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The Prime Number Theorem

6.1 A zero-free region

The Prime Number Theorem (PNT) asserts that

π (x) ∼ x

log x

as x tends to infinity. We shall prove this by using Perron’s formula, but in
the course of our arguments it will be important to know that ζ (s) �= 0 for
σ ≥ 1. In Chapter 1 we saw that ζ (s) �= 0 for σ > 1, but it remains to show
that ζ (1 + i t) �= 0. To obtain a quantitative form of the Prime Number The-
orem we take some care to show that ζ (s) �= 0 for σ ≥ 1 − δ(t) where δ(t)
is some function of t . We would like the width δ(t) of the zero-free region
to be as large as possible, as the rate at which δ(t) tends to 0 determines the
size of the estimate we can derive for the error term in the Prime Number
Theorem.

We begin by reviewing some basic facts concerning functions of a complex
variable. If P(z) is a polynomial, then the rate of growth of |P(z)| as |z| →
∞ reflects the number of zeros of P(z). This is generalized to other analytic
functions by Jensen’s formula. For our purposes we are content to establish the
following simple consequence of Jensen’s formula.

Lemma 6.1 (Jensen’s inequality) If f (z) is analytic in a domain containing
the disc |z| ≤ R, if | f (z)| ≤ M in this disc, and if f (0) �= 0, then for r < R the
number of zeros of f in the disc |z| ≤ r does not exceed

log M/| f (0)|
log R/r

.

Proof Let z1, z2, . . . , zK denote the zeros of f in the disc |z| ≤ R, and
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6.1 A zero-free region 169

put

g(z) = f (z)
K∏

k=1

R2 − zzk

R(z − zk)
.

The k th factor of the product has been constructed so that it has a pole at zk , and
so that it has modulus 1 on the circle |z| = R. Hence g is an analytic function
in the disc |z| ≤ R, and if |z| = R, then |g(z)| = | f (z)| ≤ M . Hence by the
maximum modulus principle, |g(0)| ≤ M . But

|g(0)| = | f (0)|
K∏

k=1

R

|zk | .

Each factor in the product is ≥ 1, and if |zk | ≤ r , then the factor is ≥ R/r . If
there are L such zeros, then the above is ≥ | f (0)|(R/r )L , which gives the stated
upper bound for L . �

We now show that a bound for the modulus of an analytic function can be
derived from a one-sided bound for its real part in a slightly larger region.

Lemma 6.2 (The Borel–Carathéodory Lemma) Suppose that h(z) is analytic
in a domain containing the disc |z| ≤ R, that h(0) = 0, and that �h(z) ≤ M
for |z| ≤ R. If |z| ≤ r < R, then

|h(z)| ≤ 2Mr

R − r

and

|h′(z)| ≤ 2M R

(R − r )2
.

Proof It suffices to show that∣∣∣∣h(k)(0)

k!

∣∣∣∣ ≤ 2M

Rk
(6.1)

for all k ≥ 1, for then

|h(z)| ≤
∞∑

k=1

∣∣∣∣h(k)(0)

k!

∣∣∣∣ rk ≤ 2M
∞∑

k=1

( r

R

)k
= 2Mr

R − r
,

and

|h′(z)| ≤
∞∑

k=1

|h(k)(0)|krk−1

k!
≤ 2M

R

∞∑
k=1

k
( r

R

)k−1
= 2M R

(R − r )2
.

To prove (6.1) we first note that∫ 1

0
h(Re(θ )) dθ = 1

2π i

∮
|z|=R

h(z)
dz

z
= h(0) = 0.
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170 The Prime Number Theorem

Moreover, if k > 0, then∫ 1

0
h(Re(θ ))e(kθ ) dθ = R−k

2π i

∮
|z|=R

h(z)zk−1 dz = 0,

and ∫ 1

0
h(Re(θ ))e(−kθ ) dθ = Rk

2π i

∮
|z|=R

h(z)z−k−1 dz = Rkh(k)(0)

k!
.

By forming a linear combination of these identities we see that if k > 0, then∫ 1

0
h(Re(θ ))(1 + cos 2π (kθ + φ)) dθ = Rke(−φ)h(k)(0)

2 · k!
.

By taking real parts it follows that

�
(

1

2
Rke(−φ)h(k)(0)/k!

)
≤ M

∫ 1

0
(1 + cos 2π (kθ + φ)) dθ = M

for k > 0. Since this holds for any real φ, we are free to choose φ so that
e(−φ)h(k)(0) = |h(k)(0)|. Then the above inequality gives (6.1), and the proof
is complete. �

If P(z) = c
∏K

k=1(z − zk), then

P ′

P
(z) =

K∑
k=1

1

z − zk
.

We now generalize this to analytic functions f (z), to the extent that f ′/ f can
be approximated by a sum over its nearby zeros.

Lemma 6.3 Suppose that f (z) is analytic in a domain containing the disc
|z| ≤ 1, that | f (z)| ≤ M in this disc, and that f (0) �= 0. Let r and R be fixed,
0 < r < R < 1. Then for |z| ≤ r we have

f ′

f
(z) =

K∑
k=1

1

z − zk
+ O

(
log

M

| f (0)|
)

where the sum is extended over all zeros zk of f for which |zk | ≤ R. (The implicit
constant depends on r and R, but is otherwise absolute.)

Proof If f (z) has zeros on the circle |z| = R, then we replace R by a very
slightly larger value. Thus we may assume that f (z) �= 0 for |z| = R. Set

g(z) = f (z)
K∏

k=1

R2 − zzk

R(z − zk)
.
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6.1 A zero-free region 171

By Lemma 6.1 we know that

K ≤ log M/| f (0)|
log 1/R

	 log
M

| f (0)| . (6.2)

If |z| = R, then each factor in the product has modulus 1. Consequently |g(z)| ≤
M when |z| = R, and by the maximum modulus principle |g(z)| ≤ M for |z| ≤
R. We also note that

|g(0)| = | f (0)|
K∏

k=1

R

|zk | ≥ | f (0)|.

Since g(z) has no zeros in the disc |z| ≤ R, we may put h(z) = log(g(z)/g(0)).
Then h(0) = 0, and

�h(z) = log |g(z)| − log |g(0)| ≤ log M − log | f (0)|
for |z| ≤ R. Hence by the Borel–Carathéodory lemma we see that

h′(z) 	 log
M

| f (0)| (6.3)

for |z| ≤ r . But

h′(z) = g′

g
(z) = f ′

f
(z) −

K∑
k=1

1

z − zk
+

K∑
k=1

1

z − R2/zk
. (6.4)

Now |R2/zk | ≥ R, so that if |z| ≤ r then |z − R2/zk | ≥ R − r . Hence for |z| ≤ r
the last sum above has modulus

≤ K

R − r
	 log

M

| f (0)|
by (6.2). To obtain the stated result it suffices to combine this estimate and (6.3)
in (6.4). �

We now apply these general principles to the zeta function.

Lemma 6.4 If |t | ≥ 7/8 and 5/6 ≤ σ ≤ 2, then

ζ ′

ζ
(s) =

∑
ρ

1

s − ρ
+ O(log τ )

where τ = |t | + 4 and the sum is extended over all zeros ρ of ζ (s) for which
|ρ − (3/2 + i t)| ≤ 5/6.

Proof We apply Lemma 6.3 to the function f (z) = ζ (z + (3/2 + i t)), with
R = 5/6 and r = 2/3. To complete the proof it suffices to note that | f (0)| 
 1
by the (absolutely convergent) Euler product formula (1.17), and that f (z) 	 τ

for |z| ≤ 1 by Corollary 1.17. �
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172 The Prime Number Theorem

If the zeta function were to have a zero of multiplicity m at 1 + iγ , then we
would have

ζ ′

ζ
(1 + δ + iγ ) ∼ m

δ

as δ → 0+. But

�ζ ′

ζ
(1 + δ + iγ ) = −

∞∑
n=1

�(n)n−1−δ cos(γ log n),

and in the very worst case this could be no larger than

∞∑
n=1

�(n)n−1−δ = − ζ ′

ζ
(1 + δ) ∼ 1

δ
.

Thus m is at most 1, and even in this case ζ ′/ζ would be essentially as large as
it could possibly be. Roughly speaking, this would imply that piγ is near −1
for most primes. But then it would follow that p2iγ is near 1 for most primes,
so that

ζ ′

ζ
(1 + δ + 2iγ ) ∼ − 1

δ

as δ → 0+. Then ζ (s) would have a pole at 1 + 2iγ , contrary to Corollary
1.13. The essence of this informal argument is captured very effectively by the
following elementary inequality.

Lemma 6.5 If σ > 1, then

�
(

−3
ζ ′

ζ
(σ ) − 4

ζ ′

ζ
(σ + i t) − ζ ′

ζ
(σ + 2i t)

)
≥ 0.

Proof From Corollary 1.11 we see that the left-hand side above is

∞∑
n=1

�(n)n−1−δ
(
3 + 4 cos(t log n) + cos(2t log n)

)
.

It now suffices to note that 3 + 4 cos θ + cos 2θ = 2(1 + cos θ )2 ≥ 0 for
all θ . �

We now use Lemmas 6.4 and 6.5 to establish the existence of a zero-free
region for the zeta function.

Theorem 6.6 There is an absolute constant c > 0 such that ζ (s) �= 0 for
σ ≥ 1 − c/ log τ .

This is the classical zero-free region for the zeta function.
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6.1 A zero-free region 173

Proof Since ζ (s) is given by the absolutely convergent product (1.17) for
σ > 1, it suffices to consider σ ≤ 1. From (1.24) we see that∣∣∣∣ζ (s) − s

s − 1

∣∣∣∣ ≤ |s|
∫ ∞

1
u−σ−1 du = |s|

σ
(6.5)

forσ > 0. From this we see that ζ (s) �= 0 whenσ > |s − 1|, i.e., in the parabolic
region σ > (1 + t2)/2. In particular, ζ (s) �= 0 in the rectangle 8/9 ≤ σ ≤ 1,
|t | ≤ 7/8. Now suppose that ρ0 = β0 + iγ0 is a zero of the zeta function with
5/6 ≤ β0 ≤ 1, |γ0| ≥ 7/8. Since �ρ ≤ 1 for all zeros ρ of ζ (s), it follows that
�1/(s − ρ) > 0 whenever σ > 1. Hence by Lemma 6.4 with s = 1 + δ + iγ0

we see that

− �ζ ′

ζ
(1 + δ + iγ0) ≤ − 1

1 + δ − β0
+ c1 log(|γ0| + 4).

Similarly, by Lemma 6.4 with s = 1 + δ + 2iγ0 we find that

� − ζ ′

ζ
(1 + δ + 2iγ0) ≤ c1 log(|2γ0| + 4).

From Corollary 1.13 we see that

− ζ ′

ζ
(1 + δ) = 1

δ
+ O(1).

On combining these estimates in Lemma 6.5 we conclude that

3

δ
− 4

1 + δ − β0
+ c2 log(|γ0| + 4) ≥ 0.

We take δ = 1/(2c2 log(|γ0| + 4)). Thus the above gives

7c2 log(|γ0| + 4) ≥ 4

1 + δ − β0
,

which is to say that

1 + 1

2c2 log(|γ0| + 4)
− β0 ≥ 4

7c2 log(|γ0| + 4)
.

Hence

1 − β0 ≥ 1

14c2 log(|γ0| + 4)
,

so the proof is complete. �

In the above argument it is essential that the coefficient of ζ (s) is larger
than the coefficient of ζ (σ ). Among non-negative cosine polynomials T (θ ) =
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174 The Prime Number Theorem

a0 + a1 cos 2πθ + · · · + aN cos 2πNθ , the ratio a1/a0 can be arbitrarily close
to 2, as we see in the Fejér kernel


N (θ ) = 1 + 2
N−1∑
n=1

(
1 − n

N

)
cos 2nπθ = 1

N

(
sinπNθ

sinπθ

)2

≥ 0,

but it must be strictly less than 2 since

a0 − 1
2 a1 =

∫ 1

0
T (θ )(1 − cos 2πθ ) dθ > 0.

It is useful to have bounds for the zeta function and its logarithmic derivative
in the zero-free region.

Theorem 6.7 Let c be the constant in Theorem 6.6. If σ > 1 − c/(2 log τ )
and |t | ≥ 7/8, then

ζ ′

ζ
(s) 	 log τ , (6.6)

| log ζ (s)| ≤ log log τ + O(1) , (6.7)

and
1

ζ (s)
	 log τ . (6.8)

On the other hand, if 1 − c/(2 log τ ) < σ ≤ 2 and |t | ≤ 7/8, then ζ ′
ζ

(s) =
−1/(s − 1) + O(1), log

(
ζ (s)(s − 1)

)	 1, and 1/ζ (s) 	 |s − 1|.
Proof If σ > 1, then by Corollary 1.11 and the triangle inequality we see that∣∣∣∣ζ ′

ζ
(s)

∣∣∣∣ ≤ ∞∑
n=1

�(n)n−σ = − ζ ′

ζ
(σ ) 	 1

σ − 1
.

Hence (6.6) is obvious if σ ≥ 1 + 1/ log τ . Let s1 = 1 + 1/ log τ + i t . In par-
ticular we have

ζ ′

ζ
(s1) 	 log τ. (6.9)

From this estimate and Lemma 6.4 we deduce that∑
ρ

� 1

s1 − ρ
	 log τ (6.10)

where the sum is over those zeros ρ for which |ρ − (3/2 + i t)| ≤ 5/6. Suppose
that 1 − c/(2 log τ ) ≤ σ ≤ 1 + 1/ log τ . Then by Lemma 6.4 we see that

ζ ′

ζ
(s) − ζ ′

ζ
(s1) =

∑
ρ

(
1

s − ρ
− 1

s1 − ρ

)
+ O(log τ ). (6.11)
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6.1 A zero-free region 175

Since |s − ρ| � |s1 − ρ| for all zeros ρ in the sum, it follows that

1

s − ρ
− 1

s1 − ρ
	 1

|s1 − ρ|2 log τ
	 � 1

s1 − ρ
.

Now (6.6) follows on combining this with (6.9) and (6.10) in (6.11).
To derive (6.7) we begin as in our proof of (6.6). From Corollary 1.11 and

the triangle inequality we see that if σ > 1, then

| log ζ (s)| ≤
∞∑

n=2

�(n)

log n
n−σ = log ζ (σ ).

But by Theorem 1.14 we know that ζ (σ ) < 1 + 1/(σ − 1), so that (6.7)
holds when σ ≥ 1 + 1/ log τ . In particular (6.7) holds at the point s1 =
1 + 1/ log τ + i t , so that to treat the remaining s it suffices to bound the
difference

log ζ (s) − log ζ (s1) =
∫ s

s1

ζ ′

ζ
(w) dw.

We take the path of integration to be the line segment joining the endpoints.
Then the length of this interval multiplied by the bound (6.6) gives the error
term O(1) in (6.7).

The estimate (6.8) follows directly from (6.7), since log 1/|ζ | = −� log ζ .
The remaining estimates follow trivially from (6.5). �

The ideas we have used enable us not only to derive a zero-free region but
also to place a bound on the number of zeros ρ that might lie near the point
1 + i t .

Theorem 6.8 Let n(r ; t) denote the number of zeros ρ of ζ (s) in the disc
|ρ − (1 + i t)| ≤ r . Then n(r ; t) 	 r log τ , uniformly for r ≤ 3/4.

Proof If c1 is a small positive constant and r < c1/ log τ , then n(r ; t) = 0 by
Theorem 6.6. Suppose that c1/ log τ ≤ r ≤ 1/6, |t | ≥ 7/8. As in the proof of
Theorem 6.7, the estimate (6.10) holds when we take s1 = 1 + r + i t . In the sum
overρ, each term is non-negative, and those zerosρ counted in n(r ; t) contribute
at least 1/(2r ) apiece. Hence their number is 	 r log τ . If 1/6 < r ≤ 3/4 and
|t | ≥ 3, then the desired bound follows at once by applying Jensen’s inequality
(Lemma 6.1 above) to the function f (z) = ζ (z + 2 + i t), with R = 11/6, in
view of the bounds provided by Corollary 1.17. Note that | f (0)| 
 1 because
of the absolute convergence of the Euler product. If 1/6 < r ≤ 3/4 and |t | ≤ 3,
then we apply Jensen’s inequality to the function f (z) = (z + 1 + i t)ζ (z + 2 +
i t). �
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176 The Prime Number Theorem

6.1.1 Exercises

1. (a) Show that if |z| < R, |w| ≤ R, and z �= w, then∣∣∣∣ zw − R2

(z − w)R

∣∣∣∣ ≥ 1.

(b) Show that if |w| ≤ ρ < R, |z| = r < R, and z �= w, then∣∣∣∣ zw − R2

(z − w)R

∣∣∣∣ ≥ rρ + R2

(r + ρ)R
.

(c) Suppose that f is analytic in the disc |z| ≤ R. For r ≤ R put M(r ) =
max|z|≤r | f (z)|. Show that if 0 < r < R and 0 < ρ < R, then the num-
ber of zeros of f in the disc |z| ≤ ρ does not exceed

log
M(R)

M(r )

log rρ + R2

(r + ρ)R

.

2. Suppose that R, M , and ε are positive real numbers, and set h(z) =
2Mz/(z + R + ε).
(a) Show that h(0) = 0, that h(z) is analytic for |z| < R + ε, and that

�h(z) ≤ M for |z| ≤ R + ε.
(b) Show that if 0 < r < R, then

max
|z|≤r

|h(z)| = −h(−r ) = 2Mr

R + ε − r
.

(c) Show that if 0 < r < R, then

max
|z|≤r

|h′(z)| = h′(−r ) = 2M(R + ε)

(R + ε − r )2
.

3. Show that, in the situation of the Borel–Carathéodory lemma (Lemma 6.2),
if |z| ≤ r < R, then

|h′′(z)| ≤ 4M R

(R − r )3
.

4. (Mertens 1898) Use the Dirichlet series expansion of log ζ (s) to show that
if σ > 1, then

|ζ (σ )3ζ (σ + i t)4ζ (σ + 2i t)| ≥ 1.

The method used to establish a zero-free region for the zeta function can be
applied to any particular Dirichlet L-function, though the constants involved
may depend on the function. We shall pursue this systematically in Chapter 11,
but in the exercise below we treat one interesting example.
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6.1 A zero-free region 177

5. Let χ0 denote the principal character (mod 4), and χ1 the non-principal
character (mod 4).
(a) Show that L(1, χ1) = π/4, and hence that there is a neighbourhood of

1 in which L(s, χ1) �= 0.
(b) Show that if σ > 1, then

�
(

−3
L ′

L
(σ, χ0) − 4

L ′

L
(σ + i t, χ1) − L ′

L
(σ + 2i t, χ0)

)
≥ 0.

(c) Show that there is a constant c > 0 such that L(s, χ1) �= 0 for σ >

1 − c/ log τ .
(d) Show that there is a constant c > 0 such that if σ > 1 − c/ log τ , then

L ′

L
(s, χ1) 	 log τ,

| log L(s, χ1)| ≤ log log τ + O(1),

1

L(s, χ1)
	 log τ.

6. (a) Show that if 1 < σ1 ≤ σ2, then

ζ (σ2)

ζ (σ1)
≤
∣∣∣∣ζ (σ2 + i t)

ζ (σ1 + i t)

∣∣∣∣ ≤ ζ (σ1)

ζ (σ2)

for all real t .
(b) Show that if 1 < σ1 ≤ σ2 ≤ 2, then

σ1 − 1

σ2 − 1
	
∣∣∣∣ζ (σ2 + i t)

ζ (σ1 + i t)

∣∣∣∣	 σ2 − 1

σ1 − 1

uniformly in t .
7. (Montgomery & Vaughan 2001)

(a) Show that if σ > 1, then∣∣∣∣ζ (σ + i(t + 1))

ζ (σ + i t)

∣∣∣∣ ≤ exp

(
2

∞∑
n=1

�(n)

nσ log n

∣∣ sin
(

1
2 log n

)∣∣)
uniformly for all real t .

(b) Put f (θ ) = | sinπθ |, and for integers k set f̂ (k) = ∫ 1
0 f (θ )e(−kθ ) dθ

where e(θ ) = e2π iθ . Show that f̂ (k) = −2/(π (4k2 − 1)).
(c) By Corollary D.3, or otherwise, show that

| sinπθ | =
∞∑

k=−∞
f̂ (k)e(kθ ) .
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178 The Prime Number Theorem

(d) Show that if 1 < σ ≤ 2, then∣∣∣∣ζ (σ + i(t + 1))

ζ (σ + i t)

∣∣∣∣ ≤ ∞∏
k=−∞

|ζ (σ + ik)|2 f̂ (k)

uniformly for all real t .
(e) Show that if σ > 1, then

(σ − 1)4/π 	
∣∣∣∣ζ (σ + i(t + 1))

ζ (σ + i t)

∣∣∣∣	 (σ − 1)−4/π

uniformly in t .
(f) Show that

(log t)−4/π 	
∣∣∣∣ζ (1 + i(t + 1))

ζ (1 + i t)

∣∣∣∣	 (log t)4/π

uniformly for t ≥ 2.
8. Suppose that a and b are fixed, 0 < a < b < 1. Suppose that f is analytic

in a domain containing the disc |z| ≤ R, that f (0) �= 0, and that | f (z)| ≤ M
for |z| ≤ R. Show that

f ′

f
(z) =

K∑
k=1

1

z − zk
+ O

(
1

R
log

M

| f (0)|
)

for |z| ≤ a R where the sum is over those zeros zk of f (z) for which
|zk | ≤ bR.

9. (Landau 1924a) Suppose that θ (t) and φ(t) are functions with the following
properties: φ(t) > 0, φ(t) ↗, e−φ(t) ≤ θ (t) ≤ 1/2, θ (t) ↘. Suppose also
that

ζ (s) 	 eφ(t)

for σ ≥ 1 − θ (t), t ≥ 2.
(a) Show that

ζ ′

ζ
(s) =

∑
ρ

1

s − ρ
+ O

(
φ(t + 1)

θ (t + 1)

)
for σ ≥ 1 − θ (t + 1)/3 where the sum is over zeros ρ for which |ρ −
(1 + θ (t + 1) + i t)| ≤ 5θ (t + 1)/3.

(b) Show that there is an absolute constant c > 0 such that ζ (s) �= 0 for

σ ≥ 1 − c
θ (2t + 1)

φ(2t + 1)
.

(c) Show that the zero-free region (6.26) follows from the estimate (6.25).
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(d) By mimicking the proof of Theorem 6.7, but with s1 = 1 +
θ (2t + 1)/φ(2t + 1) + i t , show that

ζ ′

ζ
(s) 	 φ(2t + 2)

θ (2t + 2)
,

| log ζ (s)| ≤ log
φ(2t + 2)

θ (2t + 2)
+ O(1),

1

ζ (s)
	 φ(2t + 2)

θ (2t + 2)

for σ ≥ 1 − 1
2 cθ (2t + 2)/φ(2t + 2).

10. Suppose that ζ (s) �= 0 for σ ≥ η(t), t ≥ 2, where η(t) ↘, η(t) 
 1/ log t .
Show that

ζ ′

ζ
(s) 	 log t

for σ ≥ 1 − 1
2η(t + 1), t ≥ 2.

6.2 The Prime Number Theorem

We are now in a position to prove the Prime Number Theorem in a quantitative
form. We apply Perron’s formula to ζ ′

ζ
(s) to obtain an asymptotic estimate for

ψ(x) =
∑
n≤x

�(n),

and then use partial summation to derive an estimate for π (x). It would be more
direct to apply Perron’s formula to log ζ (s), but our approach is technically
simpler since log ζ (s) has a logarithmic singularity at s = 1 while ζ ′

ζ
(s) has

only a simple pole there.

Theorem 6.9 There is a constant c > 0 such that

ψ(x) = x + O

(
x

exp(c
√

log x)

)
, (6.12)

ϑ(x) = x + O

(
x

exp(c
√

log x)

)
, (6.13)

and

π (x) = li(x) + O

(
x

exp(c
√

log x)

)
(6.14)

uniformly for x ≥ 2.
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Here li(x) is the logarithmic integral,

li(x) =
∫ x

2

1

log u
du.

By integrating this integral by parts K times we see that

li(x) = x
K−1∑
k=1

(k − 1)!

(log x)k
+ OK

(
x

(log x)K

)
. (6.15)

On combining this with (6.14) we see that

π (x) = x

log x
+ O

(
x

(log x)2

)
.

This is a quantitative form of the Prime Number Theorem. When this main term
is used, the error term is genuinely of the indicated size, since by (6.14) and
(6.15) again we see that

π (x) = x

log x
+ x

(log x)2
+ O

(
x

(log x)3

)
.

Thus we see that in order to obtain a precise estimate of π (x), it is essential
to use the logarithmic integral (or some similar function) to express the main
term.

Proof From Corollary 1.11 and Theorem 5.2 we see that

ψ(x) = −1

2π i

∫ σ0+iT

σ0−iT

ζ ′

ζ
(s)

xs

s
ds + R (6.16)

for σ0 > 1, where by Corollary 5.3 we see that

R 	
∑

x/2<n<2x

�(n) min

(
1,

x

T |x − n|
)

+ (4x)σ0

T

∞∑
n=1

�(n)

nσ0
.

Here the second sum is − ζ ′
ζ

(σ0), which is � 1/(σ0 − 1) for 1 < σ0 ≤ 2. To
estimate the first sum we note that �(n) ≤ log n 	 log x . For the n that is
nearest to x we replace the minimum by its first member, and for all other
values of n we replace it by its second member. Thus the first sum is

	 (log x)

(
1 + x

T

∑
1≤k≤x

1

k

)
	 log x + x

T
(log x)2.

Suppose that 2 ≤ T ≤ x and that σ0 = 1 + 1/ log x . Then

R 	 x

T
(log x)2.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.008


6.2 The Prime Number Theorem 181

Put σ1 = 1 − c/ log T where c is a small positive constant, and let C denote
the closed contour that consists of line segments joining the points σ0 − iT ,
σ0 + iT , σ1 + iT , σ1 − iT . From Theorem 6.6 we know that ζ ′

ζ
(s) has a simple

pole with residue −1 at s = 1, but that it is otherwise analytic within C. Hence
by the calculus of residues,

−1

2π i

∫
C

ζ ′

ζ
(s)

xs

s
ds = x .

If c is small, then the estimate (6.6) of Theorem 6.7 applies on this contour.
Hence

−
∫ σ1+iT

σ0+iT

ζ ′

ζ
(s)

xs

s
ds 	 log T

T
xσ0 (σ0 − σ1) 	 x

T
,

and similarly for the integral from σ1 − iT to σ0 − iT . Using (6.6) again, we
also see that

−
∫ σ1−iT

σ1+iT

ζ ′

ζ
(s)

xs

s
ds 	 xσ1 (log T )

∫ T

−T

dt

1 + |t | + xσ1

∫ 1

−1

dt

|σ1 + i t − 1|
	 xσ1 (log T )2 + xσ1

1 − σ1
	 xσ1 (log T )2.

On combining these estimates we conclude that

ψ(x) = x + O

(
x(log x)2

(
1

T
+ x−c/ log T

))
.

We choose T so that the two terms in the last factor of the error term are equal,
i.e., T = exp

(√
c log x

)
. With this choice of T , the error term above is

	 x(log x)2 exp
(−

√
c log x

)	 x exp
(− c

√
log x

)
since we may suppose that 0 < c < 1. Thus the proof of (6.12) is complete.

To derive (6.13) it suffices to combine (6.12) with the first estimate of Corol-
lary 2.5. As for (6.14), we note that

π (x) =
∫ x

2−

1

log u
dϑ(u) = li(x) +

∫ x

2−

1

log u
d(ϑ(u) − u).

By integrating by parts we see that this last integral is

ϑ(u) − u

log u

∣∣∣x
2−

+
∫ x

2

ϑ(u) − u

u(log u)2
du,

and by (6.13) it follows that this is 	 x exp(−c
√

log x). Thus we have (6.14),
and the proof is complete. �

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.008


182 The Prime Number Theorem

The method we used to derive Theorem 6.9 is very flexible, and can be
applied to many other situations. For example, the summatory function

M(x) =
∑
n≤x

µ(n)

can be estimated by applying the above method with ζ ′/ζ replaced by 1/ζ .
Thus it may be shown that

M(x) 	 x exp
(− c

√
log x

)
(6.17)

for x ≥ 2. If instead we were to apply the method to the function 1/ζ (s + 1),
we would find that ∑

n≤x

µ(n)

n
	 exp

(− c
√

log x
)
, (6.18)

since 1/(sζ (s + 1)) is analytic at s = 0. Hence in particular,
∞∑

n=1

µ(n)

n
= 0. (6.19)

6.2.1 Exercises

1. (Landau 1901b; cf. Rosser & Schoenfeld 1962) Use Theorem 6.9 to show
that

π (2x) − 2π (x) = −2(log 2)x(log x)−2 + O(x(log x)−3).

Deduce that for all large x , the interval (x, 2x] contains fewer prime num-
bers than the interval (0, x].

2. Use Theorem 6.9 to show that if n is of the form n =∏p≤y p where y is
sufficiently large, then d(n) > n(log 2)/ log log n .

3. (a) Use Theorem 6.9 to show that∑
x<p≤y

1

p
= log

log y

log x
+ O

(
exp
(− c

√
log x

))
.

(b) Use the above and Theorem 2.7 to show that∑
p≤x

1

p
= log log x + b + O

(
exp
(− c

√
log x

))
where b = C0 −∑p

∑∞
k=2 1/(kpk) .

4. Show that for x ≥ 2,∑
n≤x

�(n)

n
= log x − C0 + O

(
exp
(− c

√
log x

))
.
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5. (cf. Cipolla 1902; Rosser 1939) Let p1 < p2 < · · · denote the prime num-
bers. Show that

pn = n
(

log n + log log n − 1 + log log n

log n
− 2

log n
+ O

(
(log log n)2

(log n)2

)
.

6. (Landau 1900) Let πk(x) denote the number of integers not exceeding x
that are composed of exactly k distinct primes.
(a) Show that

π2(x) =
∑

p≤√
x

π (x/p) + O
(
x(log x)−2

)
.

(b) Show that the sum above is∑
p≤√

x

x

p log x/p
+ O

(
x(log log x)(log x)−2

)
.

(c) Using Theorem 6.9 and integration by parts, show that the sum above
is

x
∫ √

x

2

du

u(log x/u) log u
+ O(x/ log x).

(d) Conclude that π2(x) = x(log log x)/ log x + O(x/ log x).
7. (D. E. Knutson) Let dn denote the least common multiple of the numbers

1, 2, . . . , n.
(a) Show that dn = exp(ψ(n)).
(b) Let E(z) =∑∞

n=1 zn/dn . Show that this power series has radius of
convergence e.

(c) Show that E(1) is irrational.
8. (Landau 1905) Let Q(x) denote the number of square-free integers not

exceeding x , and define R(x) by the relation Q(x) = (6/π2)x + R(x).
(a) Show that

R(x) = M(y){x/y2} −
∑
d≤y

µ(d){x/d2}

+
∑

m≤x/y2

M
(√

x/m
)− 2x

∫ ∞

y
M(u)u−3 du.

(b) Taking y = x1/2 exp(−c
√

log x) where c is sufficiently small, show
that R(x) 	 x1/2 exp(−c

√
log x).

9. Let N = N (Q) = 1 +∑q≤Q ϕ(q) be the number of Farey points of order
Q, and for 0 ≤ α ≤ 1 write

card{(a, q) : q ≤ Q, (a, q) = 1, a/q ≤ α} = Nα + R
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where R = R(Q, α).
(a) Show that if α = (1/Q)−, then R = −N/Q � −Q.
(b) Show that if α = 1 − 1/Q, then R = N/Q − 1 � Q.
(c) Show that

R = −
∑
r≤Q

{rα}M(Q/r )

for 0 ≤ α ≤ 1.
(d) Show that R 	 Q uniformly for 0 ≤ α ≤ 1.

10. (Landau 1903b; Massias, Nicolas & Robin 1988, 1989) Let f (n) denote
the maximal order of any element of the symmetric group Sn .
(a) Show that f (n) = max lcm(n1, n2, . . . , nk) where the maximum is ex-

tended over all sets {n1, n2, . . . , nk) of natural numbers for which
n1 + n2 + · · · + nk ≤ n.

(b) Choose y as large as possible so that
∑

p≤y p ≤ n. Show that

log f (n) ≥
∑
p≤y

log p = (1 + o(1))(n log n)1/2.

(c) Show that f (n) = max q1q2 · · · qk where qi = pa(i)
i , pi �= p j for i �=

j , and
∑

qi ≤ n.
(d) Use the arithmetic–geometric mean inequality to show that

∏
qi ≤

(n/k)k .
(e) Show that if k is the number of qi ’s in (c), then k ≤ (2 +

o(1))(n/ log n)1/2.
(f) Conclude that log f (n) � (n log n)1/2.

11. Let λ(n) = (−1)�(n) be Liouville’s lambda function.
(a) Show that

∑∞
n=1 λ(n)n−s = ζ (2s)/ζ (s) for σ > 1.

(b) Using the method of proof of Theorem 6.9, show that∑
n≤x

λ(n) 	 x exp
(− c

√
log x

)
.

(c) Use (6.17) and the fact that λ(n) =∑d2|n µ(n/d2) to give a second
proof of the above estimate.

12. (Landau 1907, Section 14) Let cn = 1 if n is a prime or a prime power,
cn = 0 otherwise.
(a) Show that µ(n)ω(n) = −∑d|n cdµ(n/d).
(b) Use (6.18) and the method of the hyperbola to show that

∞∑
n=1

µ(n)ω(n)

n
= 0.
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13. Use the method of proof of Theorem 6.9 to show that∑
n≤x

�(n)n−i t = x1−i t

1 − i t
+ O(x exp

(− c
√

log x
)

+ O

(
x(log x)2 exp

(
−c

log x

log τ

))
uniformly for |t | ≤ x .

14. Use the method of proof of Theorem 6.9 to show that for any fixed real t ,
∞∑

n=1

µ(n)n−1−i t = 1

ζ (1 + i t)
.

15. (a) Use the method of proof of Theorem 6.9 to show that for any fixed
t �= 0,

∞∑
n=1

�(n)

log n
n−1−i t = log ζ (1 + i t).

(b) Deduce that for any t �= 0,∏
p

(1 − p−1−i t )−1 = ζ (1 + i t).

16. (Landau 1899b, 1901a, 1903c) Use the method of proof of Theorem 6.9 to
show that

(a)
∞∑

n=1

µ(n) log n

n
= −1;

(b)
∞∑

n=1

µ(n)(log n)2

n
= −2C0;

(c)
∞∑

n=1

λ(n) log n

n
= −ζ (2).

17. Taking (6.18) and a quantitative form of the first part of the preceding
exercise for granted, use elementary reasoning to show that if q ≤ x then

(a)
∑
n≤x

(n,q)=1

µ(n)

n
	 exp

(− c
√

log x
)
,

(b)
∑
n≤x

(n,q)=1

µ(n) log n

n
= − q

ϕ(q)
+ O

(
exp
(− c

√
log x

))
.

18. (Hardy 1921) Use the method of proof of Theorem 6.9 to show that

(a)
∞∑

n=1

µ(n)

ϕ(n)
= 0;

(b)
∞∑

n=1

µ(n) log n

ϕ(n)
= 0;
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(c)
∞∑

n=1

µ(n)(log n)2

ϕ(n)
= 4A log 2

where A =∏p>2

(
1 − 1

(p−1)2

)
.

19. Let Q(x) denote the number of square-free integers not exceeding x , and
recall Theorem 2.2.
(a) Show that

Q(x) = 6

π2
x − x

∑
n>

√
x

µ(n)

n2
−
∑

n≤√
x

µ(n){x/n2}

where {θ} = x − [x] is the fractional part of θ .
(b) Show that

∑
n>y µ(n)/n2 	 y−1 exp(−c

√
log y) for y ≥ 2.

(c) Note that if k is a positive integer, then {x/n2} is monotonic for n in
the interval

√
x/(k + 1) < n ≤ √

x/k. Deduce that if x ≥ 2k2, then∑
√

x/(k+1)<n≤√
x/k

µ(n){x/n2} 	
√

x/k exp
(− c

√
log x

)
.

(d) By using the above for 1 ≤ k ≤ K = exp(−b
√

log x) where b is suit-
ably chosen in terms of c, show that

Q(x) = 6

π2
x + O

(
x1/2 exp

(
− c

2

√
log x

))
.

20. (Ingham 1945) Let F(n) =∑d|n f (d) for all n. From our remarks at the
beginning of Chapter 2 we see that it is natural to expect a connection
between
(i) S(x) :=∑n≤x F(n) = cx + o(x);

(ii)
∑∞

n=1 f (n)/n = c.
Neither of these implies the other, but we show now that (i) implies that the
series (ii) is (C,1) summable to c.
(a) Show that S(x) =∑n≤x f (n)[x/n].
(b) Show that

∑
n≤x

f (n)

n

(
1 − n

x

)
=
∫ x

1
S(v)

(∑
d≤x/v

µ(d)/d

)
dv

v2
.

(c) Show that ∫ x

1

∑
d≤x/v

µ(d)

d

dv

v
→ 1

as x → ∞.
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(d) Use the estimate
∑

d≤y µ(d)/d 	 (log 2y)−2 to show that∫ x

1

∣∣∣∣∣ ∑
d≤x/v

µ(d)

d

∣∣∣∣∣ dv

v
	 1.

(e) Mimic the proof of Theorem 5.5, or use Exercise 5.2.6 to show that if
(i) holds, then

lim
x→∞

∑
n≤x

f (n)

n

(
1 − n

x

)
= c.

(f) Use Theorem 5.6 to show that if (i) holds and f (n) = O(1), then (ii)
follows.

(g) Take f (n) = µ(n) to deduce that
∑∞

n=1 µ(n)/n = 0. (Of course we
used much more above in (d). For a result in the converse direction, see
Exercise 8.1.5.)

21. (Landau 1908b) Let R be the set of positive integers that can be expressed
as a sum of two squares, let R(x) denote the number of such integers not
exceeding x , and let χ1 denote the non-principal character (mod 4), as in
Exercise 6.1.5.
(a) Show that∑

n∈R
n−s = (1 − 2−s)−1

∏
p≡1 (4)

(1 − p−s)−1
∏

p≡3 (4)

(1 − p−2s)−1

for σ > 1.
(b) Show that the Dirichlet series above is f (s)

√
ζ (s)L(s, χ1) where

f (s) = (1 − 2−s)−1/2
∏

p≡3 (4)

(1 − p−2s)−1/2

is a Dirichlet series with abscissa of convergence σc = 1/2.
(c) Deduce that the Dirichlet series generating function for R has a

quadratic singularity at s = 1.
(d) Show that

R(x) = 1

2π i

∫
C

f (s)
√
ζ (s)L(s, χ1)

xs

s
ds + O

(
x exp

(− c
√

log x
))

where C is the contour running from 1 − c − iδ along a straight line
to 1 − iδ, then along the semicircle 1 + δeiθ , −π/2 ≤ θ ≤ π/2, and
finally along a straight line to 1 − c + iδ. Here c should be sufficiently
small and δ = 1/ log x .

(e) Show that the integral above is

= 1

2π i

∫
C

g(s)xs

√
s − 1

ds
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where

g(s) = f (s)

s

√
(s − 1)ζ (s)L(s, χ1)

is analytic in a neighbourhood of 1.
(f) Show that

g(1) =
√
π

2

∏
p≡3 (4)

(1 − p−2)−1/2.

(g) Show that g(s) = g(1) + O(|s − 1|) when s is near 1.
(h) By means of Theorem C.3 with s = 1/2, or otherwise, show that

1

2π i

∫
C

xs

√
s − 1

ds = x√
π log x

+ O(x1−c).

(i) Show that if δ = 1/ log x , then∫
C
|s − 1|1/2xσ |ds| 	 x

(log x)3/2
.

(j) Show that

R(x) = bx√
log x

+ O
(
x(log x)−3/2

)
where

b = 2−1/2
∏

p≡3 (4)

(1 − p−2)−1/2.

22. Let A denote the set of those positive integers that are composed entirely
of the prime 2 and primes ≡ 1 (mod 4), and let B be the the set of those
positive integers that are composed entirely of primes ≡ 3 (mod 4).
(a) Explain why any positive integer n has a unique representation in the

form n = a(n)b(n) where a(n) ∈ A and b(n) ∈ B.
(b) Let A(x) denote the number of a ∈ A, a ≤ x . Show that

A(x) = αx√
log x

+ O

(
x

(log x)3/2

)
where α = 1/

√
2.

(c) Let B(x) denote the number of b ∈ B, b ≤ x . Show that

B(x) = βx√
log x

+ O

(
x

(log x)3/2

)
where β = √

2/π .
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(d) For 0 ≤ κ ≤ 1 let Nκ (x) denote the number of n ≤ x such that a(n) ≤
nκ . Show that

Nκ (x) =
∑
a≤xκ

a∈A

∑
a1/κ−1≤b≤x/a

b∈B

1.

(e) Show that if κ is fixed, 0 ≤ κ ≤ 1, then

Nk(x) = c(κ)x + O

(
x√
log x

)
where

c(κ) = 1

π

∫ κ

0

du√
u(1 − u)

.

23. The definition of li(x) is somewhat arbitrary because of the casual choice
of the lower endpoint of integration. A more intrinsic logarithmic integral
is Li(x), which is defined to be

Li(x) = lim
ε→0+

(∫ 1−ε

0
+
∫ x

1+ε

)
dt

log t
(6.20)

for x > 1. (Note that li(x) = Li(x) − Li(2).)
(a) Show that ∫ 1−ε

0

dt

log t
= −

∫ ∞

− log(1−ε)
e−v dv

v
.

(b) Show that∫ 1−ε

0

dt

log t
= log ε −

∫ ∞

0
(log v)e−v dv + O(ε log 1/ε),

and explain why the integral on the right is �′(1) = −C0.
(c) Show that if x > 1, then∫ x

1+ε

dt

log t
=
∫ log x

log(1+ε)
ev

dv

v
.

(d) Show that if x > 1, then∫ x

1+ε

dt

log t
= log log x − log ε +

∫ log x

1

ev − 1

v
dv + O(ε).

(e) Show that if x > 1, then

Li(x) = log log x + C0 +
∫ log x

0

ev − 1

v
dv.
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(f) Expand ev as a power series, and integrate term-by-term, to show that
if x > 1, then

Li(x) = log log x + C0 +
∞∑

n=1

(log x)n

n!n
. (6.21)

24. For 0 < x < 1 let

Li(x) =
∫ x

0

dt

log t
.

(a) Show that if 0 < x < 1, then

Li(x) = x log log 1/x −
∫ ∞

− log x
e−v log v dv.

(b) Show that if 0 < x < 1, then

Li(x) = x log log 1/x + C0 +
∫ − log x

0
e−v log v dv.

(c) Show that if 0 < x < 1, then

Li(x) = log log 1/x + C0 −
∫ − log x

0

1 − e−v

v
dv.

(d) Show that if 0 < x < 1, then

Li(x) = log log 1/x + C0 +
∞∑

n=1

(log x)n

n!n
.

(e) (Pólya & Szegö 1972, p. 8) Show that

∞∑
n=1

zn

n!n
= −ez

∞∑
n=1

(
n∑

k=1

1

k

)
(−z)n

n!
.

(f) Show that if 0 < x < 1, then

Li(x) = log log 1/x + C0 − x
∞∑

n=1

(
n∑

k=1

1

k

)
(log 1/x)n

n!
. (6.22)

25. By repeated integration by parts we know that

Li(x) = x
K∑

k=1

(k − 1)!

(log x)k
+ OK

(
x

(log x)K+1

)
.

Our object is to determine how closely one can approximate to Li(x) by
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partial sums of the formal asymptotic expansion

Li(x) ∼ x
∞∑

k=1

(k − 1)!

(log x)k
.

(a) Show that the least term in the sum above occurs when k = [log x] + 1.
(b) Show that if x ≥ eK , then

Li(x) = x
K∑

k=1

(k − 1)!

(log x)k
+ Li(e)

+
K−1∑
k=1

(
k!
∫ ek+1

ek

dt

(log t)k+1
− (k − 1)!ek

kk

)

− (K − 1)!eK

K K
+ K !

∫ x

eK

dt

(log t)K+1
.

(c) Define R(x) by the relation

Li(x) = x
[log x]∑
k=1

(k − 1)!

(log x)k
+ R(x).

Show that R(x) is increasing, continuous, and convex downward for
x ∈ [eK , eK+1). Let αK = R(eK ), and let βK be the limit of R(x) as x
tends to eK+1 from below.

(d) Show that ∫ eK+1

eK

dt

(log t)K+1
= eK

K K

∫ 1/K

0

eKw

(1 + w)K+1
dw.

(e) Show that the integrand on the right above is ≤ 1 in the range of inte-
gration.

(f) Show that the minimum of eKw/(1 + w)K+1 for w > 0 occurs when
w = 1/K .

(g) Show that

eK+1

(K + 1)K+1
<

∫ eK+1

eK

dt

(log t)K+1
<

eK

K K+1
.

(h) Show that αK ↗ and that βK ↘ .
(i) Show that βK − αK 	 K −1/2

(j) Show that R(x) = c + O((log x)−1/2) where

c = Li(e) +
∞∑

k=1

(
k!
∫ ek+1

ek

dt

(log t)k+1
− (k − 1)!ek

kk

)
.
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(k) Show that if x ≥ e, then

α1 ≤ Li(x) − x
[log x]∑
k=1

(k − 1)!

(log x)k
≤ β1 (6.23)

where α1 = −0.82316 . . . and β1 = 1.259706 . . . . .
26. (Ingham 1932, pp. 60–63) Suppose that η(t) is defined for t ≥ 2, that η′(t) is

continuous, η′(t) → 0 as t → ∞, that η(t) ↘, that 1/ log t 	 η(t) ≤ 1/2,
and that ζ (s) �= 0 for σ ≥ 1 − η(t), t ≥ 2. For x ≥ 2, put

ω(x) = min
2≤t<∞

η(t) log x + log t .

(a) Show that there is an absolute constant c > 0 such that

π (x) = li(x) + O(x exp(−cω(x))).

(b) Show that if a > 0 is fixed and (6.24) below holds, then (6.27) below
holds with b = 1/(1 + a).

(c) Show that (6.28) follows from (6.26).

6.3 Notes

Section 6.1. Jensen (1899) proved that if f satisfies the hypotheses of
Lemma 6.1, then

| f (0)|
n∏

k=1

R

|zk | = exp

(
1

2π

∫ 2π

0
log | f (Reiθ )| dθ

)
where z1, . . . , zn are the zeros of f in the disc |z| ≤ R. Here the right-hand side
may be regarded as being the geometric mean of | f (z)| for z on the circle |z| =
R. Each factor of the product above is ≥ 1, and if |zk | ≤ r , then R/|zk | ≥ R/r .
Thus Lemma 6.1 follows easily from the above. The products used in the proofs
of Lemmas 6.1 and 6.3 are known as Blaschke products. Their use (usually with
infinitely many factors) is an important tool of complex analysis. Lemma 6.2 is
due to Borel (1897); it refines an earlier estimate of Hadamard. Carathéodory’s
contributions on this subject are recounted by Landau (1906; Section 4).

Lemma 6.4 is implicit in Landau (1909, p. 372), and may have been known
earlier. It can also be easily derived from the identity (10.29) that arises by
applying Hadamard’s theory of entire functions to the zeta function.

The Prime Number Theorem was first proved, in the qualitative form π (x) ∼
x/ log x , independently by Hadamard (1896) and de la Vallée Poussin (1896).
In these papers, it was shown that ζ (1 + i t) �= 0, but no specific zero-free region
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was established. The first proof that ζ (1 + i t) �= 0 given by de la Vallée Poussin
was rather complicated, but later in his long paper he gave a second proof
depending on the inequality 1 − cos 2θ ≤ 4(1 + cosθ ). This is equivalent to the
non-negativity of the cosine polynomial 3 + 4 cos θ + cos 2θ , which Mertens
(1898) used to obtain the result of Exercise 6.4. Our Lemma 6.5 is derived by
the same method. The classical zero-free region of Theorem 6.6 was established
first by de la Vallée Poussin (1899). The estimates (6.6) and (6.8) of Theorem 6.7
were first proved by Gronwall (1913).

Wider zero-free regions have been established by using exponential sum es-
timates to obtain better upper bounds for |ζ (s)| when σ is near 1 . The first such
improvement was derived by Hardy & Littlewood. Their paper on this was never
published, but accounts of their approach have been given by Landau (1924b)
and Titchmarsh (1986, Chapter 5). Littlewood (1922) announced that from
these estimates he had deduced that ζ (s) �= 0 for σ ≥ 1 − c(log log τ )/ log τ .
As explained by Ingham (1932, p. 66), Littlewood never published his com-
plicated proof, because the simpler method of Landau (1924a) had become
available.

In 1935, Vinogradov introduced a new method for estimating Weyl sums. A
Weyl sum is a sum of the form

∑N
n=1 e( f (n)) where f ∈ R[x]. The quality of

Vinogradov’s estimate depends on rational approximations to the coefficients
of f , and on the degree of f . The function f (x) = t log x is not a polynomial,
but by approximating to it by polynomials one can make Vinogradov’s method
apply. This was first done by Chudakov (1936 a, b, c), who derived estimates
for ζ (s) for σ near 1 that allowed him to deduce that ζ (s) �= 0 for

σ > 1 − c(log τ )−a (6.24)

for a > 10/11. Vinogradov (1936b) gave stronger exponential sum estimates,
which Titchmarsh (1938) used to obtain a zero-free region of the above form for
a > 4/5. Hua (1949) introduced a further refinement of Vinogradov’s method,
from which Titchmarsh (1951, Chapter 6) and Tatuzawa (1952) derived the
zero-free region

σ > 1 − c(log τ )−3/4(log log τ )−3/4 .

By refining the passage from Weyl sums to the zeta function, Korobov (1958a)
obtained (6.24) for a > 5/7, and then Korobov (1958b, c) and Vinogradov
(1958) obtained a > 2/3. In fact, Vinogradov claimed that one can take a =
2/3, but this seems to be still out of reach. Richert’s polished exposition of
Vinogradov’s method is reproduced in Walfisz (1963). Other expositions have
since been given by Karatsuba & Voronin (1992, Chapter 4), Montgomery
(1994, Chapter 4), and Vaughan (1997). Richert (1967) used Vinogradov’s

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.008


194 The Prime Number Theorem

method to show that

ζ (s) 	 t100(1−σ )3/2
(log t)2/3 (6.25)

for σ ≤ 1, t ≥ 2. From this it follows that ζ (s) �= 0 for

σ ≥ 1 − c(log τ )−2/3(log log τ )−1/3. (6.26)

The methods of Hadamard and de la Vallée Poussin depended on the analytic
continuation of ζ (s), on bounds for the size of ζ (s) in the complex plane, and
on Hadamard’s theory of entire functions. The first two of these are achieved
most easily by Riemann’s functional equation (see Corollaries 10.3–10.5). An
abbreviated account of the third is found in Lemma 10.11. Landau (1903a)
showed that one can obtain a zero-free region using only the local analytic
properties of the zeta function. This enabled Landau to prove the Prime Ideal
Theorem, which is the natural extension of the Prime Number Theorem to
algebraic number fields: If K is an algebraic number field, then the number
of prime ideals p in K with N (p) ≤ x is asymptotic to x/ log x as x → ∞.
This could not have been done at that time by the methods of Hadamard and
de la Vallée Poussin, since the analytic continuation and functional equation of
the Dedekind zeta function ζK (s) was established only later, by Hecke (1917).
Landau did not achieve Theorem 6.6 at the first attempt, but he refined his
approach in a series of papers culminating in the polished exposition of Landau
(1924a).

Section 6.2. Ingham (1932, pp. 60–65; cf. Titchmarsh 1986, pp. 56–60)
developed a general system by which any given zero-free region of the zeta
function can be used to derive an associated bound for the error term in the
Prime Number Theorem. In particular, he showed that if ζ (s) �= 0 for s in the
region (6.24), then

ψ(x) = x + O(x exp(−c(log x)b)) (6.27)

where b = 1/(1 + a). Similarly, from the zero-free region (6.26) it follows that

π (x) = li(x) + O
(
x exp

(− c(log x)3/5(log log x)−1/5
))
. (6.28)

Turán (1950) used his method of power sums to show conversely that (6.27)
implies (6.24). More general converse theorems have since been established by
Stás (1961) and Pintz (1980, 1983, 1984). A similar converse theorem in which
an upper bound for M(x) =∑n≤x µ(n) is used to produce a zero-free region
has been given by Allison (1970).

That M(x) = o(x) was first proved by von Mangoldt (1897). The quantitative
estimate (6.17) is due to Landau (1908a). The relation (6.19), asserted by Euler
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(1748; Chapter 15, no. 277), was first proved by von Mangoldt (1897). Landau
(1899a) and de la Vallée Poussin (1899) shortly gave simpler proofs.
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