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Primitive characters and Gauss sums

9.1 Primitive characters

Suppose that d | q and that χ! is a character (mod d), and set

χ (n) =
{
χ!(n) (n, q) = 1;

0 otherwise.
(9.1)

Then χ (n) is multiplicative and has period q, so by Theorem 4.7 we deduce that
χ (n) is a Dirichlet character (mod q). In this situation we say that χ! induces
χ . If q is composed entirely of primes dividing d, then χ (n) = χ!(n) for all n,
but if there is a prime factor of q not found in d, then χ (n) does not have period
d . Nevertheless, χ and χ! are nearly the same in the sense that χ (p) = χ!(p)
for all but at most finitely many primes, and hence

L(s, χ ) = L(s, χ!)
∏
p|q

(
1 − χ!(p)

ps

)
. (9.2)

Our immediate task is to determine when one character induces another.

Lemma 9.1 Let χ be a character (mod q). We say that d is a quasiperiod
of χ if χ (m) = χ (n) whenever m ≡ n (mod d) and (mn, q) = 1. The least
quasiperiod of χ is a divisor of q.

Proof Let d be a quasiperiod of χ , and put g = (d, q). We show that g is
also a quasiperiod of χ . Suppose that m ≡ n (mod g) and that (mn, q) = 1.
Since g is a linear combination of d and q, and m − n is a multiple of g,
it follows that there are integers x and y such that m − n = dx + qy. Then
χ (m) = χ (m − qy) = χ (n + dx) = χ (n). Thus g is a quasiperiod of χ . �

With more effort (see Exercise 9.1.1) it can be shown that if d1 and d2

are quasiperiods of χ , then (d1, d2) is also a quasiperiod, and hence the least
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9.1 Primitive characters 283

quasiperiod divides all other quasiperiods, and in particular it divides q (since
q is a quasiperiod of χ ).

The least quasiperiod d of χ is called the conductor of χ . Suppose that d
is the conductor of χ . If (n, d) = 1, then (n + kd, d) = 1. Also, if (r, d) = 1
then there exist values of k (mod r ) for which (n + kd, r ) = 1. Hence there
exist integers k for which (n + kd, q) = 1. For such a k putχ!(n) = χ (n + kd).
Although there are many such k, there is only one value of χ (n + kd) when
(n + kd, q) = 1. We extend the definition of χ! by setting χ!(n) = 0 when
(n, d) > 1. It is readily seen that χ! is multiplicative and that χ! has period
d . Thus by Theorem 4.7, χ! is a character modulo d. Moreover, if χ0 is the
principal character modulo q, then χ (n) = χ!(n)χ0(n). Thus χ! induces χ .
Clearly χ! has no quasiperiod smaller than d, for otherwise χ would have a
smaller quasiperiod, contradicting the minimality of d. In addition, χ! is the
only character (mod d) that induces χ , for if there were another, say χ1, then
for any n with (n, d) = 1 we would have χ!(n) = χ!(n + kd) = χ (n + kd) =
χ1(n + kd) = χ1(n), on choosing k as above.

A characterχ modulo q is said to be primitive when q is the least quasiperiod
of χ . Such χ are not induced by any character having a smaller conductor. We
summarize our discussion as follows.

Theorem 9.2 Let χ denote a Dirichlet character modulo q and let d be the
conductor ofχ . Then d | q, and there is a unique primitive characterχ! modulo
d that induces χ .

We now identify the primitive characters in such a way that we can describe
them in terms of the explicit construction of Section 5.2.

Lemma 9.3 Suppose that (q1, q2) = 1 and that χ1 and χ2 are characters
modulo q1 and q2, respectively. Put χ (n) = χ1(n)χ2(n). Then the character χ
is primitive modulo q1q2 if and only if both χ1 and χ2 are primitive.

Proof For convenience write q = q1q2. Suppose that χ is primitive modulo
q , and for i = 1, 2 let di be the conductor of χi . If (mn, q) = 1 and m ≡ n
(mod d1d2) then χi (m) = χi (n) for i = 1, 2, and hence d1d2 is a quasiperiod of
χ . Since χ is primitive, this means that d1d2 = q. But di | qi , so this implies
that di = qi , which is to say that the characters χi are primitive.

Now suppose that χi is primitive modulo qi for i = 1, 2, and let d be the
conductor of χ . Put di = (d, qi ). We show that d1 is a quasiperiod of χ1. Sup-
pose that m ≡ n (mod d1) and that (mn, q1) = 1. Choose m ′ so that m ′ ≡ m
(mod q1), m ′ ≡ 1 (mod q2). Similarly, choose n′ so that n′ ≡ n (mod q1)
and n′ ≡ 1 (mod q2). Thus m ′ ≡ n′ (mod d) and (m ′n′, q) = 1, and hence
χ (m ′) = χ (n′). Butχ (m ′) = χ1(m) andχ (n′) = χ1(n), soχ1(m) = χ1(n). Thus
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284 Primitive characters and Gauss sums

d1 is a quasiperiod of χ1. Since χ1 is primitive, it follows that d1 = q1. Similarly
d2 = q2. Thus d = q , which is to say that χ is primitive. �

By Lemma 9.3 we see that in order to exhibit the primitive characters ex-
plicitly it suffices to determine the primitive characters (mod pα). Suppose first
that p is odd, and let g be a primitive root of pα . Then by (4.16) we know that
any character χ (mod pα) is given by

χ (n) = e

(
k indg n

ϕ(pα)

)
for some integer k. If α = 1, then χ is primitive if and only if it is non-principal,
which is to say that (p − 1) � k. If α > 1, then χ is primitive if and only if p � k.
Now consider primitive characters (mod 2α). When α = 1 we have only the
principal character, which is imprimitive. When α = 2 we have two characters,
namely the principal character, which is imprimitive, and the primitive character
χ given by χ (4k + 1) = 1, χ (4k − 1) = −1. When α ≥ 3, we write an odd
integer n in the form n ≡ (−1)µ5ν (mod 2α), and then characters (mod 2α) are
of the form

χ (n) = e

(
jµ

2
+ kν

2α−2

)
where j is determined (mod 2) and k is determined (mod 2α−2). Here χ is
primitive if and only if k is odd.

We now give two useful criteria for primitivity.

Theorem 9.4 Let χ be a character modulo q. Then the following are equiv-
alent:
(1) χ is primitive.
(2) If d | q and d < q, then there is a c such that c ≡ 1 (mod d), (c, q) = 1,

χ (c) �= 1.
(3) If d | q and d < q, then for every integer a,

q∑
n=1

n≡a (mod d)

χ (n) = 0.

Proof (1) ⇒ (2). Suppose that d | q, d < q. Since χ is primitive, there exist
integers m and n such that m ≡ n (mod d), χ (m) �= χ (n), χ (mn) �= 0. Choose
c so that (c, q) = 1, cm ≡ n (mod q). Thus we have (2).

(2) ⇒ (3). Let c be as in (2). As k runs through a complete residue system
(mod q/d), the numbers n = ac + kcd run through all residues (mod q) for
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9.1 Primitive characters 285

which n ≡ a (mod d). Thus the sum S in question is

S =
q/d∑
k=1

χ (ac + kcd) = χ (c)S.

Since χ (c) �= 1, it follows that S = 0.
(3) ⇒ (1). Suppose that d | q, d < q. Take a = 1 in (3). Then χ (1) = 1

is one term in the sum, but the sum is 0, so there must be another term χ (n)
in the sum such that χ (n) �= 1, χ (n) �= 0. But n ≡ 1 (mod d), so d is not a
quasiperiod of χ , and hence χ is primitive. �

9.1.1 Exercises

1. Let f (n) be an arithmetic function with period q such that f (n) = 0 when-
ever (n, q) > 1. Call d a quasiperiod of f if f (m) = f (n) whenever m ≡ n
(mod d) and (mn, q) = 1.
(a) Suppose that d1 and d2 are quasiperiods, put g = (d1, d2), and suppose

that m ≡ n (mod g) and (mn, q) = 1. Show that there exist integers a
and b such that m = n + ad1 + bd2 and (n + ad1, q) = 1.

(b) Show that if d1 and d2 are quasiperiods of f then so also is (d1, d2).
(c) Show that the least quasiperiod of f divides all quasiperiods.

2. Let S(q) denote the set of all Dirichlet characters χ (mod q), and put T (q) =⋃
d|q S(d). Show that the members of T (q) form a basis of the vector space

of all arithmetic functions with period q if and only if q is square-free.
3. For d|q let U(d, q) denote the set of ϕ(q/d) functions

f (a) =
{
χ (a/d) (a, q) = d,

0 otherwise

where χ runs over all Dirichlet characters (mod q/d). Set V(q) =⋃
d|q U(d, q). Show that the members of V(q) form a basis for the vector

space of arithmetic functions with period q.
4. For i = 1, 2 let χi be a character (mod qi ) where (q1, q2) = 1, and suppose

that di is the conductor of χi . Show that d1d2 is the conductor of χ1χ2.
5. For i = 1, 2 suppose that χi is a character (mod qi ). Show that the following

two assertions are equivalent:
(a) The characters χ1 and χ2 are induced by the same primitive character.
(b) χ1(p) = χ2(p) for all but at most finitely many primes p.

6. Let ϕ2(q) denote the number of primitive characters (mod q).
(a) Show that ϕ2(q) is a multiplicative function.
(b) Show that

∑
d|q ϕ2(d) = ϕ(q).
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286 Primitive characters and Gauss sums

(c) Show that

ϕ2(q) = q
∏
p‖q

(
1 − 2

p

)∏
p2|q

(
1 − 1

p

)2

.

(d) Show that ϕ2(q) > 0 if and only if q �≡ 2 (mod 4).
7. Suppose that χ is a character (mod q), and that d is the conductor of χ . Show

that if (a, q) = 1, then ∣∣∣∣∣∣∣
q∑

n=1
n≡a(mod d)

χ (n)

∣∣∣∣∣∣∣ =
ϕ(q)

ϕ(d)
.

8. (Martin 2006; Vorhauer 2006) Let d(χ ) denote the conductor of χ .
(a) Use the identity log d =∑r |d �(r ) to show that∑

χ

log d(χ ) = ϕ(q) log q −
∑
r |q

�(r )
∑
χ

r�d(χ )

1 .

(b) Show that if pa‖q and 1 ≤ b ≤ a, then the number of χ modulo q such
that pb � d(χ ) is exactly ϕ(q)ϕ(pb−1)/ϕ(pa).

(c) Conclude that∑
χ

log d(χ ) = ϕ(q)

(
log q −

∑
p|q

log p

p − 1

)
.

9.2 Gauss sums

Given a character χ modulo q, we define the Gauss sum τ (χ ) of χ to be

τ (χ ) =
q∑

a=1

χ (a)e(a/q). (9.3)

This may be regarded as the inner product of the multiplicative character χ (a)
with the additive character e(a/q). As such, it is analogous to the gamma
function�(s) = ∫∞

0 xs−1e−x dx , which is the inner product of the multiplicative
character xs with the additive character e−x with respect to the invariant measure
dx/x . Gauss sums are invaluable in transferring questions concerning Dirichlet
characters to questions concerning additive characters, and vice versa.

The Gauss sum is a special case of the more general sum

cχ (n) =
q∑

a=1

χ (a)e(an/q). (9.4)
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When χ is the principal character, this is Ramanujan’s sum

cq (n) =
q∑

a=1
(a,q)=1

e(an/q), (9.5)

whose properties were discussed in Section 4.1. We now show that the sum
cχ (n) is closely related to τ (χ ).

Theorem 9.5 Suppose that χ is a character modulo q. If (n, q) = 1, then

χ (n)τ (χ ) =
q∑

a=1

χ (a)e(an/q), (9.6)

and in particular

τ (χ ) = χ (−1)τ (χ ). (9.7)

Proof If (n, q) = 1, then the map a �→ an permutes the residues modulo q,
and hence

χ (n)cχ (n) =
q∑

a=1

χ (an)e(an/q) = τ (χ ).

On replacing χ by χ , this gives (9.6), and (9.7) follows by taking n = −1. �

Theorem 9.6 Suppose that (q1, q2) = 1, that χi is a character modulo qi for
i = 1, 2, and that χ = χ1χ2. Then

τ (χ ) = τ (χ1)τ (χ2)χ1(q2)χ2(q1).

Proof By the Chinese Remainder Theorem, each a (mod q1q2) can be written
uniquely as a1q2 + a2q1 with 1 ≤ ai ≤ qi . Thus the general term in (9.3) is
χ1(a1q2)χ2(a2q1)e(a1/q1) e(a2/q2), so the result follows. �

For primitive characters the hypothesis that (n, q) = 1 in Theorem 9.5 can
be removed.

Theorem 9.7 Suppose that χ is a primitive character modulo q. Then (9.6)
holds for all n, and |τ (χ )| = √

q.

Proof It suffices to prove (9.6) when (n, q) > 1. Choose m and d so that
(m, d) = 1 and m/d = n/q. Then

q∑
a=1

χ (a)e(an/q) =
d∑

h=1

e(hm/d)
q∑

a=1
a≡h (mod d)

χ (a).

Since d | q and d < q , the inner sum vanishes by Theorem 9.4. Thus (9.6) holds
also in this case.
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288 Primitive characters and Gauss sums

We replace χ in (9.6) by χ , take the square of the absolute value of both
sides, and sum over n to see that

ϕ(q)|τ (χ )|2 =
q∑

n=1

∣∣∣ q∑
a=1

χ (a)e(an/q)
∣∣∣2 =

q∑
a=1

q∑
b=1

χ (a)χ (b)
q∑

n=1

e((a − b)n/q).

The innermost sum on the right is 0 unless a ≡ b (mod q), in which case it is
equal to q . Thus ϕ(q)|τ (χ )|2 = ϕ(q)q, and hence |τ (χ )| = √

q. �

If χ is primitive modulo q, then not only does (9.6) hold for all n but also
τ (χ ) �= 0, and hence we have

Corollary 9.8 Suppose that χ is a primitive character modulo q. Then for
any integer n,

χ (n) = 1

τ (χ )

q∑
a=1

χ (a)e(an/q).

This is very useful, since it allows us to express the multiplicative character
χ as a linear combination of additive characters e(an/q). As a first application,
we use this formula to express L(1, χ ) in closed form.

Theorem 9.9 Suppose that χ is a primitive character modulo q with q > 1.
If χ (−1) = 1, then

L(1, χ ) = −τ (χ )

q

q−1∑
a=1

χ (a) log(sinπa/q), (9.8)

while if χ (−1) = −1, then

L(1, χ ) = iπτ (χ )

q2

q−1∑
a=1

aχ (a). (9.9)

Proof Since L(1, χ ) =∑∞
n=1 χ (n)/n, by Corollary 9.8,

L(1, χ ) = 1

τ (χ )

∞∑
n=1

1

n

q−1∑
a=1

χ (a)e(an/q) = 1

τ (χ )

q−1∑
a=1

χ (a)
∞∑

n=1

e(an/q)

n
.

But log(1 − z)−1 =∑∞
n=1 zn/n for |z| ≤ 1, z �= 1, where the logarithm is

the principal branch. We take z = e(θ ) where 0 < θ < 1. Since 1 − e(θ ) =
−2ie(θ/2) sinπθ , it follows that log(1 − e(θ )) = log(2 sinπθ ) + iπ (θ − 1/2).
Thus

L(1, χ ) = −1

τ (χ )

q−1∑
a=1

χ (a)(log(2 sinπa/q) + iπ (a/q − 1/2)).
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Since
∑q−1

a=1 χ (a) = 0, this is

−1

τ (χ )
(S + iT )

where S =∑q−1
a=1 χ (a) log(sinπa/q) and T = π/q

∑q−1
a=1 χ (a)a. On replacing

a by q − a we see that S = χ (−1)S and T = −χ (−1)T . Thus if χ (−1) = 1,
then T = 0 and so

L(1, χ ) = −1

τ (χ )

q−1∑
a=1

χ (a) log(sinπa/q).

Then by (9.7) we obtain (9.8). If χ (−1) = −1 then S = 0 and so

L(1, χ ) = −iπ

τ (χ )q

q−1∑
a=1

χ (a)a.

Then by (9.7) we obtain (9.9). �

We next show that τ (χ ) can be expressed in terms of τ (χ!) where χ! is the
primitive character that induces χ .

Theorem 9.10 Let χ be a character modulo q that is induced by the primitive
character χ! modulo d. Then τ (χ ) = µ(q/d)χ!(q/d)τ (χ!).

Proof If (d, q/d) > 1, thenχ!(q/d) = 0, so we begin by showing that τ (χ ) =
0 in this case. Let p be a prime such that p | d, p | q/d, and write a = jq/p + k
with 0 ≤ j < p, 0 ≤ k < q/p. Then

τ (χ ) =
q−1∑
a=0

χ (a)e(a/q) =
q/p∑
k=1

p∑
j=1

χ ( jq/p + k)e( j/p + k/q).

But p | (q/p), so ( jq/p + k, q) = 1 if and only if ( jq/p + k, q/p) = 1, which
in turn is equivalent to (k, q/p) = 1. Also, d | q/p, so the above is

=
q/p∑
k=1

(k,q/p)=1

χ!(k)e(k/q)
p∑

j=1

e( j/p).

Here the inner sum vanishes, so τ (χ ) = 0 when (d, q/d) > 1.
Now suppose that (d, q/d) = 1, and let χ0 denote the principal character

modulo q/d . Then by Theorem 9.6,

τ (χ ) = τ (χ0χ
!) = τ (χ0)τ (χ!)χ0(d)χ!(q/d).

By taking n = 1 in Theorem 4.1 we find that τ (χ0) = µ(q/d). Thus we have
the stated result. �
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290 Primitive characters and Gauss sums

We now turn our attention to the more general cχ (n). To this end we begin
with an auxiliary result.

Lemma 9.11 Let χ be a character modulo q induced by the primitive char-
acter χ! modulo d. Suppose that r | q. Then

q∑
n=1

n≡b (mod r )

χ (n) =
{
χ!(b)ϕ(q)/ϕ(r ) if (b, r ) = 1 and d | r,
0 otherwise.

Proof Let S(b, r ) denote the sum in question. If p | (b, r ) and n ≡ b (mod r ),
then p | n, and so (n, q) > 1. Thus each term in S(b, r ) is 0. Thus we are
done when (b, r ) > 1, so we suppose that (b, r ) = 1. Consider next the case
when d � r . Then r is not a quasiperiod of χ . Hence there exist m and n such
that (mn, q) = 1, m ≡ n (mod r ), and χ (m) �= χ (n). Choose c so that cn ≡
m (mod q). Then c ≡ 1 (mod r ) and χ (c) �= 1. Hence χ (c)S(b, r ) = S(b, r ),
as in the proof of Theorem 9.4, so S(b, r ) = 0 in this case. Finally suppose
that d | r . Let χ0 be the principal character modulo q. If n ≡ b (mod r ), then
χ!(n) = χ!(b). Thus

S(b, r ) = χ!(b)
q∑

n=1
n≡b (mod r )

χ0(n).

Write q/r = q1q2 where q1 is the largest divisor of q/r that is relatively prime
to r . Then the sum on the right above is

q1q2∑
k=1

(kr+b,q1)=1

1 = q2ϕ(q1) = ϕ(q)/ϕ(r ),

as required. �

We are now in a position to deal with cχ (n).

Theorem 9.12 Let χ be a character modulo q induced by the primitive char-
acter χ! modulo d. Put r = q/(q, n). Then cχ (n) = 0 if d � r , while if d | r ,
then

cχ (n) = χ!(n/(q, n))χ!(r/d)µ(r/d)
ϕ(q)

ϕ(r )
τ (χ!).

Proof If (n, q) = 1, then by Theorem 9.5 and Theorem 9.10 we see that

cχ (n) = χ (n)τ (χ ) = χ!(n)µ(q/d)χ!(q/d)τ (χ!).

Since r = q , we have d | r , so we have the correct result. Now suppose that
(n, q) > 1. In the definition (9.4) of cχ (n), let a = br + k with 0 ≤ b < q/r ,
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1 ≤ k ≤ r . Then

cχ (n) =
r∑

k=1

e(kn/q)
q/r∑
b=1

χ (br + k).

By Lemma 9.11 this is 0 when d � r . Thus we may suppose that d | r . Then, by
Lemma 9.11,

cχ (n) =
r∑

k=1
(k,r )=1

e(kn/q)χ!(k)ϕ(q)/ϕ(r ).

Put m = n/(q, n), and let χ1 denote the character modulo r induced by χ!.
Then the above is

= ϕ(q)

ϕ(r )

r∑
k=1

e(km/r )χ1(k).

Since (m, r ) = 1, we see by the first case treated that the above is

ϕ(q)

ϕ(r )
χ!(m)µ(r/d)χ!(r/d)τ (χ!),

which suffices. �

9.2.1 Exercises

1. (a) Show that

1

ϕ(q)

∑
χ

χ (a)τ (χ ) =
{

e(a/q) (a, q) = 1,
0 otherwise.

(b) Show that for all integers a,

e(a/q) =
∑
d|q
d|a

1

ϕ(q/d)

∑
χ (mod q/d)

χ (a/d)τ (χ ).

2. Let

Gk(a) =
p∑

n=1

e

(
ank

p

)
.

(a) Let Nk(h) denote the number of solutions of the congruence xk ≡ h
(mod p). Explain why

Gk(a) =
p∑

h=1

Nk(h)e

(
ah

p

)
.
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(b) Let l = (k, p − 1). Show that if k is a positive integer, then Nk(h) =
Nl(h) for all h, and hence that Gk(a) = Gl(a).

(c) Suppose that k | (p − 1). Explain why

p∑
a=1

|Gk(a)|2 = p
p∑

h=1

Nk(h)2.

(d) Suppose that k | (p − 1). Show that there are (p − 1)/k residues h
(mod p) for which Nk(h) = k, that Nk(0) = 1, and that Nk(h) = 0 for
all other residue classes (mod p). Hence show that the right-hand side
above is p(1 + (p − 1)k).

(e) Let k be a divisor of p − 1. Suppose that p � a, p � c, and that b ≡ ack

(mod p). Show that Gk(a) = Gk(b).
(f) Suppose that k | (p − 1). Show that if p � a then |Gk(a)| < k

√
p.

3. Suppose that k | ϕ(q) and that (h, q) = 1.
(a) Explain why

1

ϕ(q)

∑
χ

χ (xk)χ (h) =
{

1 if xk ≡ h (mod q),
0 otherwise.

(b) Let Nk(h) be as in Exercise 2(a). Show that

Nk(h) =
∑
χ

χ k=χ0

χ (h).

4. Suppose that k | (p − 1), that Nk(h) is as in Exercise 2(a), and let χ be a
character of order k, say χ (n) = e((ind n)/k).
(a) Show that for all h,

Nk(h) = 1 +
k−1∑
j=1

χ j (h).

(b) Show that if p � a, then

Gk(a) =
k−1∑
j=1

χ j (a)τ (χ j ).

(c) Show that if p � a, then |Gk(a)| ≤ (k − 1)
√

p.
5. Suppose thatχi is a character (mod qi ) for i = 1, 2, with (q1, q2) = 1. Show

that

cχ1χ2 (n) = χ1(q2)χ2(q1)cχ1 (n)cχ2 (n) .

6. (Apostol 1970) Let χ be a character modulo q such that the identity (9.6)
holds for all integers n. Show that χ is primitive (mod q).
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7. Let N (q) denote the number of pairs x, y of residue classes (mod q) such
that y2 ≡ x3 + 7 (mod q).
(a) Show that N (q) is a multiplicative function of q, that N (2) = 2, N (3) =

3, N (7) = 7, and that N (p) = p when p ≡ 2 (mod 3).
(b) Suppose that p ≡ 1 (mod 3). Let χ1(n) be a cubic character modulo p,

and let χ2(n) = ( n
p

)
be the quadratic character modulo p. Show that

N (p) = 1

p

p∑
a=1

e(7a/p)

(
p∑

h=1

(
1 + χ1(h) + χ2

1 (h)
)
e(ah/p)

)

×
(

p∑
k=1

(1 + χ2(k))e(−ak/p)

)

= p + 2

p
�(τ (χ1)τ (χ2)τ

(
χ2

1χ2
)
χ1χ2(−7)

)
,

and deduce that |N (p) − p| ≤ 2
√

p.
(c) Deduce that N (p) > 0 for all p.
(d) Show that N (2k) = 2k−1 for k ≥ 2, that N (3k) = 2 · 3k−1 for k ≥ 2,

that N (7k) = 6 · 7k−1 for k ≥ 2, and that N (pk) = N (p)pk−1 for all
other primes.

(e) Conclude that the congruence y2 ≡ x3 + 7 (mod q) has solutions for
every positive integer q.

(f) Suppose that x and y are integers such that y2 = x3 + 7. Show that
2 | y, x ≡ 1 (mod 4), and that x > 0. Note that y2 + 1 = (x + 2)(x2 −
2x + 4), so that y2 + 1 is composed of primes ≡ 1 (mod 4), and yet x +
2 ≡ 3 (mod 4). Deduce that this equation has no solution in integers.

8. (Mordell 1933) Explain why the number N of solutions of the congruence
c1xk1

1 + · · · + cm xkm
m ≡ c (mod p) is

N = 1

p

p∑
a=1

e(−ac/p)
m∏

j=1

Gk j (ac j )

where Gk is defined as in Exercise 2.
(b) Suppose that c = 0 but that p does not divide any of the numbers c j .

Show that |N − pm−1| ≤ Cpm/2 where C =∏m
j=1((k j , p − 1) − 1).

(c) Suppose that c �≡ 0 (mod p) and that for all j , c j �≡ 0 (mod p). Show
that |N − pm−1| ≤ Cp(m−1)/2 where C is defined as above.

9. (Mattics 1984) Suppose that h has order (p − 1)/k modulo p. Show that∣∣∣∣∣
p−1∑
m=1

e

(
hm

p

)∣∣∣∣∣ ≤ 1 + (k − 1)
√

p.

10. Let χ1 and χ2 be primitive characters (mod q).
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(a) Show that if (a, q) = 1, then

q∑
n=1

χ1(n)χ2(a − n) = χ1χ2(a)q
τ (χ1χ2)

τ (χ1)τ (χ2)
.

(b) Show that if χ1χ2 is primitive, then

q∑
n=1

χ1(n)χ2(a − n) = χ1χ2(a)
τ (χ1)τ (χ2)

τ (χ1χ2)
(9.10)

for all a.

When a = 1, the sum (9.10) is known as the Jacobi sum J (χ1, χ2). In the
same way that the Gauss sum is analogous to the gamma function, the Jacobi
sum (and its evaluation in terms of Gauss sums) is analogous to the beta function

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1 dx = �(α)�(β)

�(α + β)
.

11. Let C be the smallest field that contains the field Q of rational numbers and
is closed under square roots. Thus C is the set of complex numbers that
are constructible by ruler-and-compass. We show that if p is of the form
p = 2k + 1, then ζ = e(1/p) ∈ C , which is to say that a regular p-gon can
be constructed.
(a) Let p be any prime, and χ any non-principal character modulo p.

Explain why

τ (χ )2
p∑

n=1

χ (n)χ (1 − n) = pτ (χ2).

(b) From now on assume that p is of the form p = 2k + 1. Explain why
χ2k = χ0 for any character modulo p, and deduce that χ (n) ∈ C for
all χ and all integers n.

(c) Deduce that if τ (χ2) ∈ C , then τ (χ ) ∈ C .
(d) Suppose that χ has order 2r . Show successively that the numbers

−1 = τ (χ2r
), τ (χ2r−1

), . . . , τ (χ2), τ (χ )

lie in C .
(e) Explain why

∑
χ τ (χ ) = (p − 1)ζ .

(f) (Gauss) If p = 2k + 1, then ζ ∈ C .
12. Let χ be a character modulo p and put J (χ ) =∑p

n=1 χ (n)χ (1 − n).
(a) Show that if χ2 �= χ0, then |J (χ )| = √

p.
(b) Suppose that p ≡ 1 (mod 4). Show that there is a quartic character χ

modulo p.
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(c) Show that if χ is a quartic character, then J (χ ) is a Gaussian integer.
That is, J (χ ) = a + ib where a and b are rational integers.

(d) Deduce that a2 + b2 = p.
13. (a) Write

|τ (χ )|2 =
q∑

m=1

χ (m)e(m/q)
q∑

n=1

χ (n)e(−n/q),

and in the second sum replace n by mn where (m, q) = 1, to see that
the above is

=
q∑

n=1

χ (n)cq (n − 1).

(b) Use Theorem 4.1 to show that the above is

=
∑
d|q

dµ(q/d)
q∑

n=1
n≡1 (mod d)

χ (n).

(c) Use Theorem 9.4 to show that if χ is primitive, then |τ (χ )| = √
q.

9.3 Quadratic characters

A character is quadratic if it has order 2 in the group of characters modulo
q . That is, the character takes on only the values −1, 0, and 1, with at least
one −1. Similarly, a character is real if all its values are real. Hence a real
character is either the principal character or a quadratic character. The Legendre
symbol

(
n
p

)
L

is a primitive quadratic character modulo p, and further quadratic
characters arise from the Jacobi and Kronecker symbols. We now determine
all quadratic characters modulo q. If χ is a character modulo q induced by the
primitive character χ! modulo d, d | q, then χ is quadratic if and only if χ! is
quadratic. Hence it suffices to determine the primitive quadratic characters.

Suppose that χ is a character modulo q, that q = q1q2, (q1, q2) = 1,
χ = χ1χ2 as in Lemma 9.3. By the Chinese Remainder Theorem we see that
χ is a real character if and only if both χ1 and χ2 are real characters. Hence by
Lemma 9.3,χ is a primitive quadratic character if and only ifχ1 andχ2 are. Thus
it suffices to determine the primitive quadratic characters modulo a prime power.

In Section 5.2 we saw that a character χ modulo p may be written in the
form χ (n) = e(k ind n/(p − 1)). Such a character is primitive provided that
it is non-principal, which is to say that k �≡ 0 (mod p − 1). Similarly, χ is
quadratic if and only if the least denominator of the fraction k/(p − 1) is 2. If
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p = 2 then this is impossible, but for p > 2 this is equivalent to the condition
k ≡ (p − 1)/2 (mod p − 1). Thus there is no quadratic character modulo 2,
but for each odd prime p there is a unique quadratic character, given by the
Legendre symbol.

Now suppose that p is an odd prime and that q = pm with m > 1. We have
seen that a character χ modulo such a q is of the form χ (n) = e(k ind n/ϕ(q)),
and that χ is primitive if and only if p � k. This character is quadratic only when
k ≡ ϕ(q)/2 (mod ϕ(q)), so there is a unique quadratic character modulo q, but
it is not primitive because p | k for this k. That is, the only quadratic character
modulo pm is induced by the primitive quadratic character modulo p.

Finally, suppose that q = 2m . For the modulus 2 there is only the principal
character, but for q = 4 we have a primitive quadratic character

χ1(n) =
{

(−1)(n−1)/2 (n odd),
0 (n even).

For m > 2 we write χ ((−1)µ5ν) = e( jµ/2 + kν/2m−2), and we see that this
character is real if and only if 2m−3 | k. However, the character is primitive if and
only if k is odd, so primitive quadratic characters arise only when m = 3, and for
this modulus we have two different characters (corresponding to j = 0, j = 1).
Let χ2((−1)µ5ν) = e(ν/2). That is, χ2(n) = (−1)(n2−1)/8. Then the characters
modulo 8 are χ0, χ1, χ2, and χ1χ2, of which the latter two are primitive.

We next show that the primitive quadratic characters arise precisely from
the Kronecker symbol

(
d
n

)
K . We say that d is a quadratic discriminant if either

(a) d ≡ 1 (mod 4) and d is square-free
or
(b) 4 | d , d/4 ≡ 2 or 3 (mod 4), and d/4 is square-free.

For each quadratic discriminant d we define the Kronecker symbol
(

d
n

)
K

by the
following relations:

(i)
(

d
p

)
K

= 0 when p | d;

(ii)

(
d

2

)
K

=
{

1 when d ≡ 1 (mod 8),
−1 when d ≡ 5 (mod 8);

(iii)
(

d
p

)
K

= ( d
p

)
L
, the Legendre symbol, when p > 2;

(iv)

(
d

−1

)
K

=
{

1 when d > 0,
−1 when d < 0;

(v)
(

d
n

)
K

is a totally multiplicative function of n.

It is not immediately apparent that this definition of the Kronecker symbol gives
rise to a character, but we now show that this is the case.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.011


9.3 Quadratic characters 297

Theorem 9.13 Let d be a quadratic discriminant. Then χd (n) = ( d
n

)
K is a

primitive quadratic character modulo |d|, and every primitive quadratic char-
acter is given uniquely in this way.

Proof It is easy to see that
(−4

n

)
K

is the primitive quadratic character modulo
4. Similarly,

(
8
n

)
K and

(−8
n

)
K are the primitive quadratic characters modulo 8.

Suppose that p is a prime, p ≡ 1 (mod 4). We show that
( p

n

)
K

= ( n
p

)
L

for all
n. To see this, note that if q is an odd prime, then by (iii) and quadratic reciprocity,( p

q

)
K

= ( p
q

)
L

= ( q
p

)
L
. Also,

( p
2

)
K

= (−1)(p2−1)/8 = ( 2
p

)
L
, and

( p
−1

)
K

= 1 =(−1
p

)
L
. Since these two functions agree on all primes, and also on −1, and

both are totally multiplicative, it follows that
( p

n

)
K

= ( n
p

)
L

for all integers n.

Suppose that p is a prime, p ≡ 3 (mod 4). We show that
(−p

n

)
K

= ( n
p

)
L

for all n. To see this, note that if q is an odd prime, then by (iii) and
quadratic reciprocity,

(−p
q

)
K

= (−p
q

)
L

= ( q
p

)
L
. Also,

(−p
2

)
K

= (−1)((−p)2−1)/8

= (−1)(p2−1)/8 = ( 2
p

)
L
, and

(−p
−1

)
K

= −1 = (−1
p

)
L
. Since these two functions

agree on all primes, and also on −1, and both are totally multiplicative, it follows
that

(−p
n

)
K

= ( n
p

)
L

for all integers n.
Suppose next that d1 and d2 are quadratic discriminants with (d1, d2) = 1. Put

d = d1d2. Supposing that
( di

n

)
K

is a primitive quadratic character modulo |di | for
i = 1, 2, we shall show that

(
d
n

)
K

is a primitive quadratic character modulo |d|. If
q is an odd prime, then by (iii),

(
d
q

)
K = ( d

q

)
L = ( d1

q

)
L

( d2
q

)
L = ( d1

q

)
K

( d2
q

)
K . Also,

by (ii) we see that
(

d
2

)
K

= ( d1
2

)
K

( d2
2

)
K

, and by (iv) that
(

d
−1

)
K

= ( d1
−1

)
K

( d2
−1

)
K

.

Since
(

d
n

)
K = ( d1

n

)
K

( d2
n

)
K when n is a prime or n = −1, and since both sides

are totally multiplicative functions, it follows that this identity holds for all
integers n. Hence by Lemma 9.3,

(
d
n

)
K is a primitive character modulo |d|.

This allows us to account for all primitive quadratic characters, so the proof
is complete. �

Since the Kronecker symbol and Legendre symbol agree whenever both are
defined, we may omit the subscripts. The same remark applies to the Jacobi
symbol

(
n
q

)
J
, which for odd positive q = p1 p2 · · · pr is defined to be

(
n
q

)
J

=∏r
i=1

(
n
pi

)
L
. Sometimes we let χd (n) denote the character

(
d
n

)
.

A character χ modulo q is an even function, χ (−n) = χ (n), if χ (−1) = 1;
for the primitive quadratic character χd this occurs if d > 0. In the case of the
Legendre symbol, if p ≡ 1 (mod 4), then

(
n
p

)
L

= χp(n) is even. Similarly, χ is
odd, χ (−n) = −χ (n), if χ (−1) = −1. For χd this occurs when d < 0. For the
Legendre symbol, if p ≡ 3 (mod 4), then

(
n
p

)
L

= χ−p(n) is odd.
We have taken the quadratic reciprocity law for the Legendre symbol for

granted, since it is treated in a variety of ways in elementary texts. In Exercise
9.3.6 below we outline a proof of quadratic reciprocity that is unusual that
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it applies directly to the Jacobi symbol, without first being restricted to the
Legendre symbol. For future purposes it is convenient to formulate quadratic
reciprocity also for the Kronecker symbol.

Theorem 9.14 Suppose that d1 and d2 are relatively prime quadratic discrim-
inants. Then (

d1

d2

)(
d2

d1

)
= ε(d1, d2) (9.11)

where ε(d1, d2) = 1 if d1 > 0 or d2 > 0, and ε(d1, d2) = −1 if d1 < 0 and
d2 < 0.

For odd n let m2 be the largest square dividing n. Then there is a unique
choice of sign and a unique quadratic discriminant d2 such that n = ±m2d2,
and then if (n, d1) = 1 the above can be applied to express

( d1
n

)
in terms of

( d2
d1

)
.

If n is even, then 4n = m2d2 for unique m and quadratic discriminant d2, so if
(n, d1) = 1 we can again express

( d1
n

)
in terms of

( d2
d1

)
.

Proof Suppose that d1 = p ≡ 1 (mod 4). Then(
p

d2

)
K

=
(

d2

p

)
L

=
(

d2

p

)
K

,

so (9.11) holds in this case. Next suppose that d1 = −p where p ≡ 3 (mod 4).
Then (−p

d2

)
K

=
(

d2

p

)
L

=
(

d2

−1

)
K

(
d2

−p

)
K

,

so (9.11) holds in this case also. Next consider the case d1 = −4. Then d2 is odd,
and hence d2 ≡ 1 (mod 4), so that

(−4
d2

)
K

= (−4
1

)
K

= 1, while
( d2

−4

)
K

= ( d2
−1

)
K

,

and (9.11) again holds. If d1 = 8 then d2 is odd and
(

8
d2

)
K

= (−1)(d2
2 −1)/8 =( d2

8

)
K

, so (9.11) holds. Similarly, if d2 is odd, then
(−8

d2

)
K

= (−4
d2

)
K

(
8
d2

)
K

=(
8
d2

)
K = ( d2

8

)
K = ( d2

−1

)
K

( d2
−8

)
K , so again (9.11) holds.

Now let d1, d2 and d be pairwise coprime quadratic discriminants. Then(
d1d2

d

)
K

=
(

d1

d

)
K

(
d2

d

)
K

.

Suppose that (9.11) holds for the pair d1, d, and also for the pair d2, d. Then
the above is

= ε(d1, d)

(
d

d1

)
K

ε(d2, d)

(
d

d2

)
K

= ε(d1, d)ε(d2, d)

(
d

d1d2

)
K

.
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But ε(d1, d)ε(d2, d) = ε(d1d2, d), so it follows that (9.11) holds also for the
pair d1d2, d . Since all quadratic discriminants can be constructed as the product
of smaller quadratic discriminants, or by appealing to the special cases already
considered, it follows now that (9.11) holds for all quadratic discriminants. �

Let χ be a character modulo q. By means of Theorems 9.7 and 9.10 we can
describe |τ (χ )|. By Theorem 9.5 we may also relate the argument of τ (χ ) to
that of τ (χ ), but otherwise there is little in general that we can say about the
argument of τ (χ ). However, in the special case of quadratic characters, a striking
phenomenon arises, which was first noted and established by Gauss. Suppose
that χd is a primitive quadratic character. Then χd = χd , so by multiplying
both sides of (9.7) by τ (χd ), and using Theorem 9.7, we see that τ (χd )2 =
χd (−1)|d| = d . Thus τ (χd ) = ±√

d if d > 0 and τ (χd ) = ±i
√−d if d < 0.

We show below that in both cases it is always the positive sign that occurs. We
begin with the following fundamental result.

Theorem 9.15 Let

S(a, q) =
q∑

n=1

e

(
an2

2q

)
.

If a and q are positive integers and at least one of them is even, then

S(a, q) = S(q, a)e(1/8)
√

q/a.

Proof We apply the Poisson summation formula, in the form of Theorem D.3,
to the function f (x) = e(ax2/(2q)) for 1/2 < x < q + 1/2, with f (x) = 0
otherwise. Thus

S(a, q) =
∑

n

f (n) = lim
K→∞

K∑
k=−K

f̂ (k)

where

f̂ (k) =
∫ q+1/2

1/2
e(ax2/(2q) − kx) dx .

We complete the square by writing

ax2

2q
− kx = a

2q
(x − kq/a)2 − k2q

2a
,

and make the change of variable u = (x − kq/a)/q, to see that

f̂ (k) = qe(−k2q/(2a))
∫ 1/(2q)+1−k/a

1/(2q)−k/a
e(aqu2/2) du.
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By integrating by parts we see that

f̂ (k) 	a,q 1/(|k| + 1) .

Since at least one of a and q is even, if k ≡ r (mod a) then qk2 ≡ qr2 (mod 2a).
Thus if we write k = am + r , then

K∑
k=−K

f̂ (k) = q

(
a∑

r=1

e

(−qr2

2a

))( K/a∑
m=−K/a

∫ 1/(2q)+1−m−r/a

1/(2q)−m−r/a
e(aqu2/2) du

)
+Oq,a(1/K ).

Here the integrals may be combined to form one integral, which, as K tends to
infinity tends to I (aq/2) where I (c) = ∫∞

−∞ e(cu2) du. This is a conditionally
convergent improper Riemann integral, but it is not necessary to evaluate this
symmetrically as limU→∞

∫ U
−U , since

∫∞
U e(cu2) du 	 1/U , by integration by

parts. Thus we have shown that

S(a, q) = qS(q, a)I (aq/2).

We take a = 2 and q = 1, and note that S(2, 1) = 1 and S(1, 2) = 1 + i . Hence
I (1) = 1/(1 − i) = e(1/8)/

√
2. By a linear change of variables it is clear that

if c > 0 then I (c) = I (1)/
√

c. On combining this information in the above, we
obtain the stated identity. �

By taking a = 2 we immediately obtain

Corollary 9.16 (Gauss) For any positive integer q,

q∑
n=1

e(n2/q) = q1/2 1 + i−q

1 + i−1
=

⎧⎪⎪⎨⎪⎪⎩
q1/2 if q ≡ 1 (mod 4),
0 if q ≡ 2 (mod 4),
iq1/2 if q ≡ 3 (mod 4),
(1 + i)q1/2 if q ≡ 0 (mod 4).

This in turn enables us to reach our goal.

Theorem 9.17 Let χd (n) = ( d
n

)
be a primitive quadratic character. If d > 0,

then τ (χd ) = √
d. If d < 0 then τ (χd ) = i

√−d.

In the special case of the Legendre symbol, if we write τp =∑p
n=1

(
n
p

)
e(n/p), then this asserts that τp = √

p for p ≡ 1 (mod 4), while
τp = i

√
p for p ≡ 3 (mod 4).

Proof As in some of the preceding proofs, we establish the identities when
the modulus is an odd prime or power of 2, and then write d = d1d2 to extend
to the general primitive quadratic character.
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Let

G(a, q) =
q∑

x=1

e

(
ax2

q

)
. (9.12)

If p is an odd prime, then the number of solutions of the congruence x2 ≡
n (mod p) is 1 + ( n

p

)
L
, so G(a, p) =∑p

n=1

(
1 + ( n

p

))
e(an/p). Thus if p � a,

then

G(a, p) =
p∑

n=1

(
n

p

)
e(an/p). (9.13)

Suppose that p ≡ 1 (mod 4). Then from the above we see that τ (χp) = G(1, p),
and then by taking q = p in Corollary 9.16 it follows that G(1, p) = √

p in
this case.

Now suppose that p ≡ 3 (mod 4). Then from the above we see that τ (χ−p) =
G(1, p), and then by taking q = p in Corollary 9.16 it follows that G(1, p) =
i
√

p in this case.
Clearly τ (χ−4) = e(1/4) − e(3/4) = 2i , τ (χ8) = e(1/8) − e(3/8) − e(5/8)

+ e(7/8) = √
8, and τ (χ−8) = e(1/8) + e(3/8) − e(5/8) − e(7/8) = i

√
8.

Thus we have the stated result when d is a power of 2.
Next suppose that d = d1d2 where d1 and d2 are quadratic discriminants and

(d1, d2) = 1. Then by Theorem 9.6, τ (χd ) = τ (χd1)τ (χd2)χd1(|d2|)χd2(|d1|). By
considering the possible combinations of signs of d1 and of d2 we find that
χd1(|d2|)χd2(|d1|) = χd1(d2)χd2(d1) in all cases. This product is ε(d1, d2) in the
notation of Theorem 9.14. That is,

τ (χd ) = ε(d1, d2)τ (χd1)τ (χd2).

Thus if τ (χd1) and τ (χd2) have the asserted values, then so also does τ (χd ).
Since every primitive quadratic character can be constructed this way, the proof
is complete. �

9.3.1 Exercises

1. (a) Show that if p > 2 and p � b, then

p∑
n=1

(
n

p

)(
n + b

p

)
= −1.

(b) Suppose that p > 2 and that p � d. Explain why

p∑
x=1

(
x2 − d

p

)
=

p∑
n=1

(
1 +

(
n

p

))(
n − d

p

)
,

and deduce that this sum is −1.
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(c) Put d = b2 − 4ac, and suppose that p > 2, p � d. Show that

p∑
x=1

(
ax2 + bx + c

p

)
=
(

a

p

)
.

2. Let p be a prime, p ≡ 1 (mod 4), and let N be a set of Z residue classes
modulo p.
(a) Explain why∑

m∈N

∑
n∈N

(
m − n

p

)
= 1√

p

p∑
a=1

(
a

p

) ∣∣∣∑
n∈N

e(an/p)
∣∣∣2.

(b) Suppose that
(

m−n
p

) = 1 whenever m ∈ N , n ∈ N , and m �= n. Show
that Z ≤ √

p.
3. Put fa(r ) = r2 + a1r + a0 where a = (a0, a1). Show that if r1, r2, r3 are

distinct modulo p, then
p∑

a0=1

p∑
a1=1

(
fa(r1)

p

)(
fa(r2)

p

)(
fa(r3)

p

)
= p.

4. We used Corollary 9.16 to determine the sign of τ (χ±p), and then used
quadratic reciprocity to determine the sign of τ (χd ) for the general quadratic
discriminant d . We now show that quadratic reciprocity for the Legendre
symbol can be derived from Theorem 9.15 (mainly Corollary 9.16). Let
G(a, q) =∑q

n=1 e(an2/q).
(a) Suppose that p is an odd prime. Explain why

G(a, p) =
(

a

p

)
L

p∑
n=1

(
n

p

)
e(n/p)

when (a, p) = 1.
(b) Suppose that (q1, q2) = 1. By writing n modulo q1q2 in the form n =

n1q2 + n2q1, show that G(a, q1q2) = G(aq2, q1)G(aq1, q2).
(c) Let p and q denote odd primes. Show that

G(1, pq) =
(

p

q

)
L

(
q

p

)
L

G(1, p)G(1, q),

and use Corollary 9.16 to show that(
p

q

)
L

(
q

p

)
L

= (−1)
p−1

2 · q−1
2 .

(d) By taking a = −1 in (a), and using Corollary 9.16, show that
(−1

p

) =
(−1)(p−1)/2.

(e) By taking a = 4 in Theorem 9.15, show that
(

2
p

)
L

= (−1)(p2−1)/8.
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(f) Suppose that p is an odd prime, and k is an integer, k ≥ 2. Show that
G(a, pk) = pG(a, pk−2).

5. Let L1 denote the contour z = u, −∞ < u < ∞ in the complex plane,
let L2 denote the contour z = (1 + i)u, −∞ < u < ∞, and let I (c) =∫∞
−∞ e(cu2) du, as in the proof of Theorem 9.15.

(a) Note that I (c) = ∫L1
e2π icz2

dz.

(b) Explain why
∫
L1

e2π icz2
dz = ∫L2

e2π icz2
dz.

(c) Show that∫
L2

e2π icz2
dz = (1 + i)

∫ ∞

−∞
e−4πcu2

du = 1 + i

2
√
πc

∫ ∞

−∞
e−v2

dv = 1 + i

2
√

c
.

(d) Thus give a proof, independent of that found in the proof of Theorem
9.15, that ∫ ∞

−∞
e(cu2) du = 1

(1 − i)
√

c
.

6. Quadratic reciprocity à la Conway (1997, pp. 127–133). If (a, n) = 1 and n
is an odd positive integer, then we define the Zolotarev symbol (not a standard
term)

(
a
n

)
Z

to be 1 if the map x �→ ax is an even permutation of a complete
residue system modulo n, and

(
a
n

)
Z = −1 if it is odd.

(a) Compute the decomposition of the permutation x �→ 7x (mod 15) into
disjoint cycles, and thus show that

(
7
15

)
Z

= −1.
(b) Suppose that p is an odd prime and that a has order h modulo p. Show

that the map x �→ ax (mod p) consists of one 1-cycle (0) and (p − 1)/h
h-cycles. Deduce that

(
a
p

)
Z

= (−1)(p−1)/h .
(c) Continue in the same notation, and show that (p − 1)/h is even if and

only if a(p−1)/2 ≡ 1 (mod p). Deduce that
(

a
p

)
Z = ( a

p

)
L .

(d) If n is odd and positive, then the permutation x �→ −x (mod n) consists
of one 1-cycle and (n − 1)/2 2-cycles of the form (x − x). Hence deduce
that

(−1
n

)
Z

= (−1)(n−1)/2.
(e) If (ab, n) = 1, then the map x �→ abx (mod n) is the composition of

the map x �→ ax (mod n) and the map x �→ bx (mod n). Deduce that(
ab
n

)
Z

= ( a
n

)
Z

(
b
n

)
Z

.
(f) Let p be a prime, p > 2, and let g be a primitive root of p. By (b) with

h = p − 1, deduce that
( g

p

)
Z

= −1. Then by (e) deduce that
( gk

p

)
Z

=
(−1)k , and hence give a second proof of (c).

(g) Suppose that n is odd and positive, and that (a, n) = 1. Let

P = {1, 2, . . . , (n − 1)/2}, N = {−1,−2, . . . ,−(n − 1)/2}.
Let K be the number of k ∈ P such that ak ∈ N (mod n). Put εk = 1
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if k and ak lie in the same subset, otherwise put εk = −1. Note that
εk = ε−k . Let π+ be the permutation that leaves N fixed and maps P to
itself by the formula k �→ εkak (mod n). Let π− be the map that leaves
P fixed and maps N to itself by the formula k �→ εkak (mod n). Finally
let π∗ be the product of those transpositions (ak − ak) for which k ∈ P
and ak ∈ N . Show that the map x �→ ax (mod n) is the permutation
π∗π+π−. Let σ be the ‘sign change permutation’ x �→ −x (mod n).
Show thatπ− = σπ+σ . That is,π+ andπ− are conjugate permutations.
They are the same apart from the fact that they operate on different sets.
Thus they have the same cycle structure, and hence the same parity.
Deduce that

(
a
n

)
Z = (−1)K .

(h) Suppose that n is odd and positive, that (a, n) = 1, and that a > 0.
Show that

(
a
n

)
Z = (−1)K where K is the number of integers lying in the

intervals ((r − 1
2 ) n

a ,
rn
a ) for r = 1, 2, . . . [a/2].

(i) Show that if a > 0, (2a, n) = 1, m ≡ n (mod 4a), then
(

a
m

)
Z

= ( a
n

)
Z

.

(j) Show that if n is odd and positive, then
(

2
n

)
Z = (−1)(p2−1)/8.

(k) Suppose that m and n are odd and positive, and that m ≡ −n (mod 4),
say m + n = 4a. Justify the following manipulations:(m

n

)
Z

=
(

4a

n

)
Z

=
(a

n

)
Z

=
( a

m

)
Z

=
(

4a

m

)
Z

=
( n

m

)
Z
.

(l) Suppose that m and n are odd and positive, and that m ≡ n (mod 4), say
m > n and m − n = 4a. Justify the following manipulations:(m

n

)
Z

=
(

4a

n

)
Z

=
(a

n

)
Z

=
( a

m

)
Z

=
(

4a

m

)
Z

=
(−n

m

)
Z

=
( n

m

)
Z

(−1)(m−1)/2.

(m) Suppose that a is odd and positive and that (2a,mn) = 1. Show that( a

mn

)
Z

=
(mn

a

)
Z

(−1)
a−1

2
mn−1

2 =
(m

a

)
Z

(n

a

)
Z

(−1)
a−1

2
mn−1

2

=
( a

m

)
Z

(a

n

)
Z

(−1)
a−1

2
mn−1

2 + a−1
2

m−1
2 + a−1

2
n−1

2 .

Show that this last exponent is even, so that
(

a
mn

)
Z = ( a

m

)
Z

(
a
n

)
Z in this

case.
(n) Suppose that a is odd and negative and that (a,mn) = 1. Use (m) to

show that the identity
(

a
mn

)
Z

= ( a
m

)
Z

(
a
n

)
Z

holds in this case also. Thus
this holds for all odd a.
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(o) Suppose that a is even and that (a,mn) = 1. Justify the following ma-
nipulations:( a

mn

)
Z

=
(−a

mn

)
Z

(−1)
mn−1

2 =
(

mn − a

mn

)
Z

(−1)
mn−1

2

=
(

mn − a

m

)
Z

(
mn − a

n

)
Z

(−1)
mn−1

2

=
(−a

m

)
Z

(−a

n

)
Z

(−1)
mn−1

2 =
( a

m

)
Z

(a

n

)
Z

(−1)
mn−1

2 + m−
1 2+ n−1

2 .

Show that this last exponent is even, and thus deduce that( a

mn

)
Z

=
( a

m

)
Z

(a

n

)
Z

holds in all cases.
(p) Suppose that (a,m) = 1 and that m is odd, composite, and square-free.

Show that the permutation x �→ ax (mod m) of reduced residues modulo
m is always even. (Hence it is essential that we used complete residue
systems in the above.)

7. Let p be a prime number, p > 2. (a) Show that

p−1∏
k=1

(1 − e(k/p))( k
p ) = exp(−τ (χp)L(1, χp))

where χp(n) = ( k
p

)
.

Let R = {r : 0 < r < p,
(

r
p

) = 1
}
, N = {n : 0 < n < p,

(
n
p

) = −1
}
, and

set

Q =
∏

n∈N sinπn/p∏
r∈R sinπr/p

.

(b) Show that if p ≡ 3 (mod 4), then Q = 1.
(c) Show that if p ≡ 1 (mod 4), then Q = exp(

√
p L(1, χp)).

8. (Chowla & Mordell 1961) Continue with the notation of the preceding prob-
lem, let c be chosen, 0 < c < p, so that

(
c
p

) = −1, and put

f (z) =
∏
r∈R

1 − zcr

1 − zr
− 1.

(a) Show that if L(1, χp) = 0, then f (e(1/p)) = 0.
(b) Explain why f is a polynomial with integral coefficients.
(c) Show that if L(1, χp) = 0, then there exists a polynomial g ∈ Z[z] such

that f (z) = g(z)(1 + z + · · · + z p−1).
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(d) By taking z = 1 in the above, show that it would follow that c(p−1)/2 ≡
1 (mod p).

(e) Explain why c(p−1)/2 ≡ −1 (mod p); deduce that L(1, χp) �= 0.

9.4 Incomplete character sums

Let χ be a character modulo q. We call the sum
∑M+N

n=M+1 χ (n) incomplete if
N < q . Such a sum trivially has absolute value at most N . We now use our
knowledge of Gauss sums to show that if χ is non-principal, then this sum is
o(N ) provided that N is not too small compared with q. Suppose first that χ is
a primitive character modulo q with q > 1. Then by Corollary 9.8,

M+N∑
n=M+1

χ (n) = 1

τ (χ )

q∑
a=1

χ (a)
M+N∑

n=M+1

e(an/q).

Here the inner sum is a geometric series. We note that

M+N∑
n=M+1

e(nα) = e((M + N + 1)α) − e((M + 1)α)

e(α) − 1

= e((2M + N + 1)α/2)
sinπNα

sinπα
(9.14)

if α is not an integer. (If α ∈ Z, then the sum is N .) On combining this with the
above, we see that

M+N∑
n=M+1

χ (n) = 1

τ (χ )

q∑
a=1

χ (a)e

(
a(2M + N + 1)

2q

)
sinπaN/q

sinπa/q
. (9.15)

By Theorem 9.7 and the triangle inequality the right-hand side has absolute
value

<
1√
q

q−1∑
a=1

(a,q)=1

1

sinπa/q
.

Here the second half of the range of summation contributes the same amount as
the first. Hence it suffices to multiply by 2 and sum over 1 ≤ a ≤ q/2. However,
if q is odd, then q/2 is not an integer and hence the sum is actually over the
range 1 ≤ a ≤ (q − 1)/2, while if q is even, then 4 | q (since if q ≡ 2 (mod 4),
then there is no primitive character modulo q), and hence (q/2, q) > 1, and so
it suffices to sum over 1 ≤ a ≤ q/2 − 1 in this case. Hence in either case the
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expression above is

≤ 2√
q

(q−1)/2∑
a=1

1

sinπa/q
.

The function f (α) = sinπα is concave downward in the interval [0, 1/2], and
hence it lies above the chord through the points (0, 0), (1/2, 1). That is, sinπα ≥
2α for 0 ≤ α ≤ 1/2. Thus the above is

≤ √
q

(q−1)/2∑
a=1

1

a
<

√
q

(q−1)/2∑
a=1

log
1 + 1

2a

1 − 1
2a

= √
q

(q−1)/2∑
a=1

log
2a + 1

2a − 1
= √

q log q.

That is, ∣∣∣∣∣ M+N∑
n=M+1

χ (n)

∣∣∣∣∣ < √
q log q (9.16)

whenχ is primitive. We now extend this to imprimitive non-principal characters.
Suppose that χ is induced by χ! modulo d. Let r be the product of those primes
that divide q but not d . Then

M+N∑
n=M+1

χ (n) =
M+N∑

n=M+1
(n,r )=1

χ!(n)

=
M+N∑

n=M+1

χ!(n)
∑

k|(n,r )

µ(k)

=
∑
k|r

µ(k)
∑

M<n≤M+N
k|n

χ!(n)

=
∑
k|r

µ(k)χ!(k)
∑

M/k<m≤(M+N )/k

χ!(m).

By the case already treated, we know that the inner sum above has absolute
value not exceeding d1/2 log d, and hence the given sum has absolute value
not more than 2ω(r )d1/2 log d. But 2ω(r ) ≤ d(r ) 	 r1/2 ≤ (q/d)1/2, so we have
proved

Theorem 9.18 (The Pólya–Vinogradov inequality) Let χ be a non-principal
character modulo q. Then for any integers M and N with N > 0,

M+N∑
n=M+1

χ (n) 	 √
q log q.

In (9.16) we saw that the implicit constant can be taken to be 1 when χ

is primitive. With a little more care it can be seen that the implicit constant
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can be taken to be 1 for all non-principal characters. The above estimate is
important in many contexts, but we confine ourselves to two applications at this
point.

Corollary 9.19 Let χ be a non-principal character modulo p, and let nχ be

the least positive integer n such that χ (n) �= 1. Then nχ 	ε p
1

2
√

e
+ε.

Proof Suppose that χ (n) = 1 for all n ≤ y. Then χ (n) = 1 whenever n is
composed entirely of primes q ≤ y. Hence, in the notation of Section 7.1, if
y ≤ x < y2, then ∑

n≤x

χ (n) = ψ(x, y) +
∑

y<q≤x

χ (q)[x/q]

where q denotes a prime. Thus∣∣∣∣∣∑
n≤x

χ (n)

∣∣∣∣∣ ≥ ψ(x, y) −
∑

y<q≤x

[x/q] = [x] − 2
∑

y<q≤x

[x/q]

= x

(
1 − 2 log

log x

log y

)
+ O

(
x

log x

)
.

If x = p1/2(log p)2, then the sum on the left is o(x), while if y > x1/
√

e+ε, then
the lower bound on the right is 
 εx . Thus nχ 	ε x1/

√
e+ε. �

Corollary 9.20 The number of primitive roots modulo p in the interval [M +
1, M + N ] is

ϕ(p − 1)

p
N + O

(
p1/2+ε

)
.

Since the number of primitive roots in an interval of length p is exactlyϕ(p −
1), the above asserts that primitive roots are roughly uniformly distributed into
subintervals of length N provided that N > p1/2+ε.

Proof Let q1, q2, . . . , qr be the distinct prime factors of p − 1, and put q =∏r
i=1 qi . Then n is a primitive root modulo p if and only if (ind n, q) = 1. For

1 ≤ i ≤ r put

χi (n) = e

(
ind n

qi

)
.

Then

1

qi

qi∑
a=1

χi (n)a =
{

1 if qi | ind n,
0 otherwise.
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Thus
r∏

i=1

(
χ0(n) − 1

qi

qi∑
ai =1

χi (n)ai

)
=
{

1 if n is a primitive root (mod p),
0 otherwise.

The left-hand side above is
r∏

i=1

((
1 − 1/qi

)
χ0(n) − 1

qi

qi −1∑
ai =1

χ
ai
i (n)

)
=
∑
d|q

ϕ(q/d)

q/d

µ(d)

d

∑
χ

ordχ=d

χ (n).

Thus the number of primitive roots in the interval [M + 1, M + N ] is

1

q

∑
d|q

ϕ(q/d)µ(d)
∑
χ

ordχ=d

M+N∑
n=M+1

χ (n). (9.17)

The only character of order d = 1 is the principal character χ0, which gives us
the main term

ϕ(q)

q
((1 − 1/p)N + O(1)) = ϕ(p − 1)

p
N + O(1).

A character of order d > 1 is non-principal, and for such characters the inner-
most sum in (9.17) is 	 p1/2 log p. Since there are ϕ(d) such characters, the
contribution in (9.17) of d > 1 is

	 ϕ(q)

q
p1/2 log p

∑
d|(p−1)

|µ(d)| 	 2ω(p−1) p1/2 log p 	 p1/2+ε.

This gives the stated result. �

Suppose that χ is a non-principal character modulo q. Further insights
into the Pólya–Vinogradov inequality may be gained by considering the sum
fχ (α) =∑0<n≤qα χ (n) as a function of the real variable α, for 0 ≤ α ≤ 1. We
extend the domain of fχ (α) by periodicity, and compute its Fourier coefficients:

f̂ χ (k) =
∫ 1

0
fχ (α)e(−kα) dα =

q∑
n=1

χ (n)
∫ 1

n/q
e(−kα) dα.

The nature of this integral depends on whether k = 0 or not. In the former case
we find that

f̂ χ (0) =
q∑

n=1

χ (n)

(
1 − n

q

)
= −1

q

q∑
n=1

nχ (n),

while for k �= 0 we have

f̂ χ (k) =
q∑

n=1

χ (n)
1 − e(−kn/q)

−2π ik
= 1

2π ik

q∑
n=1

χ (n)e(−kn/q) = cχ (−k)

2π ik
.
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It is convenient to restrict to primitive characters, since then cχ (−k) =
χ (−k)τ (χ ) by Theorem 9.5. Since fχ (α) is a function of bounded variation
it follows that

fχ (α) = −1

q

q∑
n=1

nχ (n) + τ (χ )

2π i

∑
k �=0

χ (−k)

k
e(kα) (9.18)

at points of continuity of fχ , with the understanding that the sum is calculated
as the limit of the symmetric partial sums

∑K
−K . If χ (−1) = 1, then fχ (α) is

an odd function and the contributions of k and of −k can be combined to form
a sine series. If χ (−1) = −1, then fχ (α) is an even function, and the two terms
merge to form a cosine series. In this case it is interesting to note that if we take
α = 0 then we obtain another proof of (9.9). Among other possible values of
α that might be considered, the possibility α = 1/2 is particularly striking. If
χ (−1) = 1 then fχ (1/2) = 0 by symmetry, so in continuing we suppose that
χ (−1) = −1. Note that if q is odd then 1/2 is not of the form n/q, and hence
fχ (α) is continuous at 1/2. On the other hand, there is no primitive character
modulo 2 and hence if q is even then 4 | q. In this case we can solve the equation
n/q = 1/2 by taking n = q/2, but then q/2 is even, so that (q/2, q) > 1, and
henceχ (q/2) = 0. Hence fχ (α) is continuous at 1/2 in all cases, and we deduce
that ∑

0<n≤q/2

χ (n) = −1

q

q∑
n=1

nχ (n) − τ (χ )

π i

∞∑
k=1

χ (k)

k
(−1)k .

As we already discovered by taking α = 0, the first term on the right is
τ (χ )L(1, χ )/(π i). But

∞∑
k=1

χ (k)(−1)k

ks
= (21−sχ (2) − 1)L(s, χ )

for any character χ and any s with positive real part, so we have proved

Theorem 9.21 Let χ be a primitive character modulo q such that χ (−1)
= −1. Then ∑

1≤n≤q/2

χ (n) = (2 − χ (2))
τ (χ )

π i
L(1, χ ).

In the special case that χ is a quadratic character we know the exact value
of the Gauss sum, and hence we can say more.

Corollary 9.22 If d is a quadratic discriminant with d < 0, then∑
1≤n≤|d|/2

(
d

n

)
> 0.
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On taking α = (M + N )/q and then α = M/q, and differencing, we see
that

M+N∑
n=M+1

χ (n) = τ (χ )

2π i

∑
k �=0

χ (−k)

k
e(k M/q)(e(k N/q) − 1) + O(1).

Since e(k N/q) − 1 ∼ 2π ik N/q when |k| is small compared with N/q, for
rough heuristics we think of the above as being approximately

τ (χ )N

q

∑
0<|k|≤N/q

χ (−k)e(k M/q).

Here a sum over an interval of length N reflects – approximately – to form a sum
over an interval of length N/q. Further examples of this sort of phenomenon
will emerge when we consider approximate functional equations of ζ (s) and of
L(s, χ ).

The Fourier expansion (9.18) is also useful in deriving quantitative estimates.
We know not only that Var[0,1] fχ = ϕ(q), but (by Theorems 2.10 and 3.1) also
that this variation is reasonably well distributed in subintervals, in the sense
that Var[α,β] fχ 	 ϕ(q)(β − α) when β − α > q−1+ε. We apply Theorem D.2
to fχ (α), and divide the range of integration (0, 1) into K intervals of length
1/K , throughout each of which the integrand has a constant order of magnitude.
Thus we see that

fχ (α) = −1

q

q∑
n=1

nχ (n) + τ (χ )

2π i

∑
0<|k|≤K

χ (−k)

k
e(kα) + O

(
ϕ(q)

K
log 2K

)
(9.19)

for K ≤ q1−ε. This can be used to obtain sharper constants in the Pólya–
Vinogradov inequality; see Exercise 9.4.9.

We can also show that the estimate provided by the Pólya–Vinogradov in-
equality is in general not far from the truth.

Theorem 9.23 Suppose that χ is a non-principal character modulo q. Then

max
M,N

∣∣∣∣∣ M+N∑
n=M+1

χ (n)

∣∣∣∣∣ ≥ |τ (χ )|
π

.

Proof Clearly∣∣∣∣∣
q∑

M=1

e(M/q)
M+N∑

n=M+1

χ (n)

∣∣∣∣∣ ≤
q∑

M=1

∣∣∣∣∣ M+N∑
n=M+1

χ (n)

∣∣∣∣∣ ≤ q max
M

∣∣∣∣∣ M+N∑
n=M+1

χ (n)

∣∣∣∣∣ .
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Here the sum on the left is

N∑
n=1

q∑
M=1

e(M/q)χ (M + n) =
N∑

n=1

e(−n/q)
q∑

M=1

χ (M)e(M/q).

By (9.14) this is

e

(−(N + 1)

2q

)
sinπN/q

sinπ/q
τ (χ ).

If q is even, then we may take N = q/2, and then the quotient of sines is
= 1/(sinπ/q) ≥ q/π , while if q is odd, then we may take N = (q − 1)/2, in
which case the quotient of sines is

cos π
2q

sin π
q

= 1

2 sin π
2q

≥ q

π
.

The stated lower bound now follows by combining these estimates. �

If χ is primitive modulo q, then the lower bound of Theorem 9.23 is
√

q/π .
Further lower bounds of this nature can be derived by using Parseval’s identity
(4.4) for the finite Fourier transform; see Exercise 9.4.8. In addition to the lower
bound above, which applies to all characters, for a sparse subset of characters
we can obtain a better lower bound.

Theorem 9.24 (Paley) There is a positive constant c such that

max
M,N

M+N∑
n=M+1

(
d

n

)
> c

√
d log log d

for infinitely many positive quadratic discriminants d.

Proof Letχ be a primitive character modulo q such thatχ (−1) = 1. By taking
M = k − h − 1 and N = 2h + 1 in (9.15) we see that

k+h∑
n=k−h

χ (n) = 1

τ (χ )

q∑
a=1

χ (a)e(ak/q)
sinπa(2h + 1)/q

sinπa/q
.

Let h be the integer closest to q/3. Then the sine in the numerator is approxi-
mately sin 2πa/3 when a is small. We shall choose χ so that χ (a) = ( a

3

)
L

when
a is small. Thus these two factors are strongly correlated. We would take k = 0
except for the need to dampen the effects of the larger values of a. To this end
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we sum over k, for −K ≤ k ≤ K and divide by 2K + 1. Thus by (9.14),

1

2K + 1

K∑
k=−K

k+h∑
n=k−h

χ (n)

= 1

τ (χ )

q∑
a=1

χ (a)
sinπa(2h + 1)/q

sinπa/q

sinπ (2K + 1)a/q

(2K + 1) sinπa/q
. (9.20)

Here the last factor is approximately 1 if ‖a/q‖ ≤ 1/K , and decreases as ‖a/q‖
becomes larger. Thus, despite its complicated appearance, the expression above
is effectively

2q

πτ (χ )

A∑
a=1

χ (a) sin 2πa/3

a

where A = q/K . To make this precise we observe that

sinπ (2h + 1)a/q = sin 2πa/3 + O(‖a/q‖)

and that

sinπ (2K + 1)a/q

(2K + 1) sinπa/q
=
{

1 + O(K 2‖a/q‖2) (‖a/q‖ ≤ 1/K ),
O
(
K −1‖a/q‖−1

)
(‖a/q‖ > 1/K ).

Thus the right-hand side of (9.20) is

= 2

τ (χ )

q/K∑
a=1

χ (a)

(
1

πa/q
+ O

(
a

q

))(
sin 2πa/3 + O

(
a

q

))

×
(

1 + O

(
K 2a2

q2

))
+ O

(
1√
q

∑
q/K<a≤q/2

q2

K a2

)

= 2q

πτ (χ )

q/K∑
a=1

χ (a) sin 2πa/3

a
+ O(

√
q). (9.21)

Now let y be a large parameter, and suppose that

q ≡ 5 (mod 8),(
q

p

)
L

=
( p

3

)
L

(3 < p ≤ y). (9.22)

Thus by the Chinese Remainder Theorem, q is restricted to certain residue
classes modulo Q = 8

∏
3<p≤y p. Now let q be the least positive number that

satisfies these constraints. Then q is square-free, and hence q is a quadratic
discriminant, so we may takeχ (n) = ( q

n

)
K

. Also, q < Q. By the Prime Number
Theorem in the form of (6.13) we see that log Q = (1 + o(1))y. Let K be the
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least integer such that K > q/y. Then by (9.22),χ (a) = ( a
3

)
L for 1 ≤ a ≤ q/K ,

(a, 3) = 1. Thus
∑

1≤a≤u χ (a) sin 2πa/3 = u/
√

3 + O(1), so the main term in
(9.21) is

2
√

q

π
√

3
(log y + O(1)) ≥

(
2

π
√

3
+ o(1)

)√
q log log q.

This completes the proof. �

In the two preceding theorems we have seen that the character sum can be
large when N is comparable to q. For shorter sums we would expect the sum
to be smaller, and indeed one would conjecture that if χ is a non-principal
character modulo q , then

M+N∑
n=M+1

χ (n) 	ε N 1/2qε (9.23)

for any ε > 0. Although our present knowledge falls far short of this, we now
show that some improvement of the Pólya–Vinogradov inequality is possible, at
least in some situations. Our approach depends on the Riemann hypothesis for
curves over a finite field, in the form of the following character sum estimate,
which we derive from the exposition of Schmidt (1976).

Lemma 9.25 (Weil) Suppose that d|(p − 1) with d > 1 and that χ is a char-
acter modulo p of order d. Suppose further that e j ≥ 1 (1 ≤ j ≤ k), that d � e j

for some j with 1 ≤ j ≤ k and that the c1, c2, . . . , ck are distinct modulo p.
Then ∣∣∣∣∣

p∑
n=1

χ
(
(n + c1)e1 (n + c2)e2 · · · (n + ck)ek

)∣∣∣∣∣ ≤ (k − 1)p1/2.

Proof Let f (x) = (x + c1)e1 (x + c2)e2 · · · (x + ck)ek . Then, by Lemma 4B of
Schmidt (1976), f (x) cannot satisfy f (x) ≡ g(x)d (mod p) identically where g
is a polynomial with integer coefficients. The lemma then follows from Theorem
2C ′ ibidem. �

Lemma 9.26 Suppose that χ is a non-principal character modulo p and let

Sh,r =
p∑

n=1

∣∣∣∣∣ h∑
m=1

χ (m + n)

∣∣∣∣∣
2r

.

Then Sh,r 	 r2r
(
hr p + h2r p1/2

)
for positive integers r .
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Proof Clearly we may suppose that h ≤ p. Let d denote the order of χ . Then
d > 1 and

Sh,r =
∑

m1,...,m2r

p∑
n=1

χ ((n + m1) · · · (n + mr )(n + mr+1)d−1 · · · (n + m2r )d−1).

For a given 2r–tuple m1, . . . ,m2r let c1 < c2 < · · · < ck be the distinct val-
ues of the m j , and let al and bl denote the number of occurrences of
cl amongst the m1, . . . ,mr and mr+1, . . . ,m2r respectively. Let el = al +
(d − 1)bl . Then (n + m1) · · · (n + mr )(n + mr+1)d−1 · · · (n + m2r )d−1 = (n +
c1)e1 · · · (n + ck)ek . Note that e1 + · · · + ek = r + r (d − 1) = rd. If there is an
l such that d � el , then by Lemma 9.25 the sum over n is bounded by (k − 1)p

1
2 ,

and so the total contribution to Sh,r from such 2r–tuples is

≤ 2rh2r p
1
2 .

On the other hand, if d|el for every l, then kd ≤ e1 + · · · ek = rd and so k ≤ r .
The number of choices of m1, . . . ,m2r with ml ∈ {c1, . . . , ck} is at most k2r

and the number of choices for c1, . . . , ck is
(h

k

)
. Thus the total contribution to

Sh,r from these terms is bounded by∑
k≤r

k2r

(
h

k

)
p 	 r2r hr p.

�

Our main result takes the following form.

Theorem 9.27 (Burgess) For any odd prime p and any positive integer r we
have

M+N∑
n=M+1

χ (n) 	 r N 1− 1
r p

r+1
4r2 (log p)αr

where αr = 1 when r = 1 or 2 and αr = 1
2r otherwise.

Suppose that δ > 1/4. If N > pδ , then the bound above is o(N ) if r is
chosen suitably large in terms of δ. Thus any interval of length N contains both
quadratic residues and quadratic non-residues. In addition the reasoning used
to derive Corollary 9.19 applies here, so we see that the least positive quadratic

non-residue modulo p is 	ε p
1

4
√

e
+ε.

Proof When r = 1 or N > p5/8 the bound is weaker than the Pólya–
Vinogradov Inequality (Theorem 9.18), and when r > 2 and N > p1/2 the
stated bound is weaker than the case r = 2. Also, when N ≤ p

r+1
4r the bound is
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worse than trivial. Hence we may suppose that

p > p0, r ≥ 2, and p
r+1
4r < N ≤

{
p5/8 when r = 2,
p1/2 when r > 2.

(9.24)

Let S(M, N ) denote the sum in question. Then

S(M, N ) =
M+N∑

n=M+1

χ (n + ab) + S(M, ab) − S(M + N , ab).

Let

M(y) = max
M,N
N≤y

|S(M, N )|.

Then

S(M, N ) =
M+N∑

n=M+1

χ (n + ab) + 2θM(ab)

where |θ | ≤ 1. We sum this over a ∈ [1, A] and b ∈ [1, B]. Thus

ABS(M, N ) =
∑
n,a,b

χ (n + ab) + 2ABθ1M(AB).

We suppose that

A < p (9.25)

and then define ν(�) to be the number of pairs a, n with a ∈ [1, A], n ∈ [M +
1, M + N ] and n ≡ a� (mod p). Thus∣∣∣∣∣∑

n,a,b

χ (n + ab)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
p∑

�=1

∑
n,a

n≡a� (mod p)

χ (a)
∑

b

χ (� + b)

∣∣∣∣∣∣∣
≤

p∑
�=1

ν(�)

∣∣∣∣∣∑
b

χ (� + b)

∣∣∣∣∣ .
By Hölder’s inequality,(

p∑
�=1

ν(�)

∣∣∣∣∣∑
b

χ (� + b)

∣∣∣∣∣
)2r

≤
(

p∑
�=1

ν(�)
2r

2r−1

)2r−1 p∑
�=1

∣∣∣∣∣∑
b

χ (� + b)

∣∣∣∣∣
2r

and (
p∑

�=1

ν(�)
2r

2r−1

)2r−1

≤
(

p∑
�=1

ν(�)

)2r−2 p∑
�=1

ν(�)2.
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Clearly
p∑

�=1

ν(�) = AN .

We show below that if

AN <
1

2
p, 1 ≤ A ≤ N , (9.26)

then
p∑

�=1

ν(�)2 	 AN log p. (9.27)

Assuming this, we take A = [ 1
10 N p−1/(2r )

]
, B = [p1/(2r )

]
. Then (9.24) gives

(9.25) and (9.26). Thus from Lemma 9.26 with h = B we see that∑
n,a,b

χ (n + ab) 	 r N 2− 1
r p

r+1
4r2 (log p)

1
2r .

Hence there is an absolute constant C such that

|S(M, N )| ≤ Cr N 1− 1
r p

r+1
4r2 (log p)

1
2r + 2M(N/10). (9.28)

Choose M1, N1 with N1 ≤ N so that |S(M1, N1)| = M(N ). If (9.24) fails
because N1 ≤ p

r+1
4r , then (9.28) with M = M1, N = N1 is trivial. Thus we

have

M(N ) ≤ N 1− 1
r λ + 2M(N/10) (9.29)

where

λ = Cr p
r+1
4r2 (log p)

1
2r .

Moreover (9.29) is also trivial when N ≤ p
r+1
4r . We apply (9.29) repeatedly with

N replaced by [N/10],
[
[N/10]/10

]
, and so on. Thus

M(N ) ≤ N 1− 1
r λ

K∑
k=0

2k10−k(1− 1
r ) + 2K+1M(10−K−1 N ).

The trivial bound M(10−K−1 N ) 	 10−K N with a judicious choice of K suf-
fices to give

M(N ) 	 N 1− 1
r λ

which completes the proof, apart from the need to establish (9.27) with (9.26).
Clearly ∑

�

ν(�)2
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is the number of choices of a, n, a′, n′, � with a, a′ ∈ [1, A], n, n′ ∈ [1, N ],
M + n ≡ a� (mod p), M + n′ ≡ a′� (mod p). Since 1 ≤ a, a′ ≤ A < p, by
elimination of l we see that this is the number of solutions of (a − a′)M ≡
a′n − an′ (mod p) with a, n, a′, n′ as before. Given any such pair a, a′, choose
k so that k ≡ (a − a′)M (mod p) and |k| < p/2. We have 1 ≤ a′n, an′ ≤ AN ≤
1

10 N 2 p− 1
2r < p/2 in all cases. Thus a′n − an′ = k. Given any one pair n = n0,

n′ = n′
0 satisfying this equation we have, in general, n = n0 + a

(a,a′) h, n′ =
n′

0 + a′
(a,a′) h. Moreover |h| ≤ N (a,a′)

max{a,a′} . Therefore the total number of possible

pairs n,n′ is at most 1 + 2N (a,a′)
max{a,a′} . Hence∑

�

ν(�)2 	 A2 +
∑

1≤a≤a′≤A

N (a, a′)
a′

	 A2 +
∑
d≤A

∑
1≤b≤b′≤A/d

N

b′

	 A2 + AN log 2A.

and so we have (9.27). �

9.4.1 Exercises

1. Let χ be a non-principal character modulo q, and suppose that (a, q) = 1.
Choose a so that aa ≡ 1 (mod q).
(a) Explain why

χ (a)
M+N∑

n=M+1

χ (an + b) =
M+ab+N∑

n=M+ab+1

χ (n).

(b) Show that

M+N∑
n=M+1

χ (an + b) 	 √
q log q.

2. With reference to the proof of Theorem 9.21, show that 2ω(r ) ≤ c
√

r for
all positive integers r where c = 4/

√
6, and that equality holds only when

r = 6.
3. Show that if χ is a character modulo q with χ (−1) = −1, then

q∑
n=1

n2χ (n) = q
q∑

n=1

nχ (n).
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4. (a) Let cn and f (n) have period q. Show that

q∑
n=1

cn f (n) =
q∑

n=1

cn
1

q

q∑
k=1

f̂ (k)e(kn/q) = 1

q

q∑
k=1

f̂ (k)ĉ(−k).

(b) Suppose that 1 ≤ N ≤ q and set f (n) = 1 for M + 1 ≤ n ≤ M + N ,
and f (n) = 0 for other residues (mod q). Show that f̂ (0) = N and by
(9.14) or otherwise that

f̂ (k) = e(−(2M + N + 1)k/q)
sinπk N/q

sinπk/q

for k �≡ 0 (mod q).
(c) By subtracting ĉ(0)N/q from both sides and applying the triangle in-

equality, show that∣∣∣∣∣ M+N∑
n=M+1

cn − N

q

q∑
n=1

cn

∣∣∣∣∣ ≤ 1

q

q−1∑
k=1

|ĉ(k)|
sinπk/q

5. (a) Suppose that a function f is concave upwards. Explain why

f (x) ≤ 1

2δ

∫ x+δ

x−δ

f (u) du

for δ > 0.
(b) Take f (u) = cscπu, x = k/q, and δ = 1/(2q), and sum over k to see

that

q−1∑
k=1

1

sinπk/q
< q

∫ 1−1/(2q)

1/(2q)

1

sinπu
du.

(c) Note that csc v has the antiderivative log(csc v − cot v), and hence de-
duce that the integral above is

= q

π
log

1 + cos π
2q

1 − cos π
2q

.

(d) By means of the inequalities 1 − θ2/2 ≤ cos θ ≤ 1 deduce that the
above is

<
q

π
log

16q2

π2
= 2q

π
log

4q

π
.

(e) Note that this is < q log q if q > exp((log 4/π )/(1 − 2/π )) =
1.944 . . . .

6. Let cn be a sequence with period q and finite Fourier transform ĉ(k).
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(a) Show that

q∑
M=1

∣∣∣∣∣ M+N∑
n=M+1

cn − N

q

q∑
n=1

cn

∣∣∣∣∣
2

= 1

q

q−1∑
k=1

|ĉ(k)|2 sin2 πNk/q

sin2 πk/q

for 1 ≤ N ≤ q .
(b) Suppose that cn = 1 for 0 < n < q and that c0 = 0. Show that ĉ(0) =

q − 1 and that ĉ(k) = −1 for 0 < k < q. Deduce that

q−1∑
k=1

sin2 πNk/q

sin2 πk/q
= (q − N )N

for 0 ≤ N ≤ q .
(c) Take q = 2N and write k = 2n − 1 to deduce that

N∑
n=1

1(
N sinπ 2n−1

2N

)2 = 1.

Let N tend to infinity to show that
∑∞

n=1(2n − 1)−2 = π2/8, and hence
that ζ (2) = π2/6.

7. (a) Show that if χ is a primitive character modulo q, q > 1, then

q∑
M=1

∣∣∣∣∣ M+N∑
n=M+1

χ (n)

∣∣∣∣∣
2

≤ Nq

for 1 ≤ N ≤ q .
(b) Show that if χ �= χ0 (mod p), then

p∑
M=1

∣∣∣∣∣ M+N∑
n=M+1

χ (n)

∣∣∣∣∣
2

= N (p − N )

for 1 ≤ N ≤ p.
8. Let fχ (α) =∑0<n≤qα χ (n). Show that if χ is a primitive character modulo

q , then ∫ 1

0
| fχ (α) − aχ |2 dα = q

12

∏
p|q

(
1 − 1

p2

)
where aχ = 0 if χ (−1) = 1, and

aχ = −1

q

q∑
n=1

nχ (n) = −i L(1, χ )τ (χ )/π

if χ (−1) = −1.
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9. (a) Show that ∑
d|q

log p

p − 1
	 log log 3q.

(b) Recall Exercise 2.1.16, and show that∑
k≤K

(k,q)=1

1

k
= ϕ(q)

q
log K + O

(
ϕ(q)

q
log log q

)
+ O

(
2ω(q)

K

)

for 1 ≤ K ≤ q .
(c) Suppose that χ is a primitive character modulo q, q > 1. Use Theo-

rem D.2 to show that
M+N∑

n=M+1

χ (n) = τ (χ )

2π i

∑
0<|k|≤K

χ (−k)

k
e(k M/q)(e(k N/q) − 1)

+O

(
ϕ(q)

K
log 2K

)
when K < q1−ε.

(d) By taking K = q1/2 log q show that ifχ is a primitive character modulo
q , q > 1, then∣∣∣∣∣ M+N∑

n=M+1

χ (n)

∣∣∣∣∣ ≤ ϕ(q)

πq
q1/2 log q + O

(
q1/2 log log 3q

)
.

10. (Bernstein 1914a,b) Let χ be a primitive character (mod q), with q > 1.
Show that ∑

|n|≤q

(1 − |n|/q)χ (n)e(nα) 	 √
q

uniformly in α.

9.5 Notes

Section 9.2. That the sum in (9.6) vanishes when (n, q) > 1 was proved by de la
Vallée Poussin (1896), in a complicated way. We follow the simpler argument
that Schur showed Landau (1908, pp. 430–431).

The evaluation of the sum cχ is found in Hasse (1964, pp. 449–450). Our
derivation follows that of Montgomery & Vaughan (1975). A different proof
has been given by Joris (1977).

Section 9.3. Let ζK (s) =∑a N (a)−s be the Dedekind zeta function of the
algebraic number field K . Here the sum is over all ideals a in the ring OK of
integers in K . In case K is a quadratic extension of Q, then the discriminant
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d of K is a quadratic discriminant, K = Q(
√

d), and ζK (s) = ζ (s)L(s, χd ). In
other words, the number of ideals of norm n is

∑
k|n χd (k).

Section 9.4. Concerning the constant that can be taken in Theorem 9.18,
see Landau (1918), Cochrane (1987), Hildebrand (1988a,b), and Granville &
Soundararajan (2005). Granville & Soundararajan (2005) also show that in the
case of a cubic character, the sum in Theorem 9.18 is 	 √

q(log q)θ where θ

is an absolute constant, θ < 1.
On the assumption of the Generalized Riemann Hypothesis for all Dirichlet

characters, Montgomery & Vaughan (1977) have shown that

M+N∑
n=M+1

χ (n) 	 q1/2 log log q.

See Granville & Soundararajan (2005) for a much simpler proof. Paley’s lower
bound, Theorem 9.24 above, shows that the above is essentially best-possible.
Nevertheless, it is known that one can do better a good deal of the time. In fact
in Montgomery & Vaughan (1979) it is shown that for each θ ∈ (0, 1) there is a
c(θ ) > 0 such that if P > P0(θ ), then for at least θπ (P) primes p ≤ P we have

max
N

∣∣∣∣∣ N∑
n=1

(
n

p

)∣∣∣∣∣ ≤ c(θ )p1/2,

and if q > P0(θ ), then for at least θϕ(q) of the non-principal characters modulo
q we have

max
N

∣∣∣∣∣ N∑
n=1

χ (n)

∣∣∣∣∣ ≤ c(θ )q1/2.

Walfisz (1942) and Chowla (1947) showed that there exist infinitely many
primitive quadratic characters χ for which L(1, χ ) � eC0 log log q. In view
of Theorem 9.21, this provides an alternative approach for proving estimates
similar to Paley’s Theorem 9.24. For recent developments concerning large
L(1, χ ), see Vaughan (1996), Montgomery & Vaughan (1999), and Granville
& Soundararajan (2003).

Lemma 9.25 is a consequence of Weil’s proof of the Riemann Hypothesis
for curves over finite fields, and originally depended on considerable machinery
from algebraic geometry. Later Stepanov used constructs from transcendence
theory to estimate complete character sums, and subsequently Bombieri used
Stepanov’s ideas to give a proof of Weil’s theorem that depends only on the
Riemann–Roch theorem. Schmidt (1976) gives an exposition of this more
elementary approach that even avoids the Riemann–Roch theorem. Friedlander
& Iwaniec (1992) showed that the Pólya–Vinogradov inequality can be sharp-
ened, in the direction of Burgess’ estimates, without using Weil’s estimates. The

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.011 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.011


9.6 References 323

proof of Theorem 9.27 above is developed from one of Iwaniec appearing in
Friedlander (1987), with a further wrinkle from Friedlander & Iwaniec (1993).

Burgess first (1957) treated the Legendre symbol and then (1962a, b) gener-
alized his method to deal with arbitrary Dirichlet characters having cube-free
conductor. Burgess’ extension to composite moduli involves an extra new idea
that does not extend well when the conductor is divisible by higher powers of
primes. For some progress in this direction see Burgess (1986).
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