ρ
.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.013


364 Primes in Arithmetic Progressions: II

On summing this over ρ and appealing to (11.11) we find that∑
ρ

1

s − ρ
	 log qτ, (11.13)

and (11.5) follows by Lemma 11.1.
To derive (11.6) we first note that if σ > 1, then

| log L(s, χ )| ≤
∞∑

n=2

�(n)

log n
n−σ = log ζ (σ ).

Since ζ (σ ) ≤ σ/(σ − 1) by Corollary 1.14, we see that (11.6) holds when σ ≥
1 + 1/ log qτ . In particular, (11.6) holds at the point s1 = 1 + 1/ log qτ + i t .
To treat the remaining s it suffices to note that

log L(s, χ ) − log L(s1, χ ) =
∫ s

s1

L ′

L
(w,χ ) dw 	 |s1 − s| log qτ 	 1

by (11.5). The estimate (11.6) trivially implies (11.7) since log 1/|L(s, χ )| =
−� log L(s, χ ).

Now suppose that L(s, χ ) has an exceptional zero β1 such that |s − β1| ≤
1/ log q . Then 1 − c/(2 log 4q) ≤ σ ≤ 1 + 1/ log q, so by Lemma 11.1,

L ′

L
(s, χ ) = 1

s − β1
+
∑
ρ

′ 1

s − ρ
+ O(log q)

where
∑′

ρ denotes a sum over all zeros ρ such that |ρ − (3/2 + i t)| ≤ 5/6
except for the exceptional zero β1. The proof of (11.13) applies to

∑′
ρ , so we

have (11.8). Proceeding as in the proof of (11.6), we find that

log L(s, χ ) = log
s − β1

s1 − β1
+ log L(s1, χ ) + O(1),

which implies that∣∣∣∣log L(s, χ ) − log
s − β1

s1 − β1

∣∣∣∣ ≤ | log L(s1, χ )| + O(1) ≤ log log q + O(1).

But arg(s − β1) 	 1, arg(s1 − β1) 	 1, and log |s1 − β1| = − log log q +
O(1), so we have (11.9) and (11.10). �

Our methods yield not only a zero-free region, but also enable us to bound
the number of zeros ρ of L(s, χ ) that might lie near 1 + i t .

Theorem 11.5 Let n(r ; t, χ ) denote the number of zeros ρ of L(s, χ ) in the
disc |ρ − (1 + i t)| ≤ r . Then n(r ; t, χ ) 	 r log qτ uniformly for 1/ log qτ ≤
r ≤ 3/4.
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11.1 A zero-free region 365

Here the constraint r ≥ 1/ log qτ is needed because L(s, χ ) might have
an exceptional zero. If L(s, χ ) has no exceptional zero, then the bound holds
uniformly for 0 ≤ r ≤ 3/4, in view of the zero-free region of Theorem 11.3.

Proof In view of Theorem 6.8, we may suppose that χ is non-principal. Sup-
pose first that 1/ log qτ ≤ r ≤ 1/3. Take s1 = 1 + r + i t . Then �(s1 − ρ)−1 ≥
0 for all zeros ρ, and �(s1 − ρ)−1 
 1/r if ρ is counted by n(r ; t, χ ). Hence

1

r
n(r ; t, χ ) 	 �

∑
ρ

1

s1 − ρ

where the sum is over all zeros ρ such that |ρ − (3/2 + i t)| ≤ 5/6. By
Lemma 11.1 we see that the above is 	 log qτ , since∣∣∣ L ′

L
(s1)
∣∣∣ ≤ − ζ ′

ζ
(1 + r ) � 1

r
	 log qτ.

If 1/3 ≤ r ≤ 3/4, then it suffices to apply Jensen’s inequality to L(s, χ) on a
disc with centre 3/2 + i t , with R = 4/3 and r = 5/4, in view of the estimates
provided by Lemma 10.15. �

11.1.1 Exercises

1. Let S(x ; q) denote the number of integers n, 0 < n ≤ x , such that (n, q) = 1,
and put R(x ; q) = S(x ; q) − (ϕ(q)/q)x .
(a) Show that if σ > 0, x > 0, and s �= 1, then

L(s, χ0)=
∑
n≤x

χ0(n)n−s + ϕ(q)

q
· x1−s

s − 1
− R(x ; q)

xs
+ s
∫ ∞

x
R(u; q)u−s−1du.

Show that this includes Theorem 1.12 as a special case.
(b) Let δ > 0 be fixed. Show that if σ ≥ δ, then

L(s, χ0) = ϕ(q)

q
· x1−s

s − 1
+
∑
n≤x

χ0(n)n−s + O(d(q)|s|x−σ ).

2. Suppose that δ is fixed, 0 < δ < 1. Show that∑
p|q

log p

ps − 1
	 (log q)1−δ

uniformly for σ ≥ δ. (This improves on the estimate used in the latter part
of the proof of Lemma 11.1.)

3. (a) Show that if σ > 0, then

ζ (s) = 1

s − 1
+ 1

2
− s

∫ ∞

1
({x} − 1/2)x−s−1 dx .
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(b) Show that if f (x) is a monotonically decreasing function, then∫ 1

0
(x − 1/2) f (x) dx ≤ 0.

(c) Show that

ζ (σ ) >
1

σ − 1
+ 1

2

for σ > 0.
(d) Show that

− ζ ′(s) = 1

(s − 1)2
+
∫ ∞

1
({x} − 1/2)(1 − s log x)x−s−1 dx

for σ > 0.
(e) Show that if σ > 0, then∣∣∣ζ ′(σ ) + 1

(σ − 1)2

∣∣∣ < 1

2

∫ ∞

1
|1 − σ log x |x−σ−1 dx = 1

eσ
.

(f) Justify the following chain of inequalities for σ > 1:

− ζ ′

ζ
(σ ) <

1
(σ−1)2 + 1

eσ
1

σ−1 + 1
2

= 1

σ − 1
· 1 + (σ−1)2

eσ

1 + σ−1
2

<
1

σ − 1
.

(g) Show that if χ0 is the principal character (mod q), then

− L ′

L
(σ, χ0) <

1

σ − 1

for σ > 1. (This improves on the first inequality in (11.2), in the proof
of Theorem 11.3.)

4. Let χ be a character (mod q), and suppose that the order d of χ is odd.
(a) Show that �χ (n) ≥ − cosπ/d for all integers n.
(b) Show that if σ > 1, then log |L(σ, χ )| ≥ −(cosπ/d) log ζ (σ ).
(c) Show that L(1, χ ) � L(1 + 1/ log q, χ ).
(d) Show that |L(1, χ )| 
 (log q)− cosπ/d .
(e) Deduce in particular that if χ is a cubic character (mod q), then

|L(1, χ )| 
 1/
√

log q.
5. Grössencharaktere for Q(

√−1), continued from Exercise 10.1.28. For an
ideal a = (a + ib) in the ringO{a + ib : a, b ∈ Z} of Gaussian integers, put
χm(a) = e4mi arg(a+ib). The ideal a is the set of (Gaussian integer) multiples of
the number a + ib, but it can equally well be expressed as the set of Gaussian
integer multiples of (a + ib)i k for k = 0, 1, 2, 3. Note that the stated value
of χm(a) is independent of the choice of k.
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11.2 Exceptional zeros 367

(a) Show that

L(s, χm) =
∏
p

(
1 − χm(p)

N (p)s

)−1

for σ > 1, where the product is over all prime ideals p in the ring.
(b) Let �(a) = log(a2 + b2) if a = (a + ib)k for some positive integer

k and a + ib is a Gaussian prime, and �(a) = 0 otherwise. Show
that

L ′

L
(s, χm) = −

∑
a

�(a)χm(a)

N (a)s

for σ > 1.
(c) Show that there is an absolute constant c > 0 such that L(s, χm) �= 0 for

σ > 1 − c/ log mτ for every positive integer m.

11.2 Exceptional zeros

Although there is no known quadratic character χ for which L(s, χ ) has an
exceptional real zero, the possible existence of such zeros is a recurring issue in
the theory in its current stage of development. The techniques of the preceding
section do not seem to offer a means of eliminating exceptional zeros entirely,
but nevertheless they may be used to show that such zeros occur at most rarely.
To this end we introduce a variant of Lemma 11.5 that allows us to consider
two different quadratic characters.

Lemma 11.6 (Landau) Suppose that χ1 and χ2 are quadratic characters. If
σ > 1, then

− ζ ′

ζ
(σ ) − L ′

L
(σ, χ1) − L ′

L
(σ, χ2) − L ′

L
(σ, χ1χ2) ≥ 0.

Proof It suffices to express the left-hand side as a Dirichlet series and to note
that

1 + χ1(n) + χ2(n) + χ1χ2(n) = (1 + χ1(n))(1 + χ2(n)) ≥ 0

for all n. �

Theorem 11.7 (Landau) There is a constant c > 0 such that if χ1 and χ2

are quadratic characters modulo q1 and q2, respectively, and if χ1χ2 is non-
principal, then L(s, χ1)L(s, χ2) has at most one real zero β such that 1 −
c/ log q1q2 < β < 1.
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Proof Since any given L-function can have at most one such zero, if there
are two zeros, then one of them, say β1, is a zero of L(s, χ1), and the other,
β2, is a zero of L(s, χ2). We may assume that c is so small that 5/6 ≤ βi < 1.
Also, we note that χ1χ2 is a non-principal character (mod q1q2). Hence by four
applications of Lemma 11.1 we see that if 0 < δ ≤ 1, then

− ζ ′

ζ
(1 + δ) ≤ 1

δ
+ c1 log 4,

− L ′

L
(1 + δ, χi ) ≤ −1

1 + δ − βi
+ c1 log qi ,

− L ′

L
(1 + δ, χ1χ2) ≤ c1 log q1q2.

We sum these inequalities and apply Lemma 11.4 to see that

1

δ
− 1

1 + δ − β1
− 1

1 + δ − β2
+ c2 log q1q2 ≥ 0.

Without loss of generality we may suppose that β1 ≤ β2. Then

1

δ
− 2

1 + δ − β1
+ c2 log q1q2 ≥ 0,

and by taking δ = 2(1 − β1) we deduce that

1 − β1 ≥ 1

6c2 log q1q2
.

�

The following corollaries are immediate.

Corollary 11.8 (Landau) There is a positive constant c > 0 such that∏
χ L(s, χ ) has at most one zero in the region σ > 1 − c/ log qτ . Here

the product is over all Dirichlet characters χ (mod q). If such a zero
exists then it is necessarily real and the associated character χ is
quadratic.

Corollary 11.9 (Landau) For each positive number A there is a c(A) > 0
such that if {qi } is a strictly increasing sequence of natural numbers with the
property that for each qi there is a primitive quadratic character χi (mod qi )
for which L(s, χi ) has a zero βi satisfying

βi > 1 − c(A)

log qi
,

then

qi+1 > q A
i .
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11.2 Exceptional zeros 369

Corollary 11.10 (Page) There is a constant c > 0 such that for every Q ≥ 1
the region σ ≥ 1 − c/ log Qτ contains at most one zero of the function∏

q≤Q

∏
χ

∗
L(s, χ )

where
∏∗

χ denotes a product over all primitive characters χ (mod q). If such
a zero exists, then it is necessarily real and the associated character χ is
quadratic.

We now turn to the problem of showing that even an exceptional zero cannot
be too close to 1. By taking s = 1 in (11.10) we see that this is equivalent
to showing that L(1, χ ) cannot be too small. Suppose that χ is a primitive
quadratic character modulo q, and let r (n) =∑d|n χ (d). Then r (n) ≥ 0 for all
n and r (n) ≥ 1 when n is a perfect square. Since

∑∞
n=1 r (n)n−s = ζ (s)L(s, χ )

for σ > 1, we find that∑
n≤x

r (n)n−s = L(1, χ )x1−s

1 − s
+ ζ (s)L(s, χ ) + error terms. (11.14)

Here the error terms are small if x is sufficiently large in terms of q. Estimates of
this kind can be derived from Corollary 1.15 by the method of the hyperbola, or
else by employing an inverse Mellin transform. Suppose that 0 ≤ s < 1 in the
above. We can give a lower bound for the left-hand side, which yields a lower
bound for L(1, χ ) if the second term on the right-hand side does not interfere.
Since ζ (s) < 0 for 0 < s < 1 (cf. Corollary 1.14), this term is harmless if
L(s, χ ) ≥ 0. If this cannot be arranged, we may alternatively eliminate this
term by taking two values of x and differencing. Since the method of the
hyperbola leads to tedious details, we use an inverse Mellin transform to derive
a more precise version of (11.14). To make the estimates easier we introduce
an Abelian weighting of the sum. By (5.23) with x replaced by 1/x we see that

∞∑
n=1

r (n)en/x = 1

2π i

∫ 2+i∞

2−i∞
ζ (s)L(s, χ )�(s)xs ds.

We move the contour of integration to the line �s = −1/2, which gives rise to
residues at the poles at s = 1 and s = 0. Thus the above is

= L(1, χ )x + ζ (0)L(0, χ ) + 1

2π i

∫ −1/2+i∞

−1/2−i∞
ζ (s)L(s, χ )�(s)xs ds.

By Corollary 10.5 we know that ζ (−1/2 + i t) 	 τ , by Corollary 10.10 we
know that L(−1/2 + i t, χ ) 	 qτ , and by (C.19) we know that �(−1/2 +
i t) 	 τ−1e−πτ/2. Hence the integral is 	 qx−1/2. By (10.11) we know
that ζ (0) = −1/2, and by Corollary 10.9 we know that L(0, χ ) ≥ 0. (More
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precisely, L(0, χ ) = 0 if χ(−1) = 1, and L(0, χ ) � q1/2L(1, χ ) if χ(−1) =
−1.) Since the perfect squares on the left-hand side contribute an amount

 x1/2, we deduce that

x1/2 	 x L(1, χ ) + qx−1/2.

On taking x = Cq with C a large constant we deduce that L(1, χ ) 
 q−1/2.
Now consider the possibility that χ is an imprimitive quadratic character. Then
there is a primitive quadratic character χ! modulo d, with d|q, that induces
χ . Thus L(1, χ ) = L(1, χ!)

∏
p|q/d (1 − χ!(p)/p) ≥ L(1, χ!)ϕ(q/d)d/q 


d−1/2(log log 3q/d)−1 
 q−1/2, by Theorem 2.9, so we have

Theorem 11.11 If χ is a quadratic character modulo q, then L(1, χ ) 

q−1/2.

By (11.10) the following corollary is immediate.

Corollary 11.12 There is an absolute constant c > 0 such that if χ is a
quadratic character modulo q and L(s, χ ) has an exceptional zero β1, then

β1 ≤ 1 − c

q1/2(log q)2
.

By elaborating on the above argument we can obtain better lower bounds for
1 − β1. To facilitate this we first establish a convenient inequality that depends
only on the analyticity and size of the relevant Dirichlet series in the immediate
vicinity of the real axis.

Lemma 11.13 (Estermann) Suppose that f (s) is analytic for |s − 2| ≤ 3/2,
and that | f (s)| ≤ M for s in this disc. Suppose also that

F(s) = ζ (s) f (s) =
∞∑

n=1

r (n)n−s

for σ > 1, that r (1) = 1, and that r (n) ≥ 0 for all n. If there is a σ ∈ [19/20, 1)
such that f (σ ) ≥ 0, then

f (1) ≥ 1

4
(1 − σ )M−3(1−σ ).

To put this in perspective, we recall that our proof in Chapter 4 that
L(1, χ ) �= 0 depended on Landau’s theorem (Theorem 1.7). The above amounts
to a quantitative elaboration of Landau’s theorem, for if f (1) were 0, then F(s)
would be analytic for s > 1/2, so by Landau’s theorem the Dirichlet series
would converge when σ > 1/2. This would imply that F(σ ) > 0 for σ > 1/2.
But ζ (σ ) < 0 for 1/2 < σ < 1 (cf. Corollary 1.14), so it would follow that
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f (σ ) < 0 in this interval. Thus the hypothesis above that f (σ ) ≥ 0 implies –
by Landau’s theorem – that f (1) > 0. In the above we obtain not just this
qualitative information but a quantitative lower bound for f (1) in terms of the
size of σ and the size of f (s) in a surrounding disc.

Proof As in the proof of Landau’s theorem we begin by expanding F(s) in
powers of 2 − s,

F(s) =
∞∑

k=0

bk(2 − s)k (11.15)

for |s − 2| < 1. By Cauchy’s coefficient formula we know that

bk = (−1)k

k!
F (k)(2) = 1

k!

∞∑
n=1

r (n)n−2(log n)k .

Thus bk ≥ 0 for all k, and b0 =∑∞
n=1 r (n)n−2 ≥ 1. For |s − 2| < 1 we may

write

1

s − 1
= 1

1 − (2 − s)
=

∞∑
k=0

(2 − s)k .

On multiplying this by f (1) and subtracting from (11.15) we deduce that

F(s) − f (1)

s − 1
=

∞∑
k=0

(bk − f (1))(2 − s)k (11.16)

for |s − 2| < 1. But the left-hand side is analytic for |s − 2| ≤ 3/2, so the series
converges in this larger disc. In order to estimate the coefficients on the right-
hand side we bound the left-hand side when s lies on the circle |s − 2| = 3/2.
To this end, we note by (1.24) that

|ζ (s)| =
∣∣∣∣1 + 1

s − 1
+ s

∫ ∞

1

[u] − u

us+1
du

∣∣∣∣
≤ 1 + 1

|s − 1| + |s|
σ
.

The relation |s − 2| = 3/2 implies that |s − 1| ≥ 1/2, that |s| ≤ 7/2, and that
σ ≥ 1/2. Hence |ζ (s)| ≤ 10 for the s under consideration. Since | f (1)/(s −
1)| ≤ 2M , it follows that the left-hand side of (11.16) has modulus ≤ 12M
for |s − 2| ≤ 3/2. By the Cauchy coefficient inequalities we deduce that |bk −
f (1)| ≤ 12M(2/3)k . We apply this bound for all k > K where K is a parameter
to be chosen later. Thus from (11.16) we see that if 1/2 < σ ≤ 2, then

ζ (σ ) f (σ ) − f (1)

σ − 1
≥

K∑
k=0

(bk − f (1))(2 − σ )k − 12M
∑
k>K

(
2
3 (2 − σ )

)k
.
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We observe that if 19/20 ≤ σ < 1, then 2
3 (2 − σ ) ≤ 7/10. We also recall that

b0 ≥ 1 and that bk ≥ 0 for all k. Hence the above is

≥ 1 − f (1)
1 − (2 − σ )K+1

1 − (2 − σ )
− 40M(7/10)K+1.

On cancelling the common term f (1)/(1 − σ ) from both sides, and rearranging,
we find that

1 ≤ f (1)(2 − σ )K+1

1 − σ
+ ζ (σ ) f (σ ) + 40M(7/10)K+1,

a relation comparable to (11.14). To ensure that the last term on the right does
not overwhelm the left-hand side, we take K = [(log 80M)/ log 10/7]. Then
the last term on the right is ≤ 1/2. Since ζ (σ ) < 0 by Corollary 1.14, and
f (σ ) ≥ 0 by hypothesis, it follows that

f (1) ≥ 1

2
(1 − σ )(2 − σ )−K−1 ≥ 10

21
(1 − σ )(2 − σ )−K . (11.17)

But

(2 − σ )K ≤ (2 − σ )(log 80M)/ log 10/7 = (80M)(log(2−σ ))/ log 10/7

≤ 80(log 21/20)/ log 10/7 M (log(2−σ ))/ log 10/7.

Here the first factor is < 13/7. Since log(1 + δ) ≤ δ for any δ ≥ 0, on taking
δ = 1 − σ we see that log(2 − σ ) ≤ 1 − σ . Also, log 10/7 > 1/3 and it can
certainly be supposed that M ≥ 1, so the expression above is< (13/7)M3(1−σ ).
This with (11.17) gives the desired lower bound for f (1). �

We are now prepared to prove an important strengthening of Theorem 11.11.

Theorem 11.14 (Siegel) For each positive number ε there is a positive con-
stant C(ε) such that if χ is a quadratic character modulo q, then

L(1, χ ) > C(ε)q−ε.

Proof We assume, as we may, that ε ≤ 1/5. For the present we restrict our
attention to primitive characters. We consider two cases, according to whether
there exists a primitive quadratic character χ1 such that L(s, χ1) has a real zero
β1 in the interval [1 − ε/4, 1), or not. Suppose first that there is no such zero.
We take f (s) = L(s, χ), σ = 1 − ε/4. Then f (σ ) > 0 and by Lemma 10.15
we may take M 	 q1/2. Hence by Lemma 11.13, f (1) 
 εq−3ε/8. Thus there
is a constant C1(ε) > 0 such that L(1, χ ) ≥ C1(ε)q−ε.

Now consider the contrary case, in which there is a primitive quadratic char-
acter χ1 modulo q1 such that L(s, χ1) has a real zero β1 ≥ 1 − ε/4. Since
L(1, χ1) > 0 there is a constant C2(ε) > 0 such that L(1, χ1) ≥ C2(ε)q−ε

1 .
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Now suppose that χ is a primitive quadratic character, χ �= χ1. We apply
Lemma 11.13 with f (s) = L(s, χ )L(s, χ1)L(s, χχ1). To see that the Dirichlet
series coefficients of ζ (s) f (s) are non-negative, we note first that if g(s) is a
Dirichlet series with non-negative coefficients, then exp g(s) is also a Dirichlet
series with non-negative coefficients, since the power series coefficients of the
exponential function are non-negative. Then it suffices to apply this observation
with

g(s) = log ζ (s) f (s) =
∞∑

n=1

�(n)

log n
(1 + χ (n))(1 + χ1(n))n−s .

In view of Lemma 10.15 we may take M = C3qq1. On taking σ = β1, we find
that

f (1) ≥ 1

4
(C3qq1)−3(1−β1) ≥ 1

4
(C3qq1)−3ε/4 ≥ C4(ε)q−ε.

Now

f (1) = L(1, χ )L(1, χ1)L(1, χχ1) 	 L(1, χ )(log qq1)2

by Lemma 10.15, and hence we deduce that

L(1, χ ) ≥ C5(ε)q−2ε. (11.18)

We may assume that C5 ≤ C1, so that (11.18) holds in either case.
We now extend to imprimitive characters. Suppose that χ is induced by a

primitive character χ∗ (mod d), so that q = dr for some r . Then

L(1, χ ) = L(1, χ∗)
∏
p|r

(
1 − χ∗(p)

p

)
≥ L(1, χ∗)

ϕ(r )

r
≥ C5(ε)d−2ε ϕ(r )

r
.

By Theorem 2.9 the above is

≥ C6(ε)(dr )−2ε = C6(ε)q−2ε,

and hence the proof is complete. �

We are unable to compute the value of the constant C(ε) in Siegel’s theorem
when ε < 1/2, because we have no way of estimating the size of the small-
est possible q1 when the second case arises in the proof. Such a constant is
called ‘non-effective.’ This is our first encounter with a non-effective constant,
so the distinction between effectively computable constants and non-effective
constants arises here for the first time.

Corollary 11.15 For any ε > 0 there is a positive number C(ε) such that
if χ is a quadratic character modulo q and β is a real zero of L(s, χ ), then
β < 1 − C(ε)q−ε.
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Proof We may certainly suppose that β > 1 − c/ log 4q > 1 − 1
log q , where

c is the number appearing in Theorem 11.3, so that β is an exceptional zero by
the criterion following that theorem. By taking s = 1 in (10) we see that

L(1, χ ) 	 (1 − β)(log q)2

and the corollary follows easily from the theorem. �

11.2.1 Exercises

1. Call a modulus q ‘exceptional’ if there is a primitive quadratic character
χ (mod q) such that L(s, χ ) has a real zero β such that β > 1 − c/ log q.
Show that if c is sufficiently small, then the number of exceptional q not
exceeding Q is 	 log log Q.

2. Use the last part of Theorem 4 to show that if L(s, χ ) has an exceptional
zero β1, then L ′(β1, χ ) 
 1.

3. (cf. Mahler 1934, Davenport 1966, Haneke 1973, Goldfeld & Schinzel 1975)
Suppose that χ is a quadratic character, and put r (n) =∑d|n χ (d).
(a) Show that ∑

n≤y

χ (n)

n
= L(1, χ ) + O

(
q1/2 y−1 log q

)
.

(b) Show that∑
n≤y

χ (n) log n

n
= −L ′ (1, χ ) + O(q1/2 y−1(log qy)2

)
.

(c) Verify that∑
n≤x

r (n)

n
=
∑
d≤y

χ (d)

d

∑
m≤x/d

1

m
+
∑

m≤x/y

1

m

∑
d≤x/m

χ (d)

d

−
(∑

d≤y

χ (d)

d

)( ∑
m≤x/y

1

m

)
= �1 + �2 − �3,

say.
(d) Show that

�1 = (log x + C0)L(1, χ ) + L ′(1, χ ) + O
(
q1/2 y−1(log qy)2

)+ O(yx−1).

(e) Show that

�2 = (log x/y + C0)L(1, χ ) + O(yx−1 log q) + O
(
q1/2 y−1 log q

)
.
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(f) Show that

�3 = (log x/y + C0)L(1, χ ) + O(yx−1 log q) + O
(
q1/2 y−1(log qx)2

)
.

(g) Show that∑
n≤x

r (n)

n
= (log x + C0)L(1, χ ) + L ′(1, χ ) + O

(
q1/4x−1/2(log qx)3/2

)
.

(h) Show that for each c < 1/2 there is a constant q0(c) such that if q ≥ q0(c)
and L(1, χ ) < c/ log q, then

L ′(1, χ ) �
∑
n≤q

r (n)

n
.

(i) Show that L ′′(σ, χ ) 	 (log q)3 for σ ≥ 1 − 1/ log q.
(j) Show that there is an absolute constant c > 0 such that if L(s, χ ) has an

exceptional zero β1 for which β1 ≥ 1 − c/(log q)3, then

L(1, χ ) � (1 − β1)
∑
n≤q

r (n)

n
.

4. Use Estermann’s lemma (Lemma 11.13) to give a second proof that if L(s, χ )
has an exceptional zero β1, then L(1, χ ) 
 1 − β1 (cf. (11.10) of Theorem
11.4).

5. Use Estermann’s lemma (Lemma 11.13) to give a second proof that if χ is a
cubic character (mod q), then L(1, χ ) 
 (log q)−1/2 (cf. Exercise 11.1.4(e)).

6. (Tatuzawa 1951) Let χ1 and χ2 be distinct primitive quadratic characters,
modulo q1 and q2, respectively, and suppose that L(1, χi ) < Cεq−ε

i for i =
1, 2 where 0 < ε ≤ 1 and C > 0.
(a) Show that minx>1

x
log x = e. By a change of variables, deduce

that if ε > 0, then minx>1 xε/ log x = eε. Use this to show that
minx>1 xε/(log x)2 = e2ε2/4.

(b) Explain why there exists a constant c1 > 0 such that L(1, χ ) ≥ c1/ log q
whenever L(s, χ ) has no exceptional zero. Let C1 = ec1. Show that if
C < C1, then L(s, χ1) and L(s, χ2) have exceptional zeros, say β1 and
β2. (From now on, suppose that C < C1.)

(c) Explain why there is a positive constant c2 such that L(1, χ ) ≥ c2(1 − β)
whenever β is an exceptional zero of L(s, χ ). Let C2 = c2/6. Show that
if C < C2, then β > 1 − ε/6. Let C3 = c2/20. Show that if C < C3,
then β > 19/20. (From now on, suppose that C < Ci for i = 1, 2, 3.)

(d) Explain why there is a constant c3 > 0 such that at most one of L(s, χ1),
L(s, χ2) has a zero in the interval [1 − c3/ log q1q2, 1].

(e) Show that L(s, χ1)L(s, χ2) has a zero β that satisfies the three inequal-
ities β ≥ 19/20, β ≥ 1 − ε/6, β ≤ 1 − c3/ log q1q2.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.013


376 Primes in Arithmetic Progressions: II

(f) Let f (s) = L(s, χ1)L(s, χ2)L(s, χ1χ2). Show that there is an absolute
constant c4 > 0 such that f (1) ≥ c4(log q1q2)−1(q1q2)−ε/2.

(g) Explain why there is a constant c5 > 0 such that L(1, χ1χ2) ≤
c5 log q1q2.

(h) Show that C ≥ c1/2
4 c−1/2

5 e/4.
(i) Conclude that there is a positive effectively computable absolute C such

that if 0 < ε ≤ 1, then the inequality L(1, χ ) > Cεq−ε holds for all
primitive quadratic characters, with at most one exception.

7. (Fekete & Pólya 1912, Pólya & Szegö 1925, p. 44, Heilbronn 1937) Let
S1(x, χ ) =∑1≤n≤x χ (n).
(a) Show that if χ is a quadratic character such that S1(x, χ ) ≥ 0 for all

x ≥ 1, then L(σ, χ ) > 0 for all σ > 0.
(b) Let χd (n) = ( d

n

)
. Show that the hypothesis above holds for d =

−3,−4,−7,−8, but not for d = 5, 8.
(c) For k > 1 let Sk(N , χ ) =∑N

n=1 Sk−1(n, χ ). Show that

Sk(N , χ ) =
N∑

n=1

(
N − n + k − 1

k − 1

)
χ (n).

(d) Let f (x) = f (x + 1) − f (x) andk f (x) = (k−1 f (x)). Show that

k f (x) =∑k
r=0(−1)r

(
k
r

)
f (x + k − r ), and that if f (k)(x) is continu-

ous then

k f (x) =
∫ x+1

x

∫ u1+1

u1

· · ·
∫ uk−1+1

uk−1

f (k)(uk) dukduk−1 · · · du1.

(e) Show that if σ > 0, then (−1)kk(x−σ ) > 0 for all x > 0.
(f) Show that L(s, χ ) = (−1)k

∑∞
n=1 Sk(n, χ )k(n−s) for σ > 0.

(g) Show that if χ is a quadratic character and k is an integer such that
Sk(N , χ ) ≥ 0 for all integers N ≥ 1, then L(σ, χ ) > 0 for all σ > 0.

(h) Forχ5(n) = ( 5
n

)
andχ8(n) = ( 8

n

)
find the least k such that the hypothesis

above is satisfied.
(i) Let P(z, χ ) =∑∞

n=1 χ (n)zn for |z| < 1. Show that P(z, χ )(1 − z)−k =∑∞
n=1 Sk(n, χ)zn for |z| < 1.

(j) Show that if χ is a quadratic character for which Sk(N , χ ) ≥ 0 for all
positive integers N , then P(z, χ ) > 0 for 0 < z < 1.

(k) Show that
∑12

n=1

(
n

163

)
(7/10)n = −0.0483, and that

∑∞
n=13(7/10)n =

0.0323. Deduce that P(0.7, χ−163) < 0, and hence that for any k there
is an N for which Sk(N , χ−163) < 0.
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8. S. Chowla (1972) conjectured that for any primitive quadratic character χ∗

there is a character χ induced by χ∗ such that S1(x, χ ) ≥ 0 for all x ≥ 1
(in the notation of the preceding exercise). Show that Chowla’s conjecture
implies that L(σ, χ) > 0 when χ is a quadratic character and σ > 0. See
also Rosser (1950).

9. (Bateman & Chowla 1953) Suppose that k is a positive integer such that∑
1≤n≤x

λ(n)

n

(
1 − n

x

)k
≥ 0 (11.19)

for all x ≥ 1. (It is not known whether there is such a k.) (a) Show that if χ
is a quadratic character, then∑

1≤n≤x

χ (n)

n

(
1 − n

x

)k
≥
∑

1≤n≤x

λ(n)

n

(
1 − n

x

)k

for all x ≥ 1.
(b) Show that if there is a k such that (11.19) holds for all x ≥ 1, then

L(σ, χ ) > 0 when χ is a quadratic character and σ > 0.

11.3 The Prime Number Theorem for
arithmetic progressions

The various inequalities for zeros of Dirichlet L-functions established above
are motivated by a desire to imitate for primes in arithmetic progressions the
quantitative form of the Prime Number Theorem achieved in Theorem 6.9. For
(a, q) = 1 we set

π (x ; q, a) =
∑
p≤x

p≡a (q)

1, ϑ(x ; q, a) =
∑
p≤x

p≡a (q)

log p, ψ(x ; q, a) =
∑
n≤x

n≡a (q)

�(n),

(11.20)
and correspondingly for any Dirichlet character χ we put

π (x, χ ) =
∑
p≤x

χ (p), ϑ(x, χ ) =
∑
p≤x

χ (p) log p, ψ(x, χ) =
∑
n≤x

χ (n)�(n).

(11.21)

By multiplying both sides of (4.27) by �(n), and summing over n ≤ x , we see
that

ψ(x ; q, a) = 1

ϕ(q)

∑
χ

χ (a)ψ(x, χ ), (11.22)

and similarly for π (x ; q, a) and ϑ(x ; q, a). We deal with ψ(x, χ ) in much the
same way that we dealt with ψ(x) in Chapter 6.
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Theorem 11.16 There is a constant c1 > 0 such that if q ≤ exp(2c1
√

log x),
then

ψ(x, χ ) = E0(χ )x + O
(
x exp

(− c1

√
log x

))
(11.23)

when L(s, χ ) has no exceptional zero, but

ψ(x, χ ) = − xβ1

β1
+ O

(
x exp

(− c1

√
log x

))
(11.24)

when L(s, χ) has an exceptional zero β1. Here E0(χ ) = 1 if χ = χ0, and
E0(χ ) = 0 otherwise.

Proof By Theorems 4.8 and 5.2 we see that

ψ(x, χ ) = −1

2π i

∫ σ0+iT

σ0−iT

L ′

L
(s, χ )

xs

s
ds + R

where σ0 > 1 and

R 	
∑

x/2<n<2x

�(n) min

(
1,

x

T |x − n|
)

+ (4x)σ0

T

∞∑
n=1

�(n)

nσ0

by Corollary 5.3. As in the proof of Theorem 6.9 we suppose that 2 ≤ T ≤ x
and set σ0 = 1 + 1/ log x . Thus

R 	 x

T
(log x)2,

as before. As in the proof of Theorem 6.9, we let C denote a closed contour
that consists of line segments joining the points σ0 − iT , σ0 + iT , σ1 + iT ,
σ1 − iT , but now the choice of σ1 is a little more complicated, since we want
to ensure that C does not pass too closely to an exceptional zero.

Case 1. There is no exceptional zero. In this case we take σ1 = 1 − c/(5 log qT )
where c is the constant in Theorem 11.3. Ifχ is non-principal, then the integrand
is analytic on and inside C, but if χ = χ0, then it has a pole at s = 1 with residue
x . Hence

−1

2π i

∫
C

L ′

L
(s, χ)

xs

s
ds = E0(χ )x . (11.25)

We estimate the integrals from σ0 + iT to σ1 + iT , from σ1 + iT to σ1 − iT ,
and from σ1 − iT to σ0 − iT as in the proof of Theorem 6.9, using the estimate
(11.5) of Theorem 11.4. Thus we find that

ψ(x, χ ) − E0(χ )x 	 x(log x)2

(
1

T
+ exp

(−c log x

5 log qT

))
. (11.26)

Case 2. There is an exceptional zero β1, and it satisfies β1 ≥ 1 − c/(4 log qT ).
In this case we take σ1 = 1 − c/(3 log qT ). The integrand in (11.25) now has
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a pole inside C at β1, so the left-hand side of (11.25) has the value −xβ1/β1.
Otherwise, the estimates proceed as before, and we find that

ψ(x, χ ) = − xβ1

β1
+ O

(
x(log x)2

(
1

T
+ exp

(−c log x

5 log qT

)))
. (11.27)

Case 3. There is an exceptional zero β1, but it satisfies β1 < 1 − c/(4 log qT ).
We proceed exactly as in Case 1, and so we obtain (11.26). To pass to (11.27)
it suffices to note that

xβ1

β1
	 x exp

(−c log x

5 log qT

)
in the current case.

We have established (11.26) if there is no exceptional zero, and (11.27)
if there is one. To complete our argument, we need only observe that if
c1 = √

c/20, if q ≤ exp(2c1
√

log x), and if T = exp(2c1
√

log x), then (11.26)
gives (11.23) and (11.27) gives (11.24). �

We are now in a position to prove

Corollary 11.17 (Page) Let c1 be the same constant as in Theorem 11.16. If
(a, q) = 1, then

ψ(x ; q, a) = x

ϕ(q)
+ O

(
x exp

(− c1

√
log x

))
(11.28)

when there is no exceptional character modulo q, and

ψ(x ; q, a) = x

ϕ(q)
− χ1(a)xβ1

ϕ(q)β1
+ O

(
x exp

(− c1

√
log x

))
(11.29)

when there is an exceptional character χ1 modulo q and β1 is the concomitant
zero.

Proof If q ≤ exp
(
2c1

√
log x

)
, then we have only to insert the estimates of

Theorem 11.16 into (11.22). If q is larger, then the stated estimates are still
valid, but are worse than trivial. To see this, note first that the largest term in
ψ(x ; q, a) is ≤ log x , and the number of terms is ≤ x/q + 1, so it is immediate
that

ψ(x ; q, a) ≤ (x/q + 1) log x 	 x exp(−c1

√
log x)

when q ≥ exp(2c1
√

log x). �

Presumably, exceptional zeros do not exist. However, if such a zero does
exist, then we have a second main term in (11.29) that is bigger than the error
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term when x < exp(c2
1/(1 − β1)2). If β1 is extremely close to 1, then one might

have β1 ≥ 1 − 1/ log x , and in such a situation the second main term is of the
same order of magnitude as the first main term, since

x − xβ1

β1
= (β1 − 1)xβ1/β1 + (log x)

∫ 1

β1

xσ dσ � (1 − β1)x log x . (11.30)

Thus if 1 − β1 is small compared with 1/ log x , then the main term is nearly
doubled if χ1(a) = −1, and it is nearly annihilated if χ1(a) = 1. Unfortunately,
the upper bound provided by the Brun–Titchmarsh theorem (Theorem 3.9) is
not quite strong enough to refute such a possibility.

The constants c and c1 in Theorems 11.3, 11.4, 11.16 and Corollary 11.17
are effectively computable. However, if we are willing to accept non-effective
constants, then by Siegel’s theorem (Theorem 11.14), or more precisely by its
corollary (Corollary 11.15), we can eliminate the second main term, provided
that q is more sharply limited.

Corollary 11.18 Let c1 be the same constant as in Theorem 11.16. For any
positive A there is an x0(A) such that if q ≤ (log x)A, then

ψ(x, χ ) = E0(χ )x + O
(
x exp

(− c1

√
log x

))
(11.31)

for x ≥ x0(A).

Proof Suppose that χ is quadratic and that L(s, χ ) has an exceptional zero
β1. Then

xβ1 = x exp(−(1 − β1) log x) ≤ x exp(−C(ε)q−ε log x)

by Siegel’s theorem (Corollary 11.15). Since q ≤ (log x)A, the above is

≤ x exp(−C(ε)(log x)1−Aε).

In order to reach (11.31) we need to take ε a little smaller than 1/(2A), say
ε = 1/(3A). Then the above is

≤ x exp
(− c1

√
log x

)
provided that x ≥ x0 = exp((c1/C(ε))6). �

The constraint q ≤ (log x)A can be rewritten as x ≥ exp(q1/A). This implies
the constraint x ≥ x0(A) if q is sufficiently large, say q ≥ q0(A). We note also
that the implicit constant in (11.31) is absolute. If we were to allow the implicit
constant to depend on A, e.g. to be as large as exp((c1/C(ε))3), then we would
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obtain an estimate

ψ(x, χ) 	A x exp
(− c1

√
log x

)
that is valid for all q and all x ≥ exp

(
q1/A

)
, though of course the implicit

constant is so large that the bound is worse than the trivial ψ(x, χ ) 	 x when
x < x0. By applying (11.22) and (11.28), we obtain

Corollary 11.19 (The Siegel–Walfisz theorem) Let c1 be the constant in The-
orem 11.16, and suppose that A is given, A > 0. If q ≤ (log x)A and (a, q) = 1,
then

ψ(x ; q, a) = x

ϕ(q)
+ OA

(
x exp

(− c1

√
log x

))
.

Pertaining to ϑ(x ; q, a) and π (x ; q, a) we have estimates similar to those of
Corollary 11.17.

Corollary 11.20 Let c1 be the constant in Theorem 11.16. If (a, q) = 1, then

ϑ(x ; q, a) = x

ϕ(q)
+ O

(
x exp

(− c1

√
log x

))
(11.32)

and

π (x ; q, a) = li(x)

ϕ(q)
+ O

(
x exp

(− c1

√
log x

))
(11.33)

when there is no exceptional character modulo q, but

ϑ(x ; q, a) = x

ϕ(q)
− χ1(a)xβ1

ϕ(q)β1
+ O

(
x exp

(− c1

√
log x

))
(11.34)

and

π (x ; q, a) = li(x)

ϕ(q)
− χ1(a)li

(
xβ1
)

ϕ(q)
+ O

(
x exp

(− c1

√
log x

))
(11.35)

when there is an exceptional character χ1 modulo q and β1 is the concomitant
zero.

Proof Since

0 ≤ ψ(x ; q, a) − ϑ(x ; q, a) ≤ ψ(x) − ϑ(x) 	 x1/2,

the assertions concerning ϑ(x ; q, a) follow immediately from Corollary 11.17.
As for π (x ; q, a), we write

π (x ; q, a)=
∫ x

2−

1

log u
dϑ(u; q, a)= li(x)

ϕ(q)
+
∫ x

2−

1

log u
d(ϑ(u; q, a) − u/ϕ(q)).

This last integral we integrate by parts (as in the proof of Theorem 6.9), and
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find that it is
ϑ(u; q, a) − u/ϕ(q)

log u

∣∣∣x
2−

−
∫ x

2

ϑ(u; q, a) − u/ϕ(q)

u(log u)2
du.

If there is no exceptional zero, then the numerator in the integrand is
	 u exp(−c1

√
log u) 	 x exp(−c1

√
log x), so we obtain (11.33). If there is

an exceptional character χ1, then the main term is reduced by χ1(a)/ϕ(q) times
the amount∫ x

2

1

log u
d

uβ1

β1
=
∫ x

2

uβ1−1

log u
du =

∫ xβ1

2β1

1

log v
dv = li(xβ1 ) + O(1).

The error term is still treated in the same way, so we obtain (11.35). �

By arguing in the same manner from Corollary 11.19, we obtain

Corollary 11.21 Let c1 be the constant in Theorem 11.16, and suppose that
A is given, A > 0. If q ≤ (log x)A and (a, q) = 1, then

ϑ(x ; q, a) = x

ϕ(q)
+ OA

(
x exp

(− c1

√
log x

))
(11.36)

and

π (x ; q, a) = li(x)

ϕ(q)
+ OA

(
x exp

(− c1

√
log x

))
. (11.37)

11.3.1 Exercises

1. Suppose that χ is a character modulo q. Explain why

ψ(x, χ ) =
q∑

a=1
(a,q)=1

χ (a)ψ(x ; q, a).

2. Suppose that exp(2c1
√

log x) ≤ q ≤ x . Show that there is a positive con-
stant c2 such that

ψ(x, χ ) = E0(χ )x + O

(
x exp

(−c2 log x

log q

))
if L(s, χ ) has no exceptional zero, and that

ψ(x, χ ) = − xβ1

β1
+
(

x exp

(−c2 log x

log q

))
if L(s, χ ) has the exceptional zero β1.

3. Show that if q ≤ exp(2c1
√

log x), then

ϑ(x, χ ) = E0(χ )x + O
(
x exp

(− c1

√
log x

))
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when L(s, χ ) has no exceptional zero, and that

ϑ(x, χ ) = − xβ1

β1
+ O

(
x exp

(− c1

√
log x

))
when L(s, χ ) has an exceptional zero β1.

4. Suppose that q ≤ exp(c1
√

log x), and put x0 = exp
(( log q

2c1

)2)
.

(a) Explain why π (x0;χ ) 	 x0 ≤ x1/4.
(b) Treat π (x, χ ) − π (x0, χ ) as in the proof of Corollary 11.20 to show

that

π (x, χ) 	 x exp
(− c1

√
log x

)
if L(s, χ ) has no exceptional zero, and that

π (x, χ ) = − li(xβ1 ) + O
(
x exp

(− c1

√
log x

))
if L(s, χ ) has the exceptional zero β1.

5. Suppose that A is given, A > 0. Show that if q ≤ (log x)A, then

ϑ(x, χ) = E0(x)x + O
(
x exp

(− c1

√
log x

))
,

and that

π (x, χ) = E0(χ )li(x) + O
(
x exp

(− c1

√
log x

))
.

By analogy with (11.20) we set

�(x ; q, a) =
∑
n≤x

n≡a(q)

λ(n), M(x ; q, a) =
∑
n≤x

n≡a(q)

µ(n). (11.38)

Here it is no longer natural to restrict to (a, q) = 1. Correspondingly, if χ is a
character modulo q , we put

�(x, χ ) =
∑
n≤x

χ (n)λ(n), M(x, χ ) =
∑
n≤x

χ (n)µ(n). (11.39)

6. Let c1 be the constant of Theorem 11.16, suppose that q ≤ exp(2c1
√

log x)
and that χ is a character modulo q. Show that

�(x, χ ) 	 x exp
(− c1

√
log x

)
when L(s, χ ) has no exceptional zero, and that

�(x, χ ) = L(2β1, χ0)xβ1

L ′(β1, χ )β1
+ O

(
x exp

(− c1

√
log x

))
when L(s, χ ) has an exceptional zero β1. (Note that in this latter case, the
result of Exercise 11.1.2 is useful.)
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7. Let c1 be the constant of Theorem 11.16, suppose that q ≤ exp(2c1
√

log x)
and that χ is a character modulo q. Show that

M(x, χ ) 	 x exp
(− c1

√
log x

)
when L(s, χ ) has no exceptional zero, and that

M(x, χ ) = xβ1

L ′(β1, χ )β1
+ O

(
x exp

(− c1

√
log x

))
when L(s, χ ) has an exceptional zero β1.

8. Let c1 be the constant in Theorem 11.16, and suppose that A is given,
A > 0. Show that if q ≤ (log x)A and χ is a character modulo q, then

�(x, χ ) 	A exp
(− c1

√
log x

)
,

and that

M(x, χ ) 	A x exp
(− c1

√
log x

)
.

9. Show that if (a, q) = 1, then

�(x ; q, a) = 1

ϕ(q)

∑
χ

χ (a)�(x, χ ),

and that

M(x ; q, a) = 1

ϕ(q)

∑
χ

χ (a)M(x, χ).

10. Let c1 be the constant in Theorem 11.16. Show that if (a, q) = 1, then

�(x ; q, a) 	 x exp
(− c1

√
log x

)
if there is no exceptional χ modulo q, and that

�(x ; q, a) = χ1(a)L(2β1, χ0)xβ1

ϕ(q)L ′(β1, χ1)β1
+ O

(
x exp

(− c1

√
log x

))
if there is an exceptional character χ1 modulo q with associated zero β1.

11. Suppose that (a, q) = d, and write a = db, q = dr .
(a) Show that �(x ; q, a) = λ(d)�(x/d; r, b).
(c) Show that

�(x ; q, a) 	 x

d
exp
(− c1

√
log x/d

)
if no L-function modulo r has an exceptional zero, and that

�(x ; q, a) = λ(d)χ1(b)L(2β1, χ0)(x/d)β1

ϕ(r )L ′(β1, χ1)β1
+ O

( x

d
exp
(− c1

√
log x/d

))
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if there is an exceptional character χ1 modulo r with associated zero
β1. Here χ0 is the principal character modulo r .

(d) Show that if q ≤ (log x)A, then

�(x ; q, a) 	A x exp
(− c1

√
log x

)
for all a.

12. Suppose that (a, q) = 1. Show that

M(x ; q, a) 	 x exp
(− c1

√
log x

)
if there is no exceptional character χ modulo q, and that

M(x ; q, a) = χ1(a)xβ1

ϕ(q)L ′(β1, χ1)β1
+ O

(
x exp

(− c1

√
log x

))
if there is an exceptional character χ1 modulo q with associated
zero β1.

13. Suppose that d = (a, q), and write q = dr , a = bd .
(a) Show that if d is not square-free, then M(x ; q, a) = 0.
(b) Explain why one does not expect that M(x ; q, a) = µ(d)M(x/d; r, b)

is true in general.
(c) Show instead that

M(x ; q, a) = µ(d)
∑
k|d

(k,r )=1

µ(k)M(x/(dk); r, bk)

where kk ≡ 1 (mod r ).
(d) Show that M(x ; q, a) 	 x/q in any case.
(e) Deduce that M(x ; q, a) 	 x exp(−c

√
log x) if there is no exceptional

character modulo r , and that

M(x ; q, a)= µ(d)χ1(b)(x/d)β1

ϕ(r )L ′(β1, χ1)β1

∏
p|d
p�r

(
1 − χ1(p)

pβ1

)
+O

(
x exp

(− c
√

log x
))

if there is an exceptional character χ1 with associated zero β1.
(f) Show that if q ≤ (log x)A, then M(x ; q, a) 	A x exp(−c

√
log x) for

all a.
14. Grössencharaktere for Q(

√−1), continued from Exercise 11.1.5. Put
ψ(x, χm) =∑N (a)≤x �(a)χm(a). Show that if 1 ≤ m ≤ exp(

√
log x),

then ψ(x, χm) 	 x exp(−c
√

log x) where c > 0 is a suitable absolute
constant.
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11.4 Applications

The fundamental estimates of the preceding section can be applied to a
wide variety of counting problems, of which the following are representative
examples.

Theorem 11.22 (Walfisz) Let A > 0 be fixed, and let R(n) denote the number
of ways of writing n as a sum of a prime and a square-free number. Then

R(n) = c(n)li(n) + O
(
n/(log n)A

)
where

c(n)=
∏
p�n

(
1− 1

p(p − 1)

)
=
(∏

p|n

(
1+ 1

p2 − p − 1

))(∏
p

(
1− 1

p(p − 1)

))
.

Proof Clearly

R(n) =
∑
p<n

µ(n − p)2

=
∑
p<n

∑
d2|(n−p)

µ(d)

by (2.4). Here the divisibility relation is equivalent to asserting that p ≡
n (mod d2). Hence on inverting the order of summations we see that the above
is

=
∑

d≤√
n

µ(d)π (n − 1; d2, n).

If (d, n) > 1, then the summand is O(1), and hence such d ≤ √
n contribute

an amount that is O(
√

n). We now restrict our attention to those d for which
(d, n) = 1. For small d , say d ≤ y = (log x)A we can apply the Siegel–Walfisz
theorem (Corollary 11.19). Thus we see that∑

d≤y
(d,n)=1

µ(d)π (n − 1; d2, n) = li(x)
∑
d≤y

(d,n)=1

µ(d)

ϕ(d2)
+ O

(
xy exp

(− c
√

log x
))
.

Since ϕ(d2) = dϕ(d), we see that the sum in the main term is

∞∑
d=1

(d,n)=1

µ(d)

dϕ(d)
+ O

(∑
d>y

1

dϕ(d)

)
=
∏
p�n

(
1 − 1

p(p − 1)

)
+ O(1/y)

by (1.31). To treat d > y we could appeal to the Brun–Titchmarsh theorem
(Theorem 3.9), but the moduli d2 are increasing so rapidly that the trivial
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estimate π (x ; q, a) 	 1 + x/q is enough:∑
y<d<

√
n

π (n − 1; d2, n) 	
∑

y<d<
√

n

n

d2
	 n

y
.

On combining our estimates we obtain the stated result. �

In some situations, as below, we find it fruitful to use the Prime Number
Theorem for arithmetic progressions in conjunction with sieve estimates.

Theorem 11.23 Let N (x) denote the number of integers n ≤ x for which
(n, ϕ(n)) = 1. Then

N (x) ∼ e−C0 x

log log log x

as x → ∞.

Proof We note that (n, ϕ(n)) = 1 if and only if n has the following two prop-
erties: (i) n is square-free, and (ii) there do not exist prime factors p, p′ of n
such that p′ ≡ 1 (mod p). Let p(n) denote the least prime factor of n. We shall
show that if p(n) is small compared with log log x then n is unlikely to have the
property (ii). We also show that n is likely to have both properties (i) and (ii) if
p(n) is large compared with log log x . Thus N (x) is approximately the number
of integers n ≤ x for which p(n) > log log x .

Let Ap(x) denote the number of n ≤ x that satisfy (i) and (ii) and for which
p(n) = p. Thus

N (x) =
∑
p≤x

Ap(x).

We begin by estimating Ap(x) when p ≤ log log x . Let p be given, and suppose
that n is an integer such that p(n) = p and for which (ii) holds. Write n = pm;
then m is relatively prime to all prime numbers < p and also to all primes
≡ 1 (mod p). Thus by the sieve estimate (3.20) we see that

Ap(x) 	 x

p

(∏
p′<p

(
1 − 1

p′

)) ∏
p′≤x/p
p′≡1(p)

(
1 − 1

p′

)
.

Here the first product is � 1/ log p by Mertens’ estimate (Theorem 2.7(e)).
By Theorem 4.12(d) we know that the second product is � (log x)−1/(p−1) for
any fixed prime p. To derive a bound that is uniform in p we appeal to the
Siegel–Walfisz theorem (Corollary 11.19), by which we see that π (u; p, 1) �

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.013 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.013


388 Primes in Arithmetic Progressions: II

u/(p log u) uniformly for u ≥ ep. Hence by integrating by parts we deduce
that ∑

ep≤p′≤x/p
p′≡1(p)

1

p′ � 1

p
(log log x/p − log p) � log log x

p

uniformly for p ≤ log log x . Hence there is a constant c > 0 such that in this
range,

Ap(x) 	 x

p log p
exp(−c(log log x)/p).

Now it is not hard to show that the number of integers n ≤ x such that p(n) = p
is � x/(p log p) uniformly for p ≤ x/2. Hence the exponential above reflects
the relative improbability that n satisfies condition (ii). On summing, we find
that ∑

1
2 U<p≤U

Ap(x) 	 x

(log U )2
exp(−c(log log x)/U ).

We take U = 2−k log log x and sum over k to see that∑
p≤log log x

Ap(x) 	 x

(log log log x)2
.

We now consider n for which p(n) is large, say p(n) ≥ y where y, to be
chosen later, is somewhat larger than log log x . Let �(x, y) denote the number
of integers n ≤ x composed entirely of prime numbers > y. By the sieve of
Eratosthenes (Theorem 3.1) and Mertens’ estimate (Theorem 2.7(e)) we see
that ∑

y<p≤x

Ap(x) ≤ �(x, y) = e−C0 x

log y
+ O

(
x

(log y)2

)
+ O

(
ey/ log y

)
.

To derive a corresponding lower bound for the left-hand side we start with the
numbers counted by �(x, y) and then delete those that do not satisfy (i) or (ii).
If n does not satisfy (i), then there is a prime number p such that p2|n. The
number of such n ≤ x is not more than [x/p2] ≤ x/p2. Hence the total number
of n counted in �(x, y) for which (i) fails is not more than x

∑
p>y p−2 	

x/(y log y). Similarly, if n does not satisfy (ii), then there exist primes p, p′

with pp′|n such that p′ ≡ 1 (mod p). If p and p′ are given, then the number
of n ≤ x for which pp′|n is ≤ x/(pp′). Hence the total number of n counted in
�(x, y) for which (ii) fails is not more than

x
∑

y≤p≤√
x

1

p

∑
p′≤x/p
p′≡1(p)

1

p′ . (11.40)
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By the Brun–Titchmarsh inequality (Theorem 3.9) we see that∑
U<p′≤2U

p′≡1(p)

1

p′ 	 1

p log 2U/p

uniformly for U ≥ p. We take U = 2k p and sum over k to see that the inner
sum in (11.40) is 	 (log log 4x/p2)/p. Hence the expression (11.40) is

	 x(log log x)
∑
p>y

1

p2
	 x log log x

y log y
.

On combining our estimates we see that∑
y≤p≤x

Ap(x) ≥ eC0 x

log y
− O

(
x

(log y)2

)
− O

(
ey/ log y

)
− O

(
x

y log y

)
− O

(
x log log x

y log y

)
.

In order that the last error term above is of a smaller order of magnitude than
the main term, it is necessary to choose y so that y/ log log x → ∞. Thus there
is necessarily a remaining range log log x < p ≤ y to be treated. By using the
sieve (i.e., (3.20)) as in our treatment of small p we see that the number of
integers n ≤ x for which p(n) = p is 	 x/(p log p), uniformly for p ≤ √

x .
Hence Ap(x) 	 x/(p log p), and consequently∑

U≤p≤2U

Ap(x) 	 x

(log U )2
.

We put U = 2k log log x and sum over 1 ≤ k ≤ K where K 	 log y
log log x to

see that ∑
log log x≤p≤y

Ap(x) 	 x

(log log log x)2
log

y

log log x
.

In order that this is a smaller order of magnitude than the main term, it is
necessary to take y ≤ (log log x)(1+ε) with ε → 0 as x → ∞. By taking y to
be of this form with ε tending to 0 slowly, we obtain the stated result. �

11.4.1 Exercises

1. Let R(n) be defined as in Theorem 11.22.
(a) Show that if there is a primitive quadratic character χ1 (mod q1), q1 ≤

exp(
√

log x), for which L(s, χ1) has a real zero β1 > 1 − c(log x)−1/2,
then

R(n) = c(n)li(n) − χ1(n)c1(n)li(nβ1 ) + O
(
n exp

(− c
√

log n
))
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where

c1(n) =
∞∑

d=1
(d,n)=1

q1|d2

µ(d)

dϕ(d)
.

(b) Show that c1(n) = 0 if 8|q1.
(c) Show that if q1 is odd, then

c1(n) = µ(q1)c(q1n)

q1ϕ(q1)
.

(d) Show that if 4‖q1, then

c1(n) = 4µ(q1/2)c(q1n)

q1ϕ(q1)

2. In the proof of Theorem 11.23, specify ε as an explicit function of x to show
that

N (x) = x

log log log x

(
e−C0 + O

(
log log log log x

log log log x

))
.

3. Let a be a fixed non-zero integer. Show that the number of primes p ≤ x
such that p + a is square-free is c(a)li(x) + OA(x(log x)−A) where c(a) is
defined as in Theorem 11.22.

4. Show that the appeal to the Siegel–Walfisz theorem in the proof of Theorem
11.23 can be replaced by an appeal to Page’s theorem in conjunction with
Corollary 11.12.

5. (Vaughan 1973) Let A and B be positive numbers. Show that∑
p≤x

(
ϕ(p − 1)

p − 1

)B

= C li(x) + OA,B(x/(log x)A)

where

C =
∏

p

(
1 − 1 − (1 − 1/p)B

p − 1

)
.

6. (Erdős 1951)
(a) Let r (n) denote the number of solutions of p + 2k = n with p prime

and k ≥ 1, and let y = c
√

log x where c is a sufficiently small positive
constant. Define q ′ =∏2<p≤y p. If there is a primitive character χ∗

modulo q∗ with q∗|q ′ for which L(s, χ∗) has an exceptional zero, then
let p be any prime divisor of q∗ and define q = q ′/p. Otherwise let
q = q ′. Prove that∑

m≤x/q

r (qm) = x

ϕ(q) log 2
+ O

(
x

ϕ(q) log x

)
.

(b) Show that r (n) = �(log log n).
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11.5 Notes

Section 11.1. Theorem 11.3 is a combination of work by Gronwall (1913) and
Titchmarsh (1930).

Section 11.2. Lemma 11.6, Theorem 11.7, and Corollaries 11.8, 11.9 origi-
nate in Landau (1918a, b), while Corollary 11.10 is from Page (1935). Theorem
11.11 can also be proved by appealing to the Dirichlet class number formula,
which asserts that if d is a quadratic discriminant and χd (n) = ( d

n

)
K

is the
associated quadratic character, then

L(1, χd ) =

⎧⎪⎪⎨⎪⎪⎩
2πh

w
√−d

(d < 0),

h log ε√
d

(d > 0);

see Davenport (2000, Section 6). If d < 0, then χd (−1) = −1, Q(
√

d) is an
imaginary quadratic field with class number h, and w denotes the number of
roots of unity in the field (which is to say that w = 6 if d = −3, w = 4 if
d = −4, and w = 2 otherwise). If d > 0, then χd (−1) = 1, Q(

√
d) is a real

quadratic field with class number h and fundamental unit ε. Since ε 
 √
d,

it follows that if χ is a quadratic character with χ (−1) = 1, then L(1, χ ) 

(log q)/q1/2.

Corollary 11.12 has been sharpened by Davenport (1966), Haneke (1973),
and by Goldfeld & Schinzel (1975).

Section 11.3. Let h(d) denote the number of equivalence classes of primitive
binary quadratic forms of discriminant d. Gauss (1801, Section 303) conjec-
tured that h(d) → ∞ as d → −∞. (The behaviour for d > 0 is quite different –
the heuristics of Cohen & Lenstra (1984a, b) predict that h(p) = 1 for a positive
proportion of primes p ≡ 1 (mod 4).) For Gauss, the generic binary quadratic
form was written ax2 + 2bxy + cy2, which is to say that the middle coefficient
is even. Put  = b2 − ac. In Gauss’s notation, Landau (1903) found that if
 < 0, then the class number is 1 precisely when  = −1,−2,−3,−4,−7.
Binary quadratic forms ax2 + bxy + cy2 with d = b2 − 4ac correspond, when
d is a fundamental quadratic discriminant, to ideals in the ring OK of integers
in the quadratic number field K = Q(

√
d). In this notation, h(d) = 1 if and

only if OK is a unique factorization domain. The problem of determining all
d < 0 for which h(d) = 1 is now solved, but historically it was enormously
more difficult than the class number 1 problem settled by Landau. Landau
(1918b) recorded Hecke’s observation that if d < 0 is a quadratic discriminant
and L(s, χd ) > 0 for 1 − c/ log |d| < s < 1, then h(d) 
c |d|1/2/ log |d|. In
view of Dirichlet’s class number formula (4.36), we have obtained Hecke’s
result – by a different method – in Theorem 11.4. Thus we have a good lower
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bound for h(d) when d < 0, except for those d for which L(s, χd ) has an ex-
ceptional real zero. Deuring (1933) showed that if h(d) = 1 has infinitely many
solutions with d < 0, then the Riemann Hypothesis is true. Mordell (1934)
showed that the same conclusion can be derived from the weaker hypothe-
sis that h(d) does not tend to infinity as d → −∞. Heilbronn (1934) found
that instead of arguing from a hypothetical zero ρ of the zeta function with
β > 1/2 one could just as well argue from an exceptional zero of a quadratic
L-function, and thus proved Gauss’s conjecture that h(d) → ∞ as d → −∞.
Landau (1935) put Heilbronn’s theorem in a quantitative form: h(d) > |d|3/8−ε

as d → −∞. Through a different arrangement of the technical details, Siegel
(1935) sharpened Landau’s argument to show that h(d) > |d|1/2−ε, which by
(4.36) is the case d < 0 of Theorem 11.14. To achieve his result, Siegel first gen-
eralized to algebraic number fields the formula (found in Exercise 10.1.10) that
Riemann used to prove the functional equation for ζ (s). Then Siegel applied this
to the quartic number field K = Q(

√
d1,

√
d2) whose Dedekind zeta function

is ζK (s) = ζ (s)L(s, χd1 )L(s, χd2 )L(s, χd1d2 ). It is now recognized that Siegel’s
formula arises through the choice of the kernel in a Mellin transform, and that
many other choices work just as well; see Goldfeld(1974). Our exposition is
based on that of Estermann (1948).

It is easy to show that the complex quadratic field of discriminant d < 0
has unique factorization in the nine cases d = −3,−4,−7,−8,−11,−19,
−43,−67,−163. Heilbronn & Linfoot (1934) showed that there could ex-
ist at most one more such discriminant. The ‘problem of the tenth discrimi-
nant’ was solved first by Heegner (1952). However, Heegner’s paper contained
many assertions for which proofs were not provided, and Heegner also used
results from Weber’s Algebra which were known not to be trustworthy. Con-
sequently, for many years Heegner’s paper was thought to be incorrect. Baker
(1966) proved a fundamental lower bound for linear forms in logarithms of
algebraic numbers, which by means of a result of Gel’fond & Linnik (1948)
reduced the class number 1 problem to a finite calculation. Meanwhile, Stark
(1967) showed that there is no tenth discriminant by translating Heegner’s
argument into parallel language where it could be checked. After a reexami-
nation of Heegner’s work, Deuring (1968), Birch (1969), and Stark (1969) all
concluded that Heegner’s paper was after all correct. Gel’fond & Linnik re-
duced the class number problem to a question concerning linear forms in three
logarithms, which Baker treated successfully. However, with a small modifi-
cation of their argument, Gel’fond & Linnik could have reduced the problem
to linear forms in two logarithms, which Gel’fond had already treated. Thus
one could say that Gel’fond & Linnik ‘should’ have solved the problem in
1948.
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Baker (1971) and Stark (1971b, 1972) reduced the complete determination
of complex quadratic fields with h(d) = 2 to a finite calculation which was
provided by Bundschuh & Hock (1969), Ellison et al. (1971), Montgomery &
Weinberger (1973), and by Stark (1975).

The effective determination of all quadratic discriminants d < 0 for which
h(d) takes specific larger values became possible only with the addition of
further ideas. Goldfeld (1976) showed that a zero at s = 1/2 of the L-function
of an elliptic curve would be useful if it is of sufficiently high multiplicity.
In particular, if (i) the Birch–Swinnerton-Dyer conjectures are true, and if (ii)
there exist elliptic curves of arbitrarily high rank, then h(d) 
A (log |d|)A for
arbitrarily large A, with an effectively computable implicit constant. Although
these conjectures remain unproved, Gross & Zagier (1986) were able to establish
enough to give an effective lower bound for h(d) tending to infinity. For accounts
of this, see Zagier (1984), Goldfeld (1985), Coates (1986), and finally Oesterlé
(1988), who developed the Goldfeld and Gross–Zagier work to show that

h(d) ≥ 1

55
(log |d|)

∏
p|d

p<|d|

(
1 − [2

√
p]

p + 1

)
.

By means of this inequality, Arno (1992), Wagner (1996), and Arno, Robinson &
Wheeler (1998) treated progressively larger collections of class numbers. Most
recently, Watkins (2004) settled the complete determination of all discriminants
d < 0 for which h(d) ≤ 100.

With regard to Corollary 11.17, Page (1935) states the final conclusion in
a less precise form in which the term corresponding to the exceptional zero is
replaced by O(xβ1/φ(q)).

The deduction of Corollaries 11.18 and 11.19 from Siegel’s theorem was
first recorded by Walfisz (1936).

Section 11.4. Theorem 11.22 is due to Walfisz (1936). In a weaker form it
occurs first in Estermann (1931), and is given in a somewhat refined form but
without the benefit of Siegel’s theorem in Page (1935). For similar theorems
see see Mirsky (1949).

Theorem 11.23 is due to Erdős (1948).
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(1968). Imaginäre quadratische Zahlkörper mit der Klassenzahl Eins, Invent.
Math. 5, 169–179.

Ellison, W. J., Pesek, J., Stall, D. S. & Lunnon, W. F. (1971). A postscript to a paper of
A. Baker, Bull. London Math. Soc. 3, 75–78.
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(1918a). Über imaginär-quadratische Zahlkörper mit gleicher Klassenzahl, Nachr.
Akad. Wiss. Göttingen, 277–284; Collected Works, Vol. 7. Essen: Thales Verlag,
1986, pp. 142–160.
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Oesterlé, J. (1988). Le problème de Gauss sur le nombre de classes, Enseignement Math.
(2) 34, 43–67.

Page, A. (1935). On the number of primes in an arithmetic progression, Proc. London
Math. Soc. (2) 39, 116–141.
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