
5

Dirichlet series: II

5.1 The inverse Mellin transform

In Chapter 1 we saw that we can express a Dirichlet series α(s) =∑∞
n=1 ann−s

in terms of the coefficient sum A(x) =∑n≤x an , by means of the formula

α(s) = s
∫ ∞

1
A(x)x−s−1 dx, (5.1)

which holds for σ > max(0, σc). This is an example of a Mellin transform. In
the reverse direction, Perron’s formula asserts that

A(x) = 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)

xs

s
ds (5.2)

for σ0 > max(0, σc). This is an example of an inverse Mellin transform.
To understand why we might expect that (2) should be true, note that if

σ0 > 0, then by the calculus of residues

1

2π i

∫ σ0+i∞

σ0−i∞
ys ds

s
=
{

1 if y > 1,
0 if 0 < y < 1.

(5.3)

Thus we would expect that

1

2π i

∫ σ0+i∞

σ0−i∞
α(s)

xs

s
ds =

∑
n

an

2π i

∫ σ0+i∞

σ0−i∞

( x

n

)s ds

s
=
∑
n≤x

an. (5.4)

The interchange of limits here is difficult to justify, since α(s) may not be
uniformly convergent, and because the integral in (5.3) is neither uniformly nor
absolutely convergent. Moreover, if x is an integer, then the term n = x in (5.4)
gives rise to the integral (5.3) with y = 1, and this integral does not converge,
although its Cauchy principal value exists:

lim
T →∞

1

2π i

∫ σ0+iT

σ0−iT

ds

s
= 1

2
(5.5)

for σ0 > 0. We now give a rigorous form of Perron’s formula.

137

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.007


138 Dirichlet series: II

Theorem 5.1 (Perron’s formula) If σ0 > max(0, σc) and x > 0, then∑
n≤x

′
an = lim

T →∞
1

2π i

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds.

Here
∑′ indicates that if x is an integer, then the last term is to be counted with

weight 1/2.

Proof Choose N so large that N > 2x + 2, and write

α(s) =
∑
n≤N

ann−s +
∑
n>N

ann−s = α1(s) + α2(s),

say. By (5.4), modified in recognition of (5.5), we see that∑
n≤x

′
an = lim

T →∞
1

2π i

∫ σ0+iT

σ0−iT
α1(s)

xs

s
ds;

here the justification is trivial since there are only finitely many terms. As for
α2(s), we observe that

α2(s) =
∫ ∞

N
u−s d(A(u) − A(N )) = s

∫ ∞

N
(A(u) − A(N ))u−s−1 du.

But A(u) − A(N ) 	 uθ for θ > max(0, σc), and hence

α2(s) 	
(

1 + |s|
σ − θ

)
N θ−σ

for σ > θ > max(0, σc). Implicit constants here and in the rest of this proof
may depend on the an . Hence∫ T ±iT

σ0±iT
α2(s)

xs

s
ds 	 N θ

σ0 − θ

∫ ∞

σ0

( x

N

)σ
dσ 	 N θ

σ0 − θ

(x/N )σ0

log N/x
,

and ∫ T +iT

T −iT
α2(s)

xs

s
ds 	 N θ (x/N )σ0

for large T . We take θ so that σ0 > θ > max(0, σc). Hence by Cauchy’s theorem∫ σ0+iT

σ0−iT
=
∫ T −iT

σ0−iT
+
∫ T +iT

T −iT
+
∫ σ0+iT

T +iT
	 xσ0 N θ−σ0 .

On combining our estimates, we see that

lim sup
T →∞

∣∣∣∣∑
n≤x

′
an − 1

2π i

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds

∣∣∣∣	 xσ
0 N θ−σ0 .

Since this holds for arbitrarily large N , it follows that the lim sup is 0, and the
proof is complete. �
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5.1 The inverse Mellin transform 139

We have now established a precise relationship between (5.1) and (5.2), but
Theorem 5.1 is not sufficiently quantitative to be useful in practice. We express
the error term more explicitly in terms of the sine integral

si(x) = −
∫ ∞

x

sin u

u
du.

By integration by parts we see that si(x) 	 1/x for x ≥ 1, and hence that

si(x) 	 min(1, 1/x) (5.6)

for x > 0. We also note that

si(x) + si(−x) = −
∫ +∞

−∞

sin u

u
du = −π. (5.7)

Theorem 5.2 If σ0 > max(0, σa) and x > 0, then∑
n≤x

′
an = 1

2π i

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds + R (5.8)

where

R = 1

π

∑
x/2<n<x

an si
(

T log
x

n

)
− 1

π

∑
x<n<2x

an si
(

T log
n

x

)
+ O

(
4σ0 + xσ0

T

∑
n

|an|
nσ0

)
.

Proof Since the series α(s) is absolutely convergent on the interval [σ0 −
iT, σ0 + iT ], we see that

1

2π i

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds =

∑
n

an
1

2π i

∫ σ0+iT

σ0−iT

( x

n

)s ds

s
.

Thus it suffices to show that

1

2π i

∫ σ0+iT

σ0−iT
ys ds

s
=

⎧⎪⎪⎨⎪⎪⎩
1 + O(yσ0/T ) if y ≥ 2,
1 + 1

π
si(T log y) + O(2σ0/T ) if 1 ≤ y ≤ 2,

− 1
π

si(T log 1/y) + O(2σ0/T ) if 1/2 ≤ y ≤ 1,
O(yσ0/T ) if y ≤ 1/2

(5.9)

for σ0 > 0.
To establish the first part of this formula, suppose that y ≥ 2, and let C be

the piecewise linear path from −∞ − iT to σ0 − iT to σ0 + iT to −∞ + iT .
Then by the calculus of residues we see that

1

2π i

∫
C

ys ds

s
= 1,
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140 Dirichlet series: II

since the integrand has a pole with residue 1 at s = 0. In addition,∫ σ0±iT

−∞±iT
ys ds

s
=
∫ σ0

−∞

yσ±iT

σ ± iT
dσ 	 1

T

∫ σ0

−∞
yσ dσ = yσ0

T log y
	 yσ0

T
,

so we have (5.9) in the case y ≥ 2. The case y ≤ 1/2 is treated similarly, but
the contour is taken to the right, and there is no residue.

Suppose now that 1 ≤ y ≤ 2, and take C to be the closed rectangular path
from σ0 − iT to σ0 + iT to iT to −iT to σ0 − iT , with a semicircular inden-
tation of radius ε at s = 0. Then by Cauchy’s theorem

1

2π i

∫
C

ys ds

s
= 0.

We note that∫ σ0±iT

±iT
ys ds

s
	 1

T

∫ σ0

0
yσ dσ ≤ 1

T

∫ σ0

0
2σ dσ 	 2σ0

T
.

The integral around the semicircle tends to 1/2 as ε → 0, and the remaining
integral is

1

2π i
lim
ε→0

(∫ iT

iε
+
∫ −iε

−iT

)
ys ds

s
= 1

2π i
lim
ε→0

∫ T

ε

(
yit − y−i t

) dt

t

= 1

π

∫ T log y

0
sin v

dv

v

= 1

2
+ 1

π
si(T log y)

by (5.7). This gives (5.9) when 1 ≤ y ≤ 2 and the case 1/2 ≤ y ≤ 1 is treated
similarly. �

In many situations, Theorem 5.2 contains more information than is really
needed – it is often more convenient to appeal to the following less precise result.

Corollary 5.3 In the situation of Theorem 5.2,

R 	
∑

x/2<n<2x
n �=x

|an| min

(
1,

x

T |x − n|
)

+ 4σ0 + xσ0

T

∞∑
n=1

|an|
nσ0

.

Proof From (5.6) we see that

si(T | log n/x |) 	 min

(
1,

1

T | log n/x |
)
.

But n/x = 1 + (n − x)/x and | log(1 + δ)| � |δ| uniformly for −1/2 ≤ δ ≤ 1,
so the above is

� min

(
1,

x

T |x − n|
)

if x/2 ≤ n ≤ 2x . Thus the stated bound follows from Theorem 5.2. �
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5.1 The inverse Mellin transform 141

In classical harmonic analysis, for f ∈ L1(T) we define Fourier coefficients
f̂ (k) = ∫ 1

0 f (x)e(−kα) dα, and we expect that the Fourier series
∑

f̂ (k)e(kα)
provides a useful formula for f (α). As it happens, the Fourier series may
diverge, or converge to a value other than f (α), but for most f a satisfactory
alternative can be found. For example, if f is of bounded variation, then

f (α−) + f (α+)

2
= lim

K→∞

K∑
−K

f̂ (k)e(kα).

A sharp quantitative form of this is established in Appendix D.1. Analogously,
if f ∈ L1(R), then we can define the Fourier transform of f ,

f̂ (t) =
∫ +∞

−∞
f (x)e(−t x) dx, (5.10)

and we expect that

f (x) =
∫ +∞

−∞
f̂ (t)e(t x) dt. (5.11)

As in the case of Fourier series, this may fail, but it is not difficult to show that
if f is of bounded variation on [−A, A] for every A, then

f (α−) + f (α+)

2
= lim

T →∞

∫ T

−T
f̂ (t)e(t x) dt. (5.12)

The relationship between (5.1) and (5.2) is precisely the same as between
(5.10) and (5.11). Indeed, if we take f (x) = A(e2πx )e−2πσ x , then f ∈ L1(R) by
Theorem 1.3, and by changing variables in (5.1) we find that

f̂ (t) = α(σ + i t)

2π (σ + i t)
.

Thus (5.2) is equivalent to (5.11), and an appeal to (5.12) provides a second
(real variable) proof of Theorem 5.1.

In general, if

F(s) =
∫ ∞

0
f (x)xs−1 dx, (5.13)

then we say that F(s) is the Mellin transform of f (x). By (5.10) and (5.11) we
expect that

f (x) = 1

2π i

∫ σ0+i∞

σ0−i∞
F(s)x−s ds, (5.14)

and when this latter formula holds we say that f is the inverse Mellin transform
of F . Thus if A(x) is the summatory function of a Dirichlet series α(s), then
α(s)/s is the Mellin transform of A(1/x) for σ > max(0, σc), and Perron’s
formula (Theorem 5.1) asserts that ifσ0 > max(0, σc), then A(1/x) is the inverse
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142 Dirichlet series: II

Mellin transform of α(s)/s. Further instances of this pairing arise if we take a
weight function w(x), and form a weighted summatory function

Aw(x) =
∞∑

n=1

anw(n/x).

Let K (s) denote the Mellin transform of w(x),

K (s) =
∫ ∞

0
w(x)xs−1 dx .

Then we expect that

α(s)K (s) =
∫ ∞

0
Aw(x)x−s−1 dx, (5.15)

and that

Aw(x) = 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)K (s)xs ds. (5.16)

Alternatively, we may start with a kernel K (s), and define the weight w(x)
to be its inverse Mellin transform. The precise conditions under which these
identities hold depends on the weight or kernel; we mention several important
examples.
1. Cesàro weights. For a positive integer k, put

Ck(x) = 1

k!

∑
n≤x

an(x − n)k . (5.17)

Then Ck(x) = ∫ x
0 Ck−1(u) du for k ≥ 1 where C0(x) = A(x), and hence

Ck(x) 	 xθ for θ > k + max(0, σc). (The implicit constant here may depend
on k, on θ , and on the an .) By integrating (5.1) by parts repeatedly, we see
that

α(s) = s(s + 1) · · · (s + k)
∫ ∞

1
Ck(x)x−s−k−1 dx (5.18)

for σ > max(0, σc). By following the method used to prove Theorem 5.1, it
may also be shown that

Ck(x) = 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)

xs+k

s(s + 1) · · · (s + k)
ds (5.19)

when x > 0 and σ0 > max(0, σc). Here the critical step is to show that if y ≥ 1
and σ0 > 0, then

1

2π i

∫ σ0+i∞

σ0−i∞

ys

s(s + 1) · · · (s + k)
ds =

k∑
j=0

Res

(
ys

s(s + 1) · · · (s + k)

∣∣∣∣
s=− j
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5.1 The inverse Mellin transform 143

by the calculus of residues; this is

=
k∑

j=0

(−1) j y− j

j!(k − j)!
= 1

k!
(1 − 1/y)k

by the binomial theorem.
2. Riesz typical means. For positive integers k and positive real x put

Rk(x) = 1

k!

∑
n≤x

an(log x/n)k . (5.20)

Then Rk(x) = ∫ x
0 Rk−1(u)/u du where R0(x) = A(x), so that Rk(x) 	 xθ for

θ > max(0, σc). (The implicit constant here may depend on k, on θ , and on the
an .) By integrating (5.1) by parts repeatedly we see that

α(s) = sk+1
∫ ∞

1
Rk(x)x−s−1 dx (5.21)

for σ > max(0, σc). By following the method used to prove Theorem 5.1 we
also find that

Rk(x) = 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)

xs

sk+1
ds (5.22)

when x > 0 and σ0 > max(0, σc). Here the critical observation is that if y ≥ 1
and σ0 > 0, then

1

2π i

∫ σ0+i∞

σ0−i∞

ys

sk+1
ds = Res

(
ys

sk+1

∣∣∣∣
s=0

= 1

k!
(log y)k .

3. Abelian weights. For σ > 0 we have

�(s) =
∫ ∞

0
e−uus−1 du = ns

∫ ∞

0
e−nx xs−1 dx .

We multiply by ann−s and sum, to find that

α(s)�(s) =
∫ ∞

0
P(x)xs−1 dx (5.23)

where

P(x) =
∞∑

n=1

ane−nx . (5.24)

These operations are valid for σ > max(0, σa), but by partial summation
P(x) 	 x−θ as x → 0+ for θ > max(0, σc), so that the integral in (5.23) is
absolutely convergent in the half-plane σ > max(0, σc). Hence the integral is
an analytic function in this half-plane, so that by the principle of uniqueness
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144 Dirichlet series: II

of analytic continuation it follows that (5.23) holds for σ > max(0, σc). In the
opposite direction,

P(x) = 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)�(s)x−s ds (5.25)

for x > 0, σ > max(0, σc). To prove this we recall from Theorem 1.5 that
α(s) 	 τ uniformly for σ ≥ ε + max(0, σc), and from Stirling’s formula
(Theorem C.1) we see that |�(s)| � e− π

2 |t ||t |σ−1/2 as |t | → ∞ with σ bounded.
Thus the value of the integral is independent of σ0, and in particular we may
assume that σ0 > max(0, σa). Consequently the terms in α(s) can be integrated
individually, and it suffices to appeal to Theorem C.4.

The formulæ (5.23) and (5.25) provide an important link between the Dirich-
let series α(s) and the power series generating function P(x). Indeed, these
formulæ hold for complex x , provided that �x > 0. In particular, by taking
x = δ − 2π iα we find that

∞∑
n=1

ane(nα)e−nδ = 1

2π i

∫ σ0+i∞

σ0−i∞
α(s)�(s)(δ − 2π iα)−s ds.

It may be noted in the above examples that smoother weights w(x) give rise
to kernels K (s) that tend to 0 rapidly as |t | → ∞. Further useful kernels can
be constructed as linear combinations of the above kernels.

Since the Mellin transform is a Fourier transform with altered variables, all
results pertaining to Fourier transforms can be reformulated in terms of Mellin
transforms. Particularly useful is Plancherel’s identity, which asserts that if f ∈
L1(R) ∩ L2(R), then ‖ f ‖2 = ‖ f̂ ‖2. This is the analogue for Fourier transforms
of Parseval’s identity for Fourier series, which asserts that

∑
k | f̂ (k)|2 = ‖ f ‖2

2.
By the changes of variables we noted before, we obtain

Theorem 5.4 (Plancherel’s identity) Suppose that
∫∞

0 |w(x)|x−σ−1 dx < ∞,
and also that

∫∞
0 |w(x)|2x−2σ−1 dx < ∞. Put K (s) = ∫∞

0 w(x)x−s−1 dx. Then

2π
∫ ∞

0
|w(x)|2x−2σ−1 dx =

∫ +∞

−∞
|K (σ + i t)|2 dt.

Among the many possible applications of this theorem, we note in particular
that

2π
∫ ∞

0
|A(x)|2x−2σ−1 dx =

∫ +∞

−∞

∣∣∣α(σ + i t)

σ + i t

∣∣∣2 dt (5.26)

for σ > max(0, σc).
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5.1 The inverse Mellin transform 145

5.1.1 Exercises

1. Show that if σc < σ0 < 0, then

lim
T →∞

1

2π i

∫ σ0+iT

σ0−iT
α(s)

xs

s
ds =

∑′
n>x

an.

2. (a) Show that if y ≥ 0, then

− π

2
= si(0) ≤ si(y) ≤ si(π ) = 0.28114 . . . .

(b) Show that if y ≥ 0, then

�
∫ ∞

y

eiu

u
du = �

∫ y+i∞

y

eiz

z
dz.

(c) Deduce that if y ≥ 0, then |si(y)| < 1/y.
3. (a) Let β > 0 be fixed. Show that if σ0 > 0, then

1

2π i

∫ σ0+i∞

σ0−i∞
�(s/β)ys ds = βe−y−β

.

(b) Let β > 0 be fixed. Show that if x > 0 and σ0 > max(0, σc), then

1

2π i

∫ σ0+i∞

σ0−i∞
α(s)�(s/β)xs ds = β

∞∑
n=1

ane−(n/x)β .

4. (a) Suppose that a > 0 and that b is real. Explain why

1

2π i

∫ σ0+i∞

σ0−i∞
ea2s2/2+bs ds = e−b2/(2a2)

2π i

∫ σ0+i∞

σ0−i∞
ea2(s+b/a2)2/2 ds .

(b) Explain why the values of the integrals above are independent of the
value of σ0. Hence show that if σ0 = −b/a2, then the above is

= e−b2/(2a2)

2π

∫ +∞

−∞
e−a2t2/2 dt = 1√

2π a
e−b2/a2

.

(c) Show that if a > 0, x > 0 and σ0 > σc, then

1

2π i

∫ σ0+i∞

σ0−i∞
α(s)ea2s2/2xs ds = 1√

2π a

∞∑
n=1

an exp

(
− (log x/n)2

2a2

)
.

5. Take k = 1 in (5.22) for several different values of x , and form a suitable
linear combination, to show that if x ≥ 0 and and σc < 0, then

2

π

∫ +∞

−∞
α(i t)

(
sin 1

2 t log x

t

)2

dt =
∑
n≤x

an log x/n.
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6. Let w(x) ↗, and suppose that w(x) 	 xσ as x → ∞ for some fixed σ .
Let σw be the infimum of those σ such that

∫∞
0 w(x)x−σ−1 dx < ∞, and

put

K (s) =
∫ ∞

0
w(x)x−s−1 dx

for σ > σw.
(a) Show that Aw(x) =∑∞

n=1 anw(x/n) satisfies Aw(x) 	 xθ for θ >

max(σw, σc).
(b) Show that

K (s)α(s) =
∫ ∞

0
Aw(x)x−s−1 dx

for σ > max(σw, σc).
(c) Show that

1
2 (Aw(x−) + Aw(x+)) = 1

2π i
lim

T →∞

∫ σ0+iT

σ0−iT
α(s)K (s)xs ds

for σ0 > max(σw, σc), x > 0.
7. Show that

ζ (s) = −s
∫ ∞

0

{x}
xs+1

dx

for 0 < σ < 1, and that

2π
∫ ∞

0
{x}2x−2σ−1 dx =

∫ +∞

−∞

∣∣∣ζ (σ + i t)

σ + i t

∣∣∣2 dt

for 0 < σ < 1.
8. (a) Show that if f ∈ L1(R) and f ′ ∈ L1(R), then f̂ ′(t) = 2π i t f̂ (t).

(b) Suppose that f is a function such that f ∈ L1(R), that x f (x) ∈ L2(R),
and that f ′ ∈ L1(R) ∩ L2(R). Show that∫ +∞

−∞
| f (x)|2 dx = −

∫ +∞

−∞
x
(

f ′(x) f (x) + f (x) f ′(x)
)

dx .

The Cauchy–Schwarz inequality asserts that∣∣∣∣ ∫ +∞

−∞
a(x)b(x) dx

∣∣∣∣2 ≤
(∫ +∞

−∞
|a(x)|2 dx

)(∫ +∞

−∞
|b(x)|2 dx

)
.

By means of this inequality, or otherwise, show that(∫ +∞

−∞
|x f (x)|2 dx

)(∫ +∞

−∞
|t f̂ (t)|2 dt

)
≥ 1

16π2

(∫ +∞

−∞
| f (x)|2 dx

)2

.
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5.2 Summability 147

This is a form of the Heisenberg uncertainty principle. From it we see that
if f tends to 0 rapidly outside [−A, A], and if f̂ tends to 0 rapidly outside
[−B, B], then AB 
 1.

9. (a) Note the identity

f g = 1
2 | f + g|2 − 1

2 | f − g|2 + i
2 | f + ig|2 − i

2 | f − ig|2.
(b) Show that if f ∈ L1(R) ∩ L2(R) and if g ∈ L1(R) ∩ L2(R), then∫ +∞

−∞
f (x)g(x) dx =

∫ +∞

−∞
f̂ (t)ĝ(t) dt.

10. Suppose that F is strictly increasing, and that for i = 1, 2 the functions fi

are real-valued with fi ∈ L1(R) ∩ L2(R) and F( fi ) ∈ L1(R) ∩ L2(R).
(a) Show that∫ +∞

−∞
( f1(x) − f2(x))(F( f1(x)) − F( f2(x))) dx

=
∫ +∞

−∞

(
f̂1(t) − f̂2(t)

)(
F̂( f1)(t) − F̂( f2)(t)

)
dt.

(b) Suppose additionally that f̂i (t) = 0 for |t | ≥ T , and that F̂( f1)(t) =
F̂( f2)(t) for −T ≤ t ≤ T . Show that f1 = f2 a.e.

5.2 Summability

We say that an infinite series
∑

an is Abel summable to a, and write
∑

an = a
(A) if

lim
r→1−

∞∑
n=0

anrn = a.

Abel proved that if a series converges, then it is A-summable to the same value.
Because of this historical antecedent, we call a theorem ‘Abelian’ if it states
that one kind of summability implies another. Perhaps the simplest Abelian
theorem asserts that if

∑∞
n=1 an converges to a, then

lim
N→∞

N∑
n=1

(
1 − n

N

)
an = a. (5.27)

This is the Cesàro method of summability of order 1, and so we abbreviate the
relation above as

∑
an = a (C, 1). On putting sN =∑N

n=1 an , we reformulate
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the above by saying that if limN→∞ sN = a, then

lim
N→∞

1

N

N∑
n=1

sn = a. (5.28)

Here, as in Abel summability and in most other summabilities, each term in
the second limit is a linear function of the terms in the first limit. Following
Toeplitz and Schur, we characterize those linear transformations T = [tmn] that
preserves limits of sequences. We call T regular if the following three conditions
are satisfied:

There is a C = C(T ) such that
∞∑

n=1

|tmn| ≤ C for all m; (5.29)

lim
m→∞ tmn = 0 for all n; (5.30)

lim
m→∞

∞∑
n=1

tmn = 1. (5.31)

We now show that regular transformations preserve limits, and relegate the
verification of the converse to exercises.

Theorem 5.5 Suppose that T satisfies (5.29) above. If {an} is a bounded
sequence, then the sequence

bm =
∞∑

n=1

tmnan (5.32)

is also bounded. If T satisfies (5.29) and (5.30), and if limn→∞ an = 0,
then limm→∞ bm = 0. Finally, if T is regular and limn→∞ an = a, then
limm→∞ bm = a.

The important special case (5.28) is obtained by noting that the (semi-infinite)
matrix [tmn] with

tmn =
{

1/m if 1 ≤ n ≤ m,

0 if n > m

is regular. Moreover, the proof of Theorem 5.5 requires only a straightforward
elaboration of the usual proof of (5.28).

Proof If |an| ≤ A and (5.29) holds, then

|bm | ≤
∞∑

n=1

|tmnan| ≤ A
∞∑

n=1

|tmn| ≤ C A.
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To establish the second assertion, suppose that ε > 0 and that |an| < ε for
n > N = N (ε). Now

|bm | ≤
N∑

n=1

|tmnan| +
∑
n>N

|tmnan| = �1 + �2,

say. From (5.29) and the argument above with A = ε we see that �2 ≤ Cε.
From (5.30) we see that limm→∞ �1 = 0. Hence lim supm→∞ |bm | ≤ Cε, and
we have the desired conclusion since ε is arbitrary. Finally, suppose that T is
regular and that limn→∞ an = a. We write an = a + αn , so that

bm = a
∞∑

n=1

tmn +
∞∑

n=1

tmnαn.

Since limn→∞ αn = 0, we may appeal to the preceding case to see that
the second sum tends to 0 as m → ∞. Hence by (5.31) we conclude that
limm→∞ bm = a, and the proof is complete. �

In Chapter 1 we used Theorem 1.1 to show that if S is a sector of the
form S = {s : σ > σ0, |t − t0| ≤ H (σ − σ0)} where H is an arbitrary positive
constant, and if the Dirichlet series α(s) converges at the point s0, then

lim
s→s0
s∈S

α(s) = α(s0).

To see how this may also be derived from Theorem 5.5, let {sm} be an arbitrary
sequence of points of S for which limm→∞ sm = s0. It suffices to show that
limm→∞ α(sm) = α(s0). Take

tmn = ns0−sm − (n + 1)s0−sm ,

so that

α(sm) =
∞∑

n=1

tmn

( n∑
k=1

akk−s0

)
.

In view of Theorem 5.5, it suffices to show that [tmn] is regular. The conditions
(5.30) and (5.31) are clearly satisfied, and (5.29) follows on observing that if
s ∈ S, then s − s0 	H σ − σ0, so that∣∣ns0−s − (n + 1)s0−s

∣∣ =
∣∣∣∣(s − s0)

∫ n+1

n
us0−s−1 du

∣∣∣∣
	H (σ − σ0)

∫ n+1

n
uσ0−σ−1 du

= nσ0−σ − (n + 1)σ0−σ .

Thus we have the result. Abel’s analogous theorem on the convergence of power
series can be derived similarly from Theorem 5.5.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.007 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.007


150 Dirichlet series: II

The converse of Abel’s theorem on power series is false, but Tauber (1897)
proved a partial converse: If an = o(1/n) and

∑
an = a (A), then

∑
an = a.

Following Hardy and Littlewood, we call a theorem ‘Tauberian’ if it provides
a partial converse of an Abelian theorem. The qualifying hypothesis (‘an =
o(1/n)’ in the above) is the ’Tauberian hypothesis’. For simplicity we begin
with partial converses of (5.27).

Theorem 5.6 If
∑∞

n=1 an = a (C, 1), then
∑

an = a provided that one of the
following hypotheses holds:
(a) an ≥ 0 for n ≥ 1;
(b) an = O(1/n) for n ≥ 1;
(c) There is a constant A such that an ≥ −A/n for all n ≥ 1.

Proof Clearly (a) implies (c). If (b) holds, then both �an and �an satisfy (c).
Thus it suffices to prove that

∑
an = a when (c) holds. We observe that if H

is a positive integer, then
N∑

n=1

an = N + H

H

N+H∑
n=1

an

(
1 − n

N + H

)
− N

H

N∑
n=1

an

(
1 − n

N

)
− 1

H

∑
N<n<N+H

an(N + H − n) (5.33)

= T1 − T2 − T3,

say. Take H = [εN ] for some ε > 0. By hypothesis, limN→∞ T1 = a(1 + ε)/ε,
and limN→∞ T2 = a/ε. From (c) we see that

T3 ≥ −A
∑

N<n<N+H

1

n
≥ − AH

N
≥ −Aε.

Hence on combining these estimates in (5.33) we see that

lim sup
N→∞

N∑
n=1

an ≤ a + Aε.

Since ε can be taken arbitrarily small, it follows that

lim sup
N→∞

N∑
n=1

an ≤ a.

To obtain a corresponding lower bound we note that
N∑

n=1

an = N

H

N∑
n=1

an

(
1 − n

N

)
− N − H

H

N−H∑
n=1

an

(
1 − n

N − H

)
(5.34)

+ 1

H

∑
N−H<n<N

an(n + H − N ).
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Arguing as we did before, we find that

lim inf
N→∞

N∑
n=1

an ≥ a − Aε/(1 − ε),

so that

lim inf
N→∞

N∑
n=1

an ≥ a,

and the proof is complete. �

If we had argued from (a) or (b), then the treatment of the term T3 above
would have been simpler, since from (a) it follows that T3 ≥ 0, while from
(b) we have T3 	 ε.

Our next objective is to generalize and strengthen Theorem 5.6. The type of
generalization we have in mind is exhibited in the following result, which can
be established by adapting the above proof: Let β be fixed, β ≥ 0. If

N∑
n=1

an

(
1 − n

N

)
= (a + o(1))Nβ,

and if an ≥ −Anβ−1, then

N∑
n=1

an = (a(β + 1) + o(1))Nβ.

Concerning the possibility of strengthening Theorem 5.6, we note that by an
Abelian argument (or by an application of Theorem 5.5) it may be shown that∑

an = a (C, 1) implies that
∑

an = a (A). Thus if we replace (C, 1) by (A)
in Theorem 5.6, then we have weakened the hypothesis, and the result would
therefore be stronger. Indeed, Hardy (1910) conjectured and Littlewood (1911)
proved that if

∑
an = a (A) and an = O(1/n), then

∑
an = a. That is, the

condition ‘an = o(1/n)’ in Tauber’s theorem can be replaced by the condition
(b) above. In fact the still weaker condition (c) suffices, as will be seen by
taking β = 0 in Corollary 5.9 below. We now formulate a general result for the
Laplace transform, from which the analogues for power series and Dirichlet
series follow easily.

Theorem 5.7 (Hardy–Littlewood) Suppose that a(u) is Riemann-integrable
over [0,U ] for every U > 0, and that the integral

I (δ) =
∫ ∞

0
a(u)e−uδ du
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converges for every δ > 0. Let β be fixed, β ≥ 0, and suppose that

I (δ) = (α + o(1))δ−β (5.35)

as δ → 0+. If, moreover, there is a constant A ≥ 0 such that

a(u) ≥ −A(u + 1)β−1 (5.36)

for all u ≥ 0, then ∫ U

0
a(u) du =

(
α

�(β + 1)
+ o(1)

)
Uβ. (5.37)

The basic properties of the gamma function are developed in Appendix C,
but for our present purposes it suffices to put

�(β) =
∫ ∞

0
uβ−1e−u du

for β > 0. From this it follows by integration by parts that

β�(β) = �(β + 1) (5.38)

when β > 0.
The amount of unsmoothing required in deriving (5.37) from (5.35) is now

much greater than it was in the proof of Theorem 5.6. Nevertheless we follow
the same line of attack. To obtain the proper perspective we review the preceding
proof. Let J = [0, 1], let χJ (u) be its characteristic function, and put K (u) =
max(0, 1 − u) for u ≥ 0. Thus

∑N
n=1 an =∑n anχJ (n/N ), and

∑N
n=1 an(1 −

n/N ) =∑n an K (n/N ). Our strategy was to approximate to χJ (u) by linear
combinations of K (κu) for various values of κ , κ > 0. The relation underlying
(5.33) and (5.34) is both simple and explicit:

1

ε

(
K (u) − (1− ε)K (u/(1 − ε))

) ≤ χJ (u) ≤ 1

ε
((1+ ε)K (u/(1+ ε)) − K (u));

(5.39)
we took ε = H/N . In the present situation we wish to approximate to χJ (u) by
linear combinations of e−κu , κ > 0. We make the change of variable x = e−u ,
so that 0 ≤ x ≤ 1, and we put J = [1/e, 1]. Then we want to approximate to
χJ (x) by a linear combination P(x) of the functions xκ , κ > 0. In fact it suffices
to use only integral values of κ , so that P(x) is a polynomial that vanishes at
the origin. In place of (5.33), (5.34) and (5.39) we shall substitute

Lemma 5.8 Let ε be given, 0 < ε < 1/4, and put J = [1/e, 1], K =
[e−1−ε, e−1+ε]. There exist polynomials P±(x) such that for 0 ≤ x ≤ 1 we have

P−(x) ≤ χJ (x) ≤ P+(x) (5.40)
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and

|P±(x) − χJ (x)| ≤ εx(1 − x) + 5χK (x). (5.41)

Proof Let g(x) = (χJ (x) − x)/(x(1 − x)). Then g is continuous in [0, 1]
apart from a jump discontinuity at x = 1/e of height e2/(e − 1) < 5. Hence
by Weierstrass’s theorem on the uniform approximation of continuous func-
tions by polynomials we see that there are polynomials Q±(x) such that
Q−(x) ≤ g(x) ≤ Q+(x) for 0 ≤ x ≤ 1, and for which

|g(x) − Q±(x)| ≤ ε + 5χK (x) (5.42)

for 0 ≤ x ≤ 1. Then the polynomials P±(x) = x + x(1 − x)Q±(x) have the
desired properties. �

Proof of Theorem 5.7 We suppose first that α = 0. We note that if P(x) is a
polynomial such that P(0) = 0, say P(x) =∑R

r=1 cr xr , then by (5.35) we see
that ∫ ∞

0
a(u)P(e−uδ) du =

R∑
r=1

cr I (rδ) = o(δ−β) (5.43)

as δ → 0+. In the notation of the above lemma,∫ U

0
a(u) du =

∫ ∞

0
a(u)χJ (e−u/U ) du.

If (5.40) holds, then by (5.36) we see that∫ ∞

0
a(u)

(
P+
(
e−u/U

)− χJ
(
e−u/U

))
du

≥ −A
∫ ∞

0
(u + 1)β−1

(
P+
(
e−u/U

)− χJ
(
e−u/U

))
du.

By (5.41) this latter integral is

	 ε

∫ ∞

0
(u + 1)β−1e−u/U (1 − e−u/U ) du +

∫ (1+ε)U

(1−ε)U
(u + 1)β−1 du.

In the first term, the integrand is 	 (u + 1)βU−1 for 0 ≤ u ≤ U ; it is 	
uβ−1e−u/U for u ≥ U . Hence the first integral is 	 Uβ . The second integral is
	 εUβ . On taking δ = 1/U , P = P+ in (5.43) and combining our results, we
find that ∫ U

0
a(u) du ≤ A1εUβ + o(Uβ).
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Since ε can be arbitrarily small, we deduce that

lim sup
U→∞

U−β

∫ U

0
a(u) du ≤ 0.

By arguing similarly with P− instead of P+, we see that the corresponding
liminf is ≥ 0, and so we have (5.37) in the case α = 0.

Suppose now that α �= 0, β > 0. We note first that∫ ∞

0
(u + 1)β−1e−uδ du = eδ

∫ ∞

1
vβ−1e−vδ dv = eδ

∫ ∞

0
vβ−1e−vδ dv + O(eδ),

and that ∫ ∞

0
vβ−1e−vδ dv = δ−β

∫ ∞

0
wβ−1e−w dw = δ−β�(β).

Hence if b(u) = a(u) − α(u + 1)β−1/�(β), then b(u) ≥ −B(u + 1)β−1, and∫ ∞

0
b(u)e−uδ du = o(δ−β).

Thus
∫ U

0 b(u) du = o(Uβ), so that∫ U

0
a(u) du = α

β�(β)
Uβ + o(Uβ),

and we have (5.37), in view of (5.38).
For the remaining case, β = 0, it suffices to consider b(u) = a(u) −

αχ[0,1] (u). �

Corollary 5.9 Suppose that p(z) =∑∞
n=0 anzn converges for |z| < 1, and

that β ≥ 0. If p(x) = (α + o(1))(1 − x)−β as x → 1−, and if an ≥ −Anβ−1

for n ≥ 1, then

N∑
n=0

an =
(

α

�(β + 1)
+ o(1)

)
Nβ.

Proof Put a(u) = an for n ≤ u < n + 1. Then (5.36) holds, and

I (δ) =
∞∑

n=0

an

∫ n+1

n
e−uδ du = 1 − e−δ

δ
p(e−δ).

But 1 − e−δ ∼ δ as δ → 0+, so that (5.35) holds. The result now follows by
taking U = N + 1 in (5.37). �

Corollary 5.10 If
∑

an = α (A), and if the sequence sN =∑N
n=0 an is

bounded, then
∑

an = α (C, 1).
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Proof Take β = 1, p(z) =∑∞
n=0 snzn = (1 − z)−1∑∞

n=0 anzn in Corollary
5.9. Then

∑N
n=0 sn = (α + o(1))N , which is the desired result. �

For Dirichlet series we have similarly

Theorem 5.11 Suppose that α(s) =∑∞
n=1 ann−s converges for σ > 1, and

that β ≥ 0. If α(σ ) = (α + o(1))(σ − 1)−β as σ → 1+, and if an ≥ −A(1 +
log n)β−1, then

N∑
n=1

an

n
=
(

α

�(β + 1)
+ o(1)

)
(log N )β.

Proof Take a(u) =∑u−1≤log n<u an/n. Then I (δ) converges for δ > 0, and
moreover

I (δ) =
∞∑

n=1

an

n

∫ 1+log n

log n
e−uδ du = 1 − e−δ

δ
α(1 + δ),

so that (5.37) follows. To obtain the desired conclusion we require a further
appeal to our Tauberian hypothesis. We note that∫ log N

0
a(u) du =

∑
n≤N

an

n
−

∑
N/e<n≤N

an

n
log

ne

N
.

By our Tauberian hypothesis this is

≤
∑
n≤N

an

n
+ A1(log N )β−1,

so that ∑
n≤N

an

n
≥
(

α

�(β + 1)
+ o(1)

)
(log N )β − A1(log N )β−1.

On taking U = 1 + log N in (5.37) we may derive a corresponding upper bound
to complete the proof. �

The qualitative arguments we have given can be put in quantitative form as
the need arises. For example, it is easy to see that if

N∑
n=1

an = N + O
(√

N
)
, (5.44)

then

N∑
n=1

an(N − n) = 1

2
N 2 + O

(
N 3/2

)
. (5.45)
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This is best possible (take an = 1 + n−1/2), but if the error term is oscilla-
tory, then smoothing may reduce its size (consider an = cos

√
n). Conversely if

(5.45) holds and if the sequence an is bounded, then the method used to prove
Theorem 5.6 can be used to show that

N∑
n=1

an = N + O
(
N 3/4

)
. (5.46)

This conclusion, though it falls short of (5.44), is best possible (take an =
1 + cos n1/4). We can also put Theorem 5.7 in quantitative form, but here
the loss in precision is much greater, and in general the importance of The-
orem 5.7 and its corollaries lies in its versatility. For example, it can be
shown that if

∑∞
n=0 anrn = (1 − r )−1 + O(1) as r → 1−, and if an = O(1),

then
N∑

n=0

an = N + O

(
N

log N

)
.

This error term, though weak, is best possible (take an = 1 + cos(log n)2).
For Dirichlet series it can be shown that if

α(s) =
∞∑

n=1

ann−s = 1

s − 1
+ O(1)

as s → 1+, and if the sequence an is bounded, then

N∑
n=1

an

n
= log N + O

(
log N

log log N

)
.

This is also best possible (take an = 1 + cos(log log n)2), but we can obtain a
sharper result by strengthening our analytic hypothesis. For example, it can be
shown that if α(s) is analytic in a neighbourhood of 1 and if the sequence an is
bounded, then

N∑
n=1

an

n
= O(1).

However, even this stronger assumption does not allow us to deduce that

N∑
n=1

an = o(N ),

as we see by considering an = cos log n. In Chapter 8 we shall encounter further
Tauberian theorems in which the above conclusion is derived from hypotheses
concerning the behaviour of α(s) throughout the half-plane σ ≥ 1.
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5.2.1 Exercises

1. Let T be a regular matrix such that tmn ≥ 0 for all m, n. Show that if
limn→∞ an = +∞, then limm→∞ bm = +∞.

2. Show that if T = [tmn] and U = [umn] are regular matrices, then so is
T U = V = [vmn] where

vmn =
∞∑

k=1

tmkukn.

3. Show that if b = T a and limm→∞ bm = a whenever limn→∞ an = a, then
T is regular.

4. For n = 0, 1, 2, . . . let tn(x) be defined on [0, 1), and suppose that the tn
satisfy the following conditions:

(i) There is a constant C such that if x ∈ [0, 1), then
∑∞

n=0 |tn(x)| ≤ C .
(ii) For all n, limx→1− tn(x) = 0.

(iii) limx→1−
∑∞

n=0 tn(x) = 1.
Show that if limn→∞ an = a and if b(x) =∑∞

n=0 antn(x), then
limx→1− b(x) = a.

5. (Kojima 1917) Suppose that the numbers tmn satisfy the following
conditions:

(i) There is a constant C such that
∑∞

n=1 |tmn| ≤ C for all m.
(ii) For all n, limm→∞ tmn exists.

(iii) limm→∞
∑∞

n=1 tmn exists.
Show that if limn→∞ an exists and if bm =∑∞

n=1 tmnan , then limm→∞ bm

exists.
6. For positive integers n let Kn(x) be a function defined on [0,∞) such that

(i)
∫∞

0 Kn(x) dx → 1 as n → ∞;
(ii)

∫∞
0 |Kn(x)| dx ≤ C for all n;

(iii) limn→∞ Kn(x) = 0 uniformly for 0 ≤ x ≤ X .
Suppose that a(x) is a bounded function, and that bn = ∫∞

0 a(x)Kn(x) dx .
Show that if limx→∞ a(x) = a, then limn→∞ bn = a.

7. Let rm be a sequence of positive real numbers with rm → 1− as m → ∞ .
For m ≥ 1, n ≥ 1, put tmn = nrn−1

m (1 − rm)2 .
(a) Show that [tmn] is regular.
(b) Show that if an =∑n−1

k=0 ck(1 − k/n) and bm is defined by (5.32), then
bm =∑∞

k=0 ckrk
m .

(c) Show that if
∑

cn = c (C, 1), then
∑

cn = c (A).
8. Suppose that T = [tmn] is given by

tmn =

⎧⎪⎪⎨⎪⎪⎩
0 if n = 0,

m!n

mn+1(m − n)!
if m ≥ n > 0,

0 if m < n.
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(a) Show that
m∑

n=k

tmn = m!

mk(m − k)!

for 1 ≤ k ≤ m .
(b) Verify that T is regular.
(c) Show that if an =∑n

k=0 xk/k! for n ≥ 0, then bm = (1 + x/m)m for
m ≥ 1.

9. (Mercer’s theorem) Suppose that

bm = 1

2
am + 1

2
· a1 + a2 + · · · + am

m

for m ≥ 1. Show that

an = 2n

n + 1
bn − 2

n(n + 1)

n−1∑
m=1

mbm .

Conclude that limn→∞ an = a if and only if limm→∞ bm = a.
10. For a non-negative integer k we say that

∑
an = a (C, k) if

lim
x→∞

∑
n≤x

an

(
1 − n

x

)k
= a.

This is Cesàro summability of order k.
(a) Show that if

∑
an = a (C, j), then

∑
an = a (C, k) for all k ≥ j .

(b) Show that if
∑

an = a (C, k) for some k, then
∑

an = a (A).
11. Show that if

∑
an = a (A), then lims→0+

∑
ann−s = a. (See Wintner 1943

for Tauberian converses.)
12. For a non-negative integer k we say that

∑
an = a (R, k) if

lim
x→∞

∑
n≤x

an

(
1 − log n

log x

)k

= a.

This is Riesz summability of order k.
(a) Show that if

∑
an = a (R, j), then

∑
an = a (R, k) for all k ≥ j .

(b) Show that if
∑

an = a (R, k) for some k, then
∑

s→0+ α(s) = a.
13. Put tmn = 0 for n > m, set

tmm = m + 1

log(m + 1)
(log(m + 1) − log m),

while for 1 ≤ n < m put

tmn = n + 1

log(m + 1)
(− log n + 2 log(n + 1) − log(n + 2)) .
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(a) Show that if

an =
n∑

k=1

ck

(
1 − k

n + 1

)
for n ≥ 1, then the bm given in (5.32) satisfies

bm =
m∑

k=1

ck

(
1 − log k

log(n + 1)

)
.

(b) Show that tmn ≥ 0 for all m, n.
(c) Show that

∞∑
n=1

tmn = 1 + log 2

log(m + 1)
.

(d) Show that limm→∞ tmn = 0 .

(e) Conclude that if
∑

ck = c (C, 1), then
∑

ck = c (R, 1) .
14. Let A(x) =∑0<n≤x an .

(a) Show that
N∑

n=1

an

(
1 − n

N

)
= 1

N

∫ N

0
A(x) dx .

(b) Show that
N∑

n=1

an

(
1 − log n

log N

)
= 1

log N

∫ N

1

A(x)

x
dx .

(c) Suppose that t is a fixed non-zero real number. By Corollary 1.15, or
otherwise, show that

N∑
n=1

n−1−i t
(

1 − n

N

)
= N−i t

(1 − i t)2
+ ζ (1 + i t) + O

(
log N

N

)
.

(d) Similarly, show that
N∑

n=1

n−1−i t

(
1 − log n

log N

)
= ζ (1 + i t) + O

(
1

log N

)
.

(e) Conclude that
∑∞

n=1 n−1−i t is not summable (C, 1), but that it is
summable (R, 1) to ζ (1 + i t) .

15. We say that a series is Lambert summable, and write
∑

an = a (L), if

lim
r→1−

(1 − r )
∞∑

n=1

nanrn

1 − rn
= a.

(a) Show that if
∑

an = a, then
∑

an = a (L).
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(b) Show that if an is a bounded sequence and |z| < 1, then
∞∑

n=1

nanzn

1 − zn
=

∞∑
n=1

(∑
d|n

dad

)
zn.

(c) Show that
∑∞

n=1 µ(n)/n = 0 (L).
(d) Deduce that if

∑∞
n=1 µ(n)/n converges, then its value is 0. (See (6.18)

and (8.6).)
(e) Show that

∑∞
n=1(�(n) − 1)/n = −2C0 (L).

(f) Deduce that if
∑

n≤x �(n)/n = log x + c + o(1) then c = −C0. (See
Exercise 8.1.1.)

16. (Bohr 1909; Riesz 1909; Phragmén (cf. Landau 1909, pp. 762, 904))
Let α(s) =∑ ann−s , β(s) =∑ bnn−s , and γ (s) = α(s)β(s) =∑ cnn−s

where cn =∑d|n adbn/d . Further, put A(x) =∑n≤x an and B(x) =∑
n≤x bn .

(a) Show that ∫ x

1
A(y)B(x/y)

dy

y
=
∑
n≤x

cn log x/n.

(b) Show that if
∑

an converges and
∑

bn converges, then
∑

cn =
α(0)β(0) (R, 1).

(c) (Landau 1907) By taking j = 0 in Exercise 12(a), or otherwise, show
that if the three series

∑
an ,
∑

bn ,
∑

cn all converge, then
∑

cn =(∑
an
)(∑

bn
)
.

17. Suppose that f (n) ↗ ∞. Construct an so that |an| ≤ f (n)/n for all n,

lim sup
N→∞

N∑
n=1

an = 1, lim inf
N→∞

N∑
n=1

an = −1,

but

lim
N→∞

N∑
n=1

an(1 − n/N ) = 0.

18. (Landau 1908) Show that if f (x) ∼ x as x → ∞ and x f ′(x) is increasing,
then limx→∞ f ′(x) = 1.

19. (Landau (1913); cf. Littlewood (1986, p. 54–55); Schoenberg 1973) Show
that if f (x) → 0 as x → ∞, and if f ′′(x) = O(1), then f ′(x) → 0 as
x → ∞.

20. (Tauber’s ‘second theorem’) Suppose that P(δ) =∑∞
n=0 ane−nδ for δ > 0,

and put sN =∑N
n=0 an .

(a) Show that if an = O(1/n), then sN = P(1/N ) + O(1).
(b) Show that if an = o(1/n), then sN = P(1/N ) + o(1).
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(c) Let B(N ) =∑N
n=1 nan . Show that if

∑
an converges, then B(N ) =

o(N ) as N → ∞.
(d) Show that if P(δ) converges for δ > 0, then

sN − P(1/N ) = B(N )

N
+
∫ N

1
B(u)

(
1

u2
− e−u/N

u2
− e−u/N

uN

)
du

+
∫ ∞

N
B(u)e−u/N

( u

N
− 1
) du

u2
.

(e) Show that if B(N ) = o(N ), then sN − P(1/N ) = o(1).
(f) Show that if

∑
an = a (A), then

∑
an = a if and only if B(N ) = o(N ).

21. (a) Using Ramanujan’s identity
∑∞

n=1 d(n)2n−s = ζ (s)4/ζ (2s) and Theo-

rem 5.11, show that
∑

n≤x d(n)2/n ∼ (4π2)−1(log x)4.
(b) Show that if

∑
n≤x d(n)2 ∼ cx(log x)3 as x → ∞, then c = 1/π2.

22. Show that
∑∞

n=1 1/(d(n)ns) ∼ c(s − 1)−1/2 as s → 1+ where

c =
∏

p

(
(p2 − p)1/2 log

(
p

p − 1

))
.

Deduce that ∑
n≤x

1

nd(n)
∼ 2c√

π
(log x)1/2

as x → ∞.
23. Show that if

∑
n≤N an/n = O(1) and lims→1+

∑∞
n=1 ann−s = a, then

lim
x→∞

∑
n≤x

an

n

(
1 − log n

log x

)
= a.

24. Show that ∫ ∞

0

sin x

x
e−sx dx = arctan 1/s

for s > 0. Using Theorem 5.7, deduce that∫ ∞

0

sin x

x
dx = π

2
.

25. Suppose that f (u) ≥ 0, that
∫∞

0 f (u) du < ∞, and that
∫∞

0 (1 −
e−δu) du ∼ δ1/2 as δ → 0+. Show that

∫∞
U f (u) du ∼ (πU )−1/2 as U →

∞.
26. Show that

∑∞
n=1 an = a if and only if

lim
r→1−

∞∑
n=0

anr2n = a.
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27. Suppose that for every ε > 0 there is an η > 0 such that∑
N<n≤(1+η)N |an| < ε whenever N > 1/η. Show that if

∑
an = a (A),

then
∑

an = a.
28. Show that if

∑
an = a (C, 1) and if an+1− an = O(|an|/n), then

∑
an = a.

29. (Hardy & Littlewood 1913, Theorem 27) Show that if
∑

an = a (A) and if
an+1 − an = O(|an|/n), then

∑
an = a.

30. (Hardy 1907) Show that

lim
x→1−

∞∑
k=0

(−1)k x2k

does not exist.

5.3 Notes

Section 5.1. Theorem 5.1 and the more general (5.22) were first proved rig-
orously by Perron (1908). Although the Mellin transform had been used by
Riemann and Cahen, it was Mellin (1902) who first described a general class
of functions for which the inversion succeeds. Hjalmar Mellin was Finnish, but
his family name is of Swedish origin, so it is properly pronounced mĕ · lēn′.
However, in English-speaking countries the uncultured pronunciation mĕl′· ı̆n
is universal.

In connection with Theorem 5.4, it should be noted that Plancherel’s formula
‖ f ‖2 = ‖ f̂ ‖2 holds not just for all f ∈ L1(R) ∩ L2(R) but actually for all
f ∈ L2(R). However, in this wider setting one must adopt a new definition for
f̂ , since the definition we have taken is valid only for f ∈ L1(R). See Goldberg
(1961, pp. 46–47) for a resolution of this issue.

For further material concerning properties of Dirichlet series, one should
consult Hardy & Riesz (1915), Titchmarsh (1939, Chapter 9), or Widder (1971,
Chapter 2). Beyond the theory developed in these sources, we call attention to
two further topics of importance in number theory. Wiener (1932, p. 91) proved
that if the Fourier series of f ∈ L1(T) is absolutely convergent and is never zero,
then the Fourier series of 1/ f is also absolutely convergent. Wiener’s proof was
rather difficult, but Gel’fand (1941) devised a simpler proof depending on his
theory of normed rings. Lévy (1934) proved more generally that the Fourier
series of F( f ) is absolutely convergent provided that F is analytic at all points
in the range of f . Elementary proofs of these theorems have been given by
Zygmund (1968, pp. 245–246) and Newman (1975). These theorems were
generalized to absolutely convergent Dirichlet series by Hewitt & Williamson
(1957), who showed that if α(s) =∑ ann−s is absolutely convergent for σ ≥
σ0, then 1/α(s) is represented by an absolutely convergent Dirichlet series
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in the same half-plane, if and only if the values taken by α(s) in this half-
plane are bounded away from 0. Ingham (1962) noted a fallacy in Zygmund’s
account of Lévy’s theorem, corrected it, and gave an elementary proof of the
generalization to absolutely convergent Dirichlet series. See also Goodman &
Newman (1984). Secondly, Bohr (1919) developed a theory concerning the
values taken on by an absolutely convergent Dirichlet series. This is described
by Titchmarsh (1986, Chapter 11), and in greater detail by Apostol (1976,
Chapter 8). For a small footnote to this theory, see Montgomery & Schinzel
(1977).

Section 5.2. That conditions (5.29)–(5.31) are necessary and sufficient for
the transformation T to preserve limits was proved by Toeplitz (1911) for upper
triangular matrices, and by Steinhaus (1911) in general. See also Kojima (1917)
and Schur (1921). For more on the Toeplitz matrix theorem and various aspects
of Tauberian theorems, see Peyerimhoff (1969).

Theorem 5.6 under the hypothesis (a) is trivial by dominated convergence.
Theorem 5.6(b) is a special case of a theorem of Hardy (1910), who considered
the more general (C,k) convergence, and Theorem 5.6(c) is similarly a special
case of a theorem of Landau (1910, pp. 103–113).

Tauber (1897) proved two theorems, the second of which is found in Exer-
cise 5.2.18. Littlewood (1911) derived his strengthening of Tauber’s first theo-
rem by using high-order derivatives. Subsequently Hardy & Littlewood (1913,
1914a, b, 1926, 1930) used the same technique to obtain Theorem 5.8 and
its corollaries. Karamata (1930, 1931a, b) introduced the use of Weierstrass’s
approximation theorem. Karamata also considered a more general situation,
in which the right-hand sides of (5.35) and (5.36) are multiplied by a slowly
oscillating function L(1/δ), and the right-hand side of (5.37) is multiplied by
L(U ). Our exposition employs a further simplification due to Wielandt (1952).
Other proofs of Littlewood’s theorem have been given by Delange (1952) and
by Eggleston (1951). Ingham (1965) observed that a peak function similar
to Littlewood’s can be constructed by using high-order differencing instead
of differentiation. Since many proofs of the Weierstrass theorem involve con-
structing a peak function, the two methods are not materially different. Sharp
quantitative Tauberian theorems have been given by Postnikov (1951), Kore-
vaar (1951, 1953, 1954a–d), Freud (1952, 1953, 1954), Ingham (1965), and
Ganelius (1971).

For other accounts of the Hardy–Littlewood theorem, see Hardy (1949) or
Widder (1946, 1971). For a brief survey of applications of summability to
classical analysis, see Rubel (1989).

Wiener (1932, 1933) invented a general Tauberian theory that contains the
Hardy–Littlewood theorems for power series (Theorem 5.8 and its corollaries)
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as a special case. Wiener’s theory is discussed by Hardy (1949), Pitt (1958), and
Widder (1946). Among the longer expositions of Tauberian theory, the recent
accounts of Korevaar (2002, 2004) are especially recommended.
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