
4

Primes in arithmetic progressions: I

4.1 Additive characters

If f (z) =∑∞
n=0 cnzn is a power series, we can restrict our attention to terms

for which n has prescribed parity by considering

1

2
f (z) + 1

2
f (−z) =

∞∑
n=0

n≡ 0 (2)

cnzn

or

1

2
f (z) − 1

2
f (−z) =

∞∑
n=0

n≡1 (2)

cnzn.

That is, we can express the characteristic function of an arithmetic progression
(mod 2) as a linear combination 1

2 1n ± 1
2 (−1)n of 1n and (−1)n . Here 1 and

−1 are the square-roots of 1, and we can similarly express the characteristic
function of an arithmetic progression (mod q) as a linear combination of the
sequences ζ n where ζ runs over the q different q th roots of unity. We write
e(θ ) = e2π iθ , and then the q th roots of unity are the numbers ζ = e(a/q) for
1 ≤ a ≤ q . If (a, q) = 1 then the least integer n such that ζ n = 1 is q, and we
say that ζ is a primitive q th root of unity. From the formula

q−1∑
k=0

ζ k = 1 − ζ q

1 − ζ

for the sum of a geometric progression, we see that if ζ is a q th root of unity
then

q∑
k=1

ζ k = 0

108
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4.1 Additive characters 109

unless ζ = 1. Hence

1

q

q∑
k=1

e(−ka/q)e(kn/q) =
{

1 if n ≡ a (mod q),
0 otherwise,

(4.1)

and thus the characteristic function of an arithmetic progression (mod q) can be
expressed as a linear combination of the sequences e(kn/q). These functions
are called the additive characters (mod q) because they are the homomorphisms
from the additive group (Z/qZ)+ of integers (mod q) to the multiplicative group
C× of non-zero complex numbers.

In the language of linear algebra we see that the arithmetic functions of
period q form a vector space of dimension q. For any k, 1 ≤ k ≤ q, the se-
quence {e(kn/q)}∞n=−∞ has period q, and these q sequences form a basis
for the space of q-periodic arithmetic functions. Indeed, the formula (4.1)
expresses the ath elementary vector as a linear combination of the vectors
[e(n/q), e(2n/q), . . . , e((q − 1)n/q), 1].

If f (n) is an arithmetic function with period q then we define the finite
Fourier transform of f to be the function

f̂ (k) = 1

q

q∑
n=1

f (n)e(−kn/q). (4.2)

To obtain a Fourier representation of f we multiply both sides of (4.1) by f (n)
and sum over n to see that

f (a) =
q∑

n=1

f (n)

q

q∑
k=1

e(−ka/q)e(kn/q)

=
q∑

k=1

e(−ka/q)
1

q

q∑
n=1

f (n)e(kn/q)

=
q∑

k=1

e(−ka/q) f̂ (−k).

Here the exact values that k runs through are immaterial, as long as the set of
these values forms a complete residue system modulo q. Hence we may replace
k by −k in the above, and so we see that

f (n) =
q∑

k=1

f̂ (k)e(kn/q). (4.3)

This includes (4.1) as a special case, for if we take f to be the characteris-
tic function of the arithmetic progression a (mod q) then by (4.2) we have
f̂ (k) = e(−ka/q)/q , and then (4.3) coincides with (4.1). The pair (4.2), (4.3)
of inversion formulæ are analogous to the formula for the Fourier coefficients
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110 Primes in arithmetic progressions: I

and Fourier expansion of a function f ∈ L1(T), but the situation here is simpler
because our sums have only finitely many terms.

Let v(h) be the vector v(h) = [e(h/q), e(2h/q), . . . , e((q − 1)h/q), 1].
From (4.1) we see that two such vectors v(h1) and v(h2) are orthogonal un-
less h1 ≡ h2 (mod q). These vectors are not normalized, but they all have the
same length

√
q , so apart from some rescaling, the transformation from f to f̂

is an isometry. More precisely, if f has period q and f̂ is given by (4.2), then
by (4.3),

q∑
n=1

| f (n)|2 =
q∑

n=1

∣∣∣∣ q∑
k=1

f̂ (k)e(kn/q)

∣∣∣∣2.
By expanding and taking the sum over n inside, we see that this is

=
q∑

j=1

q∑
k=1

f̂ ( j) f̂ (k)
q∑

n=1

e( jn/q)e(−kn/q).

By (4.1) the innermost sum is q if j = k and is 0 otherwise. Hence
q∑

n=1

| f (n)|2 = q
q∑

k=1

| f̂ (k)|2. (4.4)

This is analogous to Parseval’s identity for functions f ∈ L2(T), or to
Plancherel’s identity for functions f ∈ L2(R).

Among the exponential sums that we shall have occasion to consider is
Ramanujan’s sum

cq (n) =
q∑

a=1
(a,q)=1

e(an/q). (4.5)

We now establish some of the interesting properties of this quantity.

Theorem 4.1 As a function of n, cq (n) has period q. For any given n, cq (n)
is a multiplicative function of q. Also,∑

d|q
cd (n) =

{
q if q|n,
0 otherwise.

(4.6)

Finally,

cq (n) =
∑

d|(q,n)

dµ(q/d) = µ(q/(q, n))

ϕ(q/(q, n))
ϕ(q). (4.7)

The case n = 1 of this last formula is especially memorable:
q∑

a=1
(a,q)=1

e(a/q) = µ(q).
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4.1 Additive characters 111

Proof The first assertion is evident, as each term in the sum (4.5) has period
q . As for the second, suppose that q = q1q2 where (q1, q2) = 1. By the Chinese
Remainder Theorem, for each a (mod q) there is a unique pair a1, a2 with ai

determined (mod qi ), so that a ≡ a1q2 + a2q1 (mod q). Moreover, under this
correspondence we see that (a, q) = 1 if and only if (ai , qi ) = 1 for i = 1, 2.
Then

cq (n) =
q1∑

a1=1
(a1,q1)=1

q2∑
a2=1

(a2,q2)=1

e((a1q2 + a2q1)n/(q1q2))

=

⎛⎜⎝ q1∑
a1=1

(a1,q1)=1

e(a1n/q1)

⎞⎟⎠
⎛⎜⎝ q2∑

a2=1
(a2,q2)=1

e(a2n/q2)

⎞⎟⎠
= cq1 (n)cq2 (n).

To establish (4.6), suppose that d|q, and consider those a, 1 ≤ a ≤ q, such
that (a, q) = d . Put b = a/d. Then the numbers a are in one-to-one correspon-
dence with those b, 1 ≤ b ≤ q/d, for which (b, q/d) = 1. Hence

q∑
a=1

e(na/q) =
∑
d|q

q∑
a=1

(a,q)=d

e(na/q)

=
∑
d|q

q/d∑
b=1

(b,q/d)=1

e(nb/(q/d))

=
∑
d|q

cq/d (n).

By (4.1), the left-hand side above is q when q|n, and is 0 otherwise. Thus we
have (4.6).

The first formula in (4.7) is merely the Möbius inverse of (4.6). To obtain
the second formula in (4.7), we begin by considering the special case in which
q is a prime power, q = pk .

cpk (n) =
pk∑

a=1
p�a

e(na/pk)

=
pk∑

a=1

e(na/pk) −
pk−1∑
a=1

e(na/pk−1).
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112 Primes in arithmetic progressions: I

Here the first sum is pk if pk |n, and is 0 otherwise. Similarly, the second
sum is pk−1 if pk−1|n, and is 0 otherwise. Hence the above is

=
⎧⎨⎩

0 if pk−1 � n,
−pk−1 if pk−1‖n,
pk − pk−1 if pk |n

= µ
(

pk/(n, pk)
)

ϕ
(

pk/(n, pk)
)ϕ(pk).

The general case of (4.7) now follows because cq (n) is a multiplicative function
of q . �

4.1.1 Exercises

1. Let U = [ukn] be the q × q matrix with elements ukn = e(kn/q)/
√

q. Show
that UU ∗ = U ∗U = I , i.e., that U is unitary.

2. (Friedman 1957; cf. Reznick 1995)
(a) Show that∫ 1

0

(
ue(θ/2) + ve(−θ/2)

)2r
dθ =

(
2r

r

)
urvr

for any non-negative integer r and arbitrary complex numbers u, v.
(b) Show that if u = (x − iy)/2, v = (x + iy)/2, then

x cosπθ + y sinπθ = ue(θ/2) + ve(−θ/2)

for all θ .
(c) Show that∫ 1

0

(
x cosπθ + y sinπθ

)2r
dθ =

(
2r

r

)
2−2r (x2 + y2)r

for any non-negative integer r and arbitrary real or complex numbers
x, y.

(d) Show that
q∑

a=1

(
ueπ ia/q + ve−π ia/q

)2r = q

(
2r

r

)
urvr

if r is an integer, 0 ≤ r < q.
(e) Show that

q∑
a=1

(x cosπa/q + y sinπa/q)2r = q

(
2r

r

)
2−2r (x2 + y2)r

if r is an integer, 0 ≤ r < q.
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4.1 Additive characters 113

3. Show that |cq (n)| ≤ (q, n).
4. (Carmichael 1932)

(a) Show that if q > 1, then
q∑

n=1

cq (n) = 0.

(b) Show that if q1 �= q2 and [q1, q2]|N , then
N∑

n=1

cq1 (n)cq2 (n) = 0.

(c) Show that if q|N , then
N∑

n=1

cq (n)2 = Nϕ(q).

5. (Grytczuk 1981; cf. Redmond 1983) Show that∑
d|q

|cd (n)| = 2ω(q/(q,n))(q, n).

6. (Ramanujan 1918) Show that

ϕ(n)

n
=

∞∑
d=1

µ(d)

d2

∑
q|d

cq (n) =
∞∑

q=1

aqcq (n)

where

aq = 6µ(q)

π2q2

∏
p|q

(
1 − 1

p2

)−1

.

7. (Wintner 1943, Sections 33–35) The orthogonality relations of Exercise 4
give us hope that it might be possible to represent an arithmetic function
F(n) in the form

F(n) =
∞∑

q=1

aqcq (n) (4.8)

by taking

aq = 1

ϕ(q)
lim

x→∞
1

x

∑
n≤x

F(n)cq (n) . (4.9)

In the following, suppose that f (r ) is chosen so that F(n) =∑r |n f (r ) for
all n.
(a) Suppose that

∞∑
r=1

| f (r )|
r

< ∞ . (4.10)

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.006


114 Primes in arithmetic progressions: I

Let d be a fixed positive integer. Show that∑
n≤x
d|n

F(n) = x

d

∞∑
r=1

f (r )

r
(d, r ) + o(x)

as x → ∞.
(b) Suppose that (4.10) holds. Show that

lim
x→∞

1

x

∑
n≤x

F(n)cq (n) = ϕ(q)
∞∑

r=1
q|r

f (r )

r
.

(c) Put

aq =
∞∑

r=1
q|r

f (r )

r
.

Show that if
∞∑

r=1

| f (r )|d(r )

r
< ∞ (4.11)

then (4.8) and (4.9) hold, and moreover that
∑∞

q=1 |aqcq (n)| < ∞.
8. (Ramanujan 1918) Show that if q > 1, then

∑∞
n=1 cq (n)/n = −�(q). (See

also Exercise 8.3.4.)
9. Let �q (z) denote the q th cyclotomic polynomial, i.e., the monic polynomial

whose roots are precisely the primitive q th roots of unity, so that

�q (z) =
q∏

n=1
(n,q)=1

(z − e(n/q)).

(a) Show that

�q (z) =
∏
d|q

(zd − 1)µ(q/d)

and that (zd − 1)µ(q/d) has a power series expansion, valid when |z| < 1,
with integer coefficients. Deduce that �q (z) ∈ Z[z].

(b) Suppose that z ∈ Z and p | �q (z) and let e denote the order of z modulo
p. Show that e | q and that if p | (zd − 1) then e | d.

(c) Choose t so that pt‖(ze − 1). Show that for m ∈ N with p � m one has
pt‖(zme − 1).

(d) Show that if p � q, then pht‖�q (z) where h = ∑
e|d|q

µ(q/d). Deduce that

e = q and that q | (p − 1).
(e) By taking z to be a suitable multiple of q, or otherwise, show that there

are infinitely many primes p with p ≡ 1 (mod q).
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4.2 Dirichlet characters 115

4.2 Dirichlet characters

In the preceding section we expressed the characteristic function of an arithmetic
progression as a linear combination of additive characters. For purposes of
multiplicative number theory we shall similarly represent the characteristic
function of a reduced residue class (mod q) as a linear combination of totally
multiplicative functions χ (n) each one supported on the reduced residue classes
and having period q . These are the Dirichlet characters. Since χ (n) has period
q we may think of it as mapping from residue classes, and since χ (n) �= 0 if and
only if (n, q) = 1, we may think of χ as mapping from the multiplicative group
of reduced residue classes to the multiplicative group C× of non-zero complex
numbers. As χ is totally multiplicative, χ (mn) = χ (m)χ (n) for all m, n, we see
that the map χ : (Z/qZ)× −→ C× is a homomorphism. The method we use to
describe these characters applies when (Z/qZ)× is replaced by an arbitrary finite
abelian group G, so we consider the slightly more general problem of finding
all homomorphisms χ : G → C× from such a group G to C×. We call these
homomorphisms the characters of G, and let Ĝ denote the set of all characters
of G. We let χ0 denote the principal character, whose value is identically 1.
We note that if χ ∈ Ĝ, then χ (e) = 1 where e denotes the identity in G. Let n
denote the order of G. If g ∈ G and χ ∈ Ĝ, then gn = e, and hence χ (gn) = 1.
Consequently χ (g)n = 1, and so we see that all values taken by characters are
nth roots of unity. In particular, this implies that Ĝ is finite, since there can be at
most nn such maps. If χ1 and χ2 are two characters of G, then we can define
a product character χ1χ2 by χ1χ2(g) = χ1(g)χ2(g). For χ ∈ Ĝ, let χ be the
character χ (g). Then χ · χ = χ0, and we see that Ĝ is a finite abelian group
with identity χ0. The following lemmas prepare for a full description of Ĝ in
Theorem 4.4.

Lemma 4.2 Suppose that G is cyclic of order n, say G = (a). Then there are
exactly n characters of G, namely χk(am) = e(km/n) for 1 ≤ k ≤ n. Moreover,∑

g∈G

χ (g) =
{

n if χ = χ0,

0 otherwise,
(4.12)

and ∑
χ∈Ĝ

χ (g) =
{

n if g = e,
0 otherwise.

(4.13)

In this situation, Ĝ is cyclic, Ĝ = (χ1).

Proof Suppose that χ ∈ Ĝ. As we have observed, χ (a) is an nth root of unity,
say χ (a) = e(k/n) for some k, 1 ≤ k ≤ n. Hence χ (am) = χ (a)m = e(km/n).
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116 Primes in arithmetic progressions: I

Since the characters are now known explicitly, the remaining assertions are
easily verified. �

Next we describe the characters of the direct product of two groups in terms
of the characters of the factors.

Lemma 4.3 Suppose that G1 and G2 are finite abelian groups, and that G =
G1 ⊗ G2. If χi is a character of Gi , i = 1, 2, and g ∈ G is written g = (g1, g2),
gi ∈ Gi , then χ (g) = χ1(g1)χ2(g2) is a character of G. Conversely, if χ ∈ Ĝ,
then there exist unique χi ∈ Gi such that χ (g) = χ1(g1)χ2(g2). The identities
(4.12) and (4.13) hold for G if they hold for both G1 and G2.

We see here that eachχ ∈ Ĝ corresponds to a pair (χ1, χ2) ∈ Ĝ1 × Ĝ2. Thus
G ∼= Ĝ1 ⊗ Ĝ2.

Proof The first assertion is clear. As for the second, put χ1(g1) = χ ((g1, e2)),
χ2(g2) = χ ((e1, g2)). Then χi ∈ Ĝi for i = 1, 2, and χ1(g1)χ2(g2) = χ (g). The
χi are unique, for if g = (g1, e2), then

χ (g) = χ ((g1, e2)) = χ1(g1)χ2(e2) = χ1(g1),

and similarly for χ2. If χ (g) = χ1(g1)χ2(g2), then∑
g∈G

χ (g) =
(∑

g1∈G1

χ1(g1)

)(∑
g2∈G2

χ2(g2)

)
,

so that (4.12) holds for G if it holds for G1 and for G2. Similarly, if g = (g1, g2),
then ∑

χ∈Ĝ

χ (g) =
⎛⎝∑

χ1∈Ĝ1

χ1(g1)

⎞⎠⎛⎝∑
χ1∈Ĝ2

χ2(g2)

⎞⎠ ,

so that (4.13) holds for G if it holds for G1 and G2. �

Theorem 4.4 Let G be a finite abelian group. Then Ĝ is isomorphic to G,
and (4.12) and (4.13) both hold.

Proof Any finite abelian group is isomorphic to a direct product of cyclic
groups, say

G ∼= Cn1 ⊗ Cn2 ⊗ · · · ⊗ Cnr .

The result then follows immediately from the lemmas. �

Though G and Ĝ are isomorphic, the isomorphism is not canonical. That is,
no particular one-to-one correspondence between the elements of G and those
of Ĝ is naturally distinguished.
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4.2 Dirichlet characters 117

Corollary 4.5 The multiplicative group (Z/qZ)× of reduced residue classes
(mod q) has ϕ(q) Dirichlet characters. If χ is such a character, then

q∑
n=1

(n,q)=1

χ (n) =
{
ϕ(q) if χ = χ0,

0 otherwise.
(4.14)

If (n, q) = 1, then ∑
χ

χ (n) =
{
ϕ(q) if n ≡ 1 (mod q),
0 otherwise,

(4.15)

where the sum is extended over the ϕ(q) Dirichlet characters χ (mod q).

As we remarked at the outset, for our purposes it is convenient to define the
Dirichlet characters (mod q) on all integers; we do this by setting χ (n) = 0
when (n, q) > 1. Thus χ is a totally multiplicative function with period q that
vanishes whenever (n, q) > 1, and any such function is a Dirichlet character
(mod q). In this book a character is understood to be a Dirichlet character unless
the contrary is indicated.

Corollary 4.6 If χi is a character (mod qi ) for i = 1, 2, then χ1(n)χ2(n)
is a character (mod [q1, q2]). If q = q1q2, (q1, q2) = 1, and χ is a character
(mod q), then there exist unique characters χi (mod q), i = 1, 2, such that
χ (n) = χ1(n)χ2(n) for all n.

Proof The first assertion follows immediately from the observations that
χ1(n)χ2(n) is totally multiplicative, that it vanishes if (n, [q1, q2]) > 1, and
that it has period [q1, q2]. As for the second assertion, we may suppose that
(n, q) = 1. By the Chinese Remainder Theorem we see that

(Z/qZ)× ∼= (Z/q1Z)× ⊗ (Z/q2Z)×

if (q1, q2) = 1. Thus the result follows from Lemma 4.2. �

Our proof of Theorem 4.4 depends on Abel’s theorem that any finite abelian
group is isomorphic to the direct product of cyclic groups, but we can prove
Corollary 4.5 without appealing to this result, as follows. By the Chinese Re-
mainder Theorem we see that

(Z/qZ)× ∼=
⊗
pα‖q

(Z/pαZ)×.

If p is odd, then the reduced residue classes (mod pα) form a cyclic group; in
classical language we say there is a primitive root g. Thus if (n, p) = 1, then
there is a unique ν (mod ϕ(pα)) such that gν ≡ n (mod pα). The number ν is
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118 Primes in arithmetic progressions: I

called the index of n, and is denoted ν = indg n. From Lemma 4.2 it follows
that the characters (mod pα), p > 2, are given by

χk(n) = e

(
k indg n

ϕ(pα)

)
(4.16)

for (n, p) = 1. We obtain ϕ(pα) different characters by allowing k to assume
integral values in the range 1 ≤ k ≤ ϕ(pα). By Lemma 4.3 it follows that if q
is odd, then the general character (mod q) is given by

χ (n) = e

(∑
pα‖q

k indg n

ϕ(pα)

)
(4.17)

for (n, q) = 1, where it is understood that k = k(pα) is determined (mod ϕ(pα))
and that g = g(pα) is a primitive root (mod pα).

The multiplicative structure of the reduced residues (mod 2α) is more com-
plicated. For α = 1 or α = 2 the group is cyclic (of order 1 or 2, respectively),
and (4.16) holds as before. For α ≥ 3 the group is not cyclic, but if n is odd, then
there exist uniqueµ (mod 2) and ν (mod 2α−2) such that n ≡ (−1)µ5ν (mod 2α).
In group-theoretic terms this means that(

Z/2αZ)× ∼= C2 ⊗ C2α−2

when α ≥ 3. By Lemma 4.3 the characters in this case take the form

χ (n) = e

(
jµ

2
+ kν

2α−2

)
(4.18)

for odd n where j = 0 or 1 and 1 ≤ k ≤ 2α−2. Thus (4.17) holds if 8 � q, but if
8|q , then the general character takes the form

χ (n) = e

⎛⎜⎝ jµ

2
+ kν

2α−2
+
∑
pα‖q
p>2

� indg n

ϕ(pα)

⎞⎟⎠ (4.19)

when (n, q) = 1.
By definition, if f (n) is totally multiplicative, f (n) = 0 whenever (n, q) > 1,

and f (n) has period q , then f is a Dirichlet character (mod q). It is useful to
note that the first condition can be relaxed.

Theorem 4.7 If f is multiplicative, f (n) = 0 whenever (n, q) > 1, and f has
period q, then f is a Dirichlet character modulo q.

Proof It suffices to show that f is totally multiplicative. If (mn, q) > 1, then
f (mn) = f (m) f (n) since 0 = 0. Suppose that (mn, q) = 1. Hence in partic-
ular (m, q) = 1, so that the map k �→ n + kq (mod m) permutes the residue
classes (mod m). Thus there is a k for which n + kq ≡ 1 (mod m), and
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4.2 Dirichlet characters 119

consequently (m, n + kq) = 1. Then

f (mn) = f (m(n + kq)) (by periodicity)

= f (m) f (n + kq) (by multiplicativity)

= f (m) f (n) (by periodicity),

and the proof is complete. �

We shall discuss further properties of Dirichlet characters in Chapter 9.

4.2.1 Exercises

1. Let G be a finite abelian group of order n. Let g1, g2, . . . , gn denote the
elements of G, and let χ1(g), χ2(g), . . . , χn(g) denote the characters of G.
Let U = [ui j ] be the n × n matrix with elements ui j = χi (g j )/

√
n. Show

that UU ∗ = U ∗U = I , i.e., that U is unitary.
2. Show that for arbitrary real or complex numbers c1, . . . , cq ,∑

χ

∣∣∣ q∑
n=1

cnχ (n)
∣∣∣2 = ϕ(q)

q∑
n=1

(n,q)=1

|cn|2

where the sum on the left-hand side runs over all Dirichlet characters
χ (mod q).

3. Show that for arbitrary real or complex numbers cχ ,
q∑

n=1

∣∣∣∑
χ

cχχ (n)
∣∣∣2 = ϕ(q)

∑
χ

|cχ |2

where the sum over χ is extended over all Dirichlet characters (mod q).
4. Let (a, q) = 1, and suppose that k is the order of a in the multiplicative group

of reduced residue classes (mod q).
(a) Show that if χ is a Dirichlet character (mod q), then χ (a) is a k th root

of unity.
(b) Show that if z is a k th root of unity, then

1 + z + · · · + zk−1 =
{

k if z = 1,
0 otherwise.

(c) Let ζ be a k th root of unity. By taking z = χ (a)/ζ , show that each k th

root of unity occurs precisely ϕ(q)/k times among the numbers χ (a) as
χ runs over the ϕ(q) Dirichlet characters (mod q).

5. Let χ be a Dirichlet character (mod q), and let k denote the order of χ in the
character group.
(a) Show that if (a, q) = 1, then χ (a) is a k th root of unity.

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.006


120 Primes in arithmetic progressions: I

(b) Show that each k th root of unity occurs preciselyϕ(q)/k times among the
numbers χ (a) as a runs over the ϕ(q) reduced residue classes (mod q).

6. Let χ be a character (mod q) such that χ (a) = ±1 whenever (a, q) = 1, and
put S(χ ) =∑q

n=1 nχ (n). Thus S(χ ) is an integer.
(a) Show that if (a, q) = 1 then aχ (a)S(χ ) ≡ S(χ ) (mod q).
(b) Show that there is an a such that (a, q) = 1 and (aχ (a) − 1, q)|12.
(c) Deduce that 12S(χ ) ≡ 0 (mod q).

In algebraic number fields we encounter not only Dirichlet characters, but
also characters of ideal class groups and of Galois groups. In addition, algebraic
number fields possessing one or more complex embeddings also have a further
kind of character, Hecke’s Grössencharaktere. In a sequence of exercises, be-
ginning with the one below, we develop the basic properties of these characters
for the Gaussian field Q(

√−1).

7. Let K be the Gaussian field,

K = Q
(√−1

)
= {a + bi : a, b ∈ Q},

and let OK be the ring of algebraic integers in K ,

OK = {a + bi : a, b ∈ Z}.
Elements α = a + bi ∈ K have a norm, N (α) = a2 + b2, and we observe
that N (αβ) = N (α)N (β). An element α of a ring is a unit if α has an inverse
in the ring. The ringOK has precisely four units, namely i k for k = 0, 1, 2, 3.
Two elements α, β ∈ OK are associates if α = uβ for some unit u. For each
integer m we define the Hecke Grössencharakter

χm(α) =
{

e4mi argα if α �= 0,
0 if α = 0.

(a) Show that if α and β are associates then χm(α) = χm(β).
(b) Show that χm(αβ) = χm(α)χm(β) for all α and β in OK .

4.3 Dirichlet L-functions

Let χ be a character (mod q). For σ > 1 we put

L(s, χ ) =
∞∑

n=1

χ (n)n−s . (4.20)

Since χ is totally multiplicative, by Theorem 1.9 we have

L(s, χ ) =
∏

p

(1 − χ (p)p−s)−1 (4.21)

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.006
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for σ > 1. Thus we see that

L(s, χ0) =
∞∑

n=1
(n,q)=1

n−s = ζ (s)
∏
p|q

(
1 − p−s

)
(4.22)

for σ > 1. By (4.14) we see that if χ �= χ0, then∑
1≤n≤kq

χ (n) = 0

for k = 1, 2, 3, . . . . Hence ∣∣∣∣∣∑
n≤x

χ (n)

∣∣∣∣∣ ≤ q (4.23)

for any x , so that by Theorem 1.3, the series (4.20) converges for σ > 0. This
result is best possible since the terms in (4.20) do not tend to 0 when σ = 0. On
the other hand, we shall show in Chapter 10 that the function L(s, χ ) is entire
if χ �= χ0. For σ > 1 we can take logarithms in (4.21), and differentiate, as in
Corollary 1.11, and thus we obtain

Theorem 4.8 If χ �= χ0, then L(s, χ) is analytic for σ > 0. On the other
hand, the function L(s, χ0) is analytic in this half-plane except for a simple
pole at s = 1 with residue ϕ(q)/q. In either case,

log L(s, χ) =
∞∑

n=2

�(n)

log n
χ (n)n−s (4.24)

for σ > 1, and

− L ′

L
(s, χ ) =

∞∑
n=1

�(n)χ (n)n−s . (4.25)

In these last formulæ we see how relations for L-functions parallel those
for the zeta functions. Indeed, when manipulating Dirichlet series formally, the
only property of n−s that is used is that it is totally multiplicative. Hence all
such calculations can be made with n−s replaced by χ (n)n−s . For example, we
know that

∑
µ(n)2n−s = ζ (s)/ζ (2s) for σ > 1. Hence formally

∞∑
n=1

µ(n)2χ (n)n−s = L(s, χ )/L(2s, χ2). (4.26)

Since |χ (n)n−s | ≤ n−σ , this latter series is absolutely convergent whenever the
former one is, and by (4.21) we see that (4.26) holds for σ > 1. In fact, by a
theorem of Stieltjes (see Exercise 1.3.2), the identity (4.26) holds for σ > 1/2
if χ �= χ0.
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We now use the identity (4.15) to capture a prescribed residue class. If
(a, q) = 1, then

1

ϕ(q)

∑
χ

χ (a)χ (n) =
{

1 if n ≡ a (mod q),
0 otherwise

(4.27)

where the sum is extended over all characters χ (mod q). This is the multiplica-
tive analogue of (4.1). Hence if (a, q) = 1 then

∞∑
n=1

n≡a (q)

�(n)n−s = 1

ϕ(q)

∞∑
n=1

�(n)n−s
∑
χ

χ (a)χ (n)

= −1

ϕ(q)

∑
χ

χ (a)
L ′

L
(s, χ) (4.28)

for σ > 1. As L(s, χ0) has a simple pole at s = 1, the function L ′
L (s, χ) has a

simple pole at 1 with residue −1. Thus the term arising fromχ0 on the right-hand
side above is

1

ϕ(q)(s − 1)
+ Oq (1) (4.29)

as s → 1+. This enables us to prove that there are infinitely many primes
p ≡ a (mod q), provided that we can show that the terms from χ �= χ0 on the
right-hand side of (4.28) do not interfere with the main term (4.29). But L(s, χ )
is analytic for σ > 0, so that L ′

L (s, χ ) is analytic except at zeros of L(s, χ ).
Hence

lim
s→1+

L ′

L
(s, χ ) = L ′

L
(1, χ ) (4.30)

for χ �= χ0, provided that L(1, χ ) �= 0. Thus the following result lies at the
heart of the matter.

Theorem 4.9 (Dirichlet) If χ is a character (mod q) with χ �= χ0, then
L(1, χ ) �= 0.

Suppose that (a, q) = 1. Then the above, with (4.28), (4.29), and (4.30) give
the estimate

∞∑
n=1

n≡a (q)

�(n)n−s = 1

ϕ(q)(s − 1)
+ Oq (1)
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4.3 Dirichlet L-functions 123

as s → 1+. Consequently
∞∑

n=1
n≡a (q)

�(n)

n
= ∞.

Here the contribution of the proper prime powers is∑
pk≡a (q)

k≥2

log p

pk
≤
∑

p

log p
∞∑

k=2

p−k =
∑

p

log p

p(p − 1)
< ∞, (4.31)

and thus we have

Corollary 4.10 (Dirichlet’s theorem) If (a, q) = 1, then there are infinitely
many primes p ≡ a (mod q), and indeed∑

p≡a (q)

log p

p
= ∞.

We call a character real if all its values are real (i.e., χ (n) = 0 or ±1 for all
n). Otherwise a character is complex. A character is quadratic if it has order
2 in the character group: χ2 = χ0 but χ �= χ0. Thus a quadratic character is
real, and a real character is either principal or quadratic. In Chapter 9 we shall
express quadratic characters in terms of the Kronecker symbol

(
d
n

)
.

Proof of Theorem 4.9 We treat quadratic and complex characters separately.
Case 1: Complex χ . From (4.24) we have∏

χ

L(s, χ ) = exp

(∑
χ

∞∑
n=2

�(n)

log n
χ (n)n−s

)
for σ > 1. By (4.15) this is

= exp

⎛⎜⎝ϕ(q)
∞∑

n=2
n≡1 (q)

�(n)

log n
n−s

⎞⎟⎠ .

If we take s = σ > 1, then the sum above is a non-negative real number, and
hence we see that ∏

χ

L(σ, χ ) ≥ 1 (4.32)

for σ > 1. Now L(s, χ0) has a simple pole at s = 1, but the other L(s, χ )
are analytic at s = 1. Thus L(1, χ ) = 0 can hold for at most one χ , since
otherwise the product in (4.32) would tend to 0 as σ → 1+. If χ is a character
(mod q), then χ is a character (mod q), and χ �= χ if χ is complex. Moreover
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L(s, χ ) = L(s, χ ) by the Schwarz reflection principle, so that L(1, χ ) = 0 if
L(1, χ ) = 0. Consequently L(1, χ ) �= 0 for complex χ .

Case 2: Quadratic χ . Let r (n) =∑d|n χ (d). Thus
∑∞

n=1 r (n)n−s =
ζ (s)L(s, χ ) for σ > 1, r (n) is multiplicative, and

r (pα) =

⎧⎪⎪⎨⎪⎪⎩
1 if p | q,
α + 1 if χ (p) = 1,
1 if χ (p) = −1 and 2 | α,
0 if χ (p) = −1 and 2 � α.

Hence r (n) ≥ 0 for all n, and r (n2) ≥ 1 for all n. Suppose that L(1, χ ) = 0.
Then ζ (s)L(s, χ) is analytic for σ > 0, and by Landau’s theorem (Theorem
1.7) the series

∑
r (n)n−s converges for σ > 0. But this is false, since

∞∑
n=1

r (n)n−1/2 ≥
∞∑

n=1

r (n2)n−1 ≥
∞∑

n=1

n−1 = +∞.

Hence L(1, χ ) �= 0. Since L(σ, χ ) > 0 for σ > 1 when χ is quadratic, we see
in fact that L(1, χ ) > 0 in this case. �

By using the techniques of Chapter 2 we can prove more than the mere
divergence of the series in Corollary 4.10.

Theorem 4.11 Suppose that χ is a non-principal Dirichlet character. Then
for x ≥ 2,

(a)
∑
n≤x

χ (n)�(n)

n
	χ 1,

(b)
∑
p≤x

χ (p) log p

p
	χ 1,

(c)
∑
p≤x

χ (p)

p
= b(χ ) + Oχ

(
1

log x

)
,

(d)
∏
p≤x

(
1 − χ (p)

p

)−1

= L(1, χ ) + Oχ

(
1

log x

)
where

b(χ ) = log L(1, χ ) −
∑

pk

k>1

χ (pk)

kpk
.

Proof We show first that∑
n≤x

χ (n) log n

n
= −L ′(1, χ ) + Oq

(
log x

x

)
. (4.33)

To this end we put S(x) =∑n≤x χ (n). Then from (4.23) we see that S(x) 	χ 1.
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Thus the error term above is∑
n>x

χ (n) log n

n
=
∫ ∞

x

log u

u
d S(u)

= − S(x) log x

x
−
∫ ∞

x
S(u)(1 − log u)u−2 du

	χ

log x

x
.

As log n =∑d|n �(d), the left-hand side of (4.33) is∑
md≤x

�(d)χ (md)

md
=
∑
d≤x

�(d)χ (d)

d

∑
m≤x/d

χ (m)

m
. (4.34)

Here the inner sum is of the form∑
m≤y

χ (m)

m
= L(1, χ ) −

∑
m>y

χ (m)

m
,

and this last sum is∫ ∞

y
u−1 d S(u) = − S(y)

y
+
∫ ∞

y
S(u)u−2 du 	χ y−1.

Hence the right-hand side of (4.34) is

L(1, χ )
∑
d≤x

�(d)χ (d)

d
+ Oχ

(
1

x

∑
d≤x

�(d)

)
.

This last error term is 	χ 1, and then (a) follows from (4.33) and the fact that
L(1, χ ) �= 0. The derivation of (b) from (a), and of (c) from (b) proceeds as in
the proof of Theorem 2.7. Continuing as in that proof, we see from (c) that∑

1<n≤x

�(n)χ (n)

n log n
= c(χ ) + Oχ

(
1

log x

)
where

c(χ ) = b(χ ) +
∑

pk

k>1

χ (pk)

kpk
.

We let s → 1+ in (4.24), and deduce by Theorem 1.1 that c(χ ) = log L(1, χ ).
To complete the derivation of (d) it suffices to argue as in the proof of
Theorem 2.7. �

By forming a linear combination of these estimates as in (4.27) we obtain

Corollary 4.12 If (a, q) = 1 and x ≥ 2, then

(a)
∑
n≤x

n≡a (q)

�(n)

n
= 1

ϕ(q)
log x + Oq (1),
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(b)
∑
p≤x

n≡a (q)

log p

p
= 1

ϕ(q)
log x + Oq (1),

(c)
∑
p≤x

n≡a (q)

1

p
= 1

ϕ(q)
log log x + b(q, a) + Oq

(
1

log x

)
,

(d)
∏
p≤x

n≡a (q)

(
1 − 1

p

)−1

= c(q, a)(log x)1/ϕ(q)

(
1 + Oq

(
1

log x

))
where

b(q, a) = 1

ϕ(q)

(
C0 +

∑
p|q

log

(
1 − 1

p

)
+
∑
χ �=χ0

χ (a) log L(1, χ )

)
−
∑

pk≡a (q)
k>1

1

kpk

and

c(q, a) =
(

eC0
ϕ(q)

q

∏
χ �=χ0

(
L(1, χ )χ (a)

∏
p

(
1 − 1

p

)−χ (p) (
1 − χ (p)

p

)))1/ϕ(q)

.

Proof To derive (a) from Theorem 4.11(a) we use (4.27) and the estimate∑
n≤x

�(n)χ0(n)

n
= log x + Oq (1),

which follows from Theorem 2.7(a) since∑
pk

p|q

log p

pk
=
∑
p|q

log p

p − 1
	q 1.

We derive (b) and (c) similarly from the corresponding parts of Theorem 4.11.
In the latter case we use the estimate∑

p≤x

χ0(p)

p
= log log x + b(χ0) + Oq

(
1

log x

)
where

b(χ0) = C0 +
∑
p|q

log

(
1 − 1

p

)
−
∑

pk

k>1

χ0(pk)

kpk
.

To derive (d) we observe first that∏
p≤x

(
1 − χ0(p)

p

)−1

=
∏
p≤x
p|q

(
1 − 1

p

)∏
p≤x

(
1 − 1

p

)−1

,

which by Theorem 2.7(e) is

= ϕ(q)

q

⎛⎜⎝∏
p|q
p>x

(
1 − 1

p

)⎞⎟⎠
−1

e−C0 (log x)

(
1 + O

(
1

log x

))
.
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Here each term in the product is 1 + O(1/x), and the number of factors is
≤ ω(q), so the product is 1 + Oq (1/x), and hence the above is

= eC0
ϕ(q)

q
(log x)

(
1 + Oq

(
1

log x

))
.

To complete the proof it suffices to combine this with Theorem 4.11(d)
in (4.27). �

4.3.1 Exercises

1. Let χ be a Dirichlet character (mod q). Show that if σ > 1, then

(a)
∞∑

n=1

(−1)n−1χ (n)n−s = (1 − χ (2)21−s)L(s, χ );

(b)
∞∑

n=1

d(n)2χ (n)n−s = L(s, χ )4

L(2s, χ2)
.

2. (Mertens 1895a,b) Let r (n) =∑d|n χ (d).
(a) Show that if χ is a non-principal character (mod q), then∑

n>x

χ (n)√
n

	χ

1√
x
.

(b) Show that if χ is a non-principal character (mod q), then∑
n≤x

r (n)

n1/2
= 2x1/2L(1, χ ) + Oχ (1).

(c) Recall that if χ is quadratic then r (n) ≥ 0 for all n, and that r (n2) ≥ 1.
Deduce that if χ is a quadratic character, then the left-hand side above
is 
 log x .

(d) Conclude that if χ is a quadratic character, then L(1, χ ) > 0.
3. (Mertens 1897, 1899) For u ≥ 0, put f (u) =∑m≤u(1 − m/u).

(a) Show that f (u) ≥ 0, that f (u) is continuous, and that if u is not an
integer, then

f ′(u) = [u]([u] + 1)

2u2
;

deduce that f is increasing.
(b) Show also that

f (u) = u

2
− 1

u

∫ u

0
{v} dv = u

2
− 1

2
+ O(1/u) .

(c) Let r (n) =∑d|n χ (d), and assume that χ is non-principal. Show that∑
n≤x

r (n)(1 − n/x) =
∑
d≤x

χ (d) f (x/d) .
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(d) Write
∑

d≤x =∑d≤y +∑y<d≤x = S1 + S2 where 1 ≤ y ≤ x . Use

part (b) to show that S1 = 1
2 x L(1, χ ) + Oχ (x/y) + O(y2/x).

(e) Use the results of part (a) to show that S2 	χ f (x/y).
(f) By making an appropriate choice of y, deduce that ifχ is a non-principal

character, then∑
n≤x

r (n)(1 − n/x) = x

2
L(1, χ ) + Oχ

(
x1/3

)
.

(g) Argue that if χ is a quadratic character, then the left-hand side above
is 
 x1/2; deduce that L(1, χ ) > 0.

4. (Ingham 1929) Let f1(n) and f2(n) be totally multiplicative functions, and
suppose that | fi (n)| ≤ 1 for all n.
(a) Show that if σ > 1, then

∞∑
n=1

(∑
d|n

f1(d)

)(∑
d|n

f2(d)

)
n−s

=
ζ (s)

( ∞∑
n=1

f1(n)n−s

)( ∞∑
n=1

f2(n)n−s

)( ∞∑
n=1

f1(n) f2(n)n−s

)
∞∑

n=1

f1(n) f2(n)n−2s

=

∏
p

(
1 − f1(p) f2(p)

p2s

)
∏

p

(
1 − 1

ps

)(
1 − f1(p)

ps

)(
1 − f2(p)

ps

)(
1 − f1(p) f2(p)

ps

) .
(b) By considering

F(s) =
∞∑

n=1

∣∣∣∑
d|n

χ (d)d−iu
∣∣∣2n−s,

show that L(1 + iu, χ ) �= 0.
5. Let π (x ; q, a) denote the number of primes p ≡ a (mod q) with p not

exceeding x . Similarly, let

ϑ(x ; q, a) =
∑
p≤x

p≡a (q)

log p, ψ(x ; q, a) =
∑
n≤x

n≡a (q)

�(n).

(a) Show that

ϑ(x ; q, a) = ψ(x ; q, a) + O
(
x1/2

)
.

(b) Show that

π (x ; q, a) = ϑ(x ; q, a)

log x
+ O

(
x

(log x)2

)
.
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(c) Show that if x ≥ C , C ≥ 2, and (a, q) = 1, then∑
x/C<p≤x

p≡a (q)

log p

p
= log C

ϕ(q)
+ Oq (1).

(d) Show that for any positive integer q there is a small number cq and a
large number Cq such that if x ≥ 2Cq and (a, q) = 1, then∑

x/Cq<p≤x
p≡a (q)

log p

p
> cq .

(e) Show that for any positive integer q there is a Cq such that if (a, q) = 1,
then

π (x ; q, a) 
q
x

log x

uniformly for x ≥ Cq .
(f) Show that if (a, q) = 1, then

lim inf
x→∞

π (x ; q, a)

x/ log x
≤ 1

ϕ(q)
, lim sup

x→∞
π (x ; q, a)

x/ log x
≥ 1

ϕ(q)
.

6. (a) Show that

ϑ(x) ≤ π (x) log x ≤ ϑ(x) + O

(
x

log x

)
for x ≥ 2.

(b) Let P denote a set of prime numbers, and put

πP (x) =
∑
p≤x
p∈P

1, ϑP (x) =
∑
p≤x
p∈P

log p.

Show that

ϑP (x) = πP (x) log x + O

(
x

log x

)
for x ≥ 2, where the implicit constant is absolute.

(c) Let

n =
∏
p≤y
p∈P

p .

Show that log n = ω(n) log y + O(y/ log y) for y ≥ 2.
(d) From now on, assume that ϑP (x) 
 x for all sufficiently large x , where

the implicit constant may depend on P . Show that log log n = log y +
OP (1).
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(e) Deduce that

d(n) = n(log 2+o(1))/ log log n

as y → ∞.
7. Let R(n) denote the number of ordered pairs a, b such that a2 + b2 = n

with a ≥ 0 and b > 0. Also, let r (n) denote the number of such pairs for
which (a, b) = 1. Finally, let χ−4 = (−4

n

)
be the non-principal character

(mod 4). We recall that if the prime factorization of n is written in the form

n = 2α
∏
pβ‖n

p≡1 (4)

pβ
∏
qγ ‖n

q≡3 (4)

qγ ,

then r (n) > 0 if and only if γ = 0 for all primes q and α ≤ 1. We also
recall that

R(n) =
∑
d2|n

r (n/d2) =
∑
d|n

χ−4(d) =
{∏

p(β + 1) if 2|γ for all q,
0 otherwise.

(a) Show that
∑∞

n=1 R(n)n−s = ζ (s)L(s, χ−4) for σ > 1.
(b) Show that

∑∞
n=1 r (n)n−s = ζ (s)L(s, χ−4)/ζ (2s) for σ > 1.

(c) Show that if x ≥ 0 and y ≥ 2, then

card{n ∈ (x, x + y] : r (n) > 0} 	 y√
log y

.

(d) Show that

card{n ≤ x : R(n) > 0} 	 x√
log x

for x ≥ 2.
(e) Suppose that n is of the form

n =
∏
p≤y

p≡1 (4)

p.

Thus log n = ϑ(y; , 4, 1) � y for y ≥ 5, and hence log y = log log n +
O(1). Show that for such n,

R(n) = n(log 2+o(1))/ log log n.

In the above it is noteworthy that although R(n) ≤ d(n) for all n, that
R(n) is usually 0 and has a smaller average value (cf. Exercise 2.1.9)
than d(n) (cf. Theorem 2.3), the maximum order of magnitude of R(n)
is the same as for d(n).
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8. Let K = Q(
√−1) be the Gaussian field,OK = {a + ib : a, b ∈ Z} the ring

of integers in K . Ideals a in OK are principal, a = (a + ib), and have norm
N (a) = a2 + b2.
(a) Explain why the number of ideals a with N (a) ≤ x is π

4 x + O(x1/2).
(b) For σ > 1, let ζK (s) =∑a N (a)−s be the Dedekind zeta function of

K . Show that ζK (s) = ζ (s)L
(
s, χ−4

)
.

(c) For the Gaussian field K , show that N (ab) = N (a)N (b). (This is true
in any algebraic number field.)

(d) Assume that ideals in K factor uniquely into prime ideals. (This is true
in any algebraic number field, and is particularly easy to establish for
the Gaussian field since it has a division algorithm.) Deduce that if
σ > 1, then

ζK (s) =
∏
p

(
1 − 1

N (p)

)−1

where the product runs over all prime ideals p in OK .
(e) Define a function µ(a) = µK (a) in such a way that

1

ζK (s)
=
∑

a

µ(a)

N (a)s

for σ > 1.
(f) Let a and b be given ideals. Show that∑

d|a
d|b

µ(d) =
{

1 if gcd(a, b) = 1,
0 otherwise.

(g) Among pairs a, b of ideals with N (a) ≤ x , N (b) ≤ x , show that the
probability that gcd(a, b) = 1 is

1

ζK (2)
+ O

(
x−1/2

) = 6

π2L
(
2, χ−4

) + O
(
x1/2

)
.

9. (Erdős 1946, 1949, 1957, Vaughan 1974, Saffari, unpublished, but see
Bateman, Pomerance & Vaughan 1981; cf. Exercise 2.3.7) Let �q (z) =∏

d|q (zd − 1)µ(q/d) denote the q th cyclotomic polynomial. Suppose that

q =
∏
p≤y

p≡±2 (5)

p

where y is chosen so that ω(q) is odd.
(a) Show that if d|q and ω(d) is even, then |e(d/5) − 1| = |e(1/5) − 1|.
(b) Show that if d|q and ω(d) is odd, then |e(d/5) − 1| = |e(2/5) − 1|.
(c) Deduce that |�q (e(1/5))| = |e(1/5) + 1|d(q)/2.
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(d) Deduce that �q (z) has a coefficient whose absolute value is at least

exp
(
q (log 2−ε)/ log log q

)
if y > y0(ε).

10. Grössencharaktere for Q(
√−1), continued from Exercise 4.2.7.

(a) For σ > 1 put

L(s, χm) =
∑
α∈OK

′
χm(α)N (α)−s = 1

4

∑
a,b∈Z

(a,b)�=(0,0)

χm(a + bi)(a2 + b2)−s

where
∑′

α denotes a sum over unassociated members of OK . Show
that the above sum is absolutely convergent in this half-plane.

(b) We recall that members of OK factor uniquely into Gaussian primes.
Also, the Gaussian primes are obtained by factoring the rational primes:
The prime 2 ramifies, 2 = i3(1 + i)2, the rational primes p ≡ 1 (mod 4)
split into two distinct Gaussian primes, p = (a + bi)(a − bi), and the
rational primes q ≡ 3 (mod 4) are inert. Show that

L(s, χm) =
∏
p

(1 − χm(p)N (p)−s)−1

for σ > 1 where the product is over an unassociated family of Gaussian
primes p.

(c) By grouping associates together, show that if 4 � m, then the sum∑
a,b∈Z

(a,b)�=(0,0)

emi arg(a+bi)(a2 + b2)−s

vanishes identically for σ > 1.
(d) For 0 ≤ θ ≤ 2π , put N (x ; θ ) = card{(a, b) ∈ Z2 : a2 + b2 ≤ x, 0 <

arg(a + bi) ≤ θ}. Show that for x ≥ 1,

N (x ; θ ) = θ

2
x + O

(
x1/2

)
uniformly in θ .

(e) Show that if m �= 0, then∑
a2+b2≤x
a>0,b≥0

χm(a + bi) =
∫ π/2

0
e4miθ d N (x ; θ ) 	 |m|x1/2.

(f) Show that if m �= 0, then the Dirichlet series L(s, χm) is convergent for
σ > 1/2.

(g) Show that L(s, χm) and L(s, χ−m) are identically equal, and hence that
L(σ, χm) ∈ R for σ > 1/2.
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4.4 Notes

Section 4.1. Ramanujan’s sum was introduced by Ramanujan (1918). Incredi-
bly, both Hardy and Ramanujan missed the fact that cq (n) be written in closed
form: The formula on the extreme right of (4.7) is due to Hölder (1936). Nor-
mally one would say that a function f is even if f (x) = f (−x). However, in
the present context, an arithmetic function f with period q is said to be even
if f (n) is a function only of (n, q). Thus cq (n) is an even function. The space
of almost-even functions is rather small, but includes several arithmetic func-
tions of interest. For such functions one may hope for a representation in the
form f (n) =∑∞

q=1 aqcq (n), called a Ramanujan expansion. For a survey of the
theory of such expansions, see Schwarz (1988). Hildebrand (1984) established
definitive results concerning the pointwise convergence of Ramanujan expan-
sions. An appropriate Parseval identity has been established for mean-square
summable almost-even functions; see Hildebrand, Schwarz & Spilker (1988).

Section 4.2. The first instance of characters of a non-cyclic group occurs in
Gauss’s analysis of the genus structure of the class group of binary quadratic
forms. The quotient of the class group by the principal genus is isomorphic to
C2 ⊗ C2 ⊗ · · · ⊗ C2, and the associated characters are given by Kronecker’s
symbol. Dirichlet (1839) defined the Dirichlet characters for the multiplicative
group (Z/qZ)× of reduced residues modulo q, and the same technique suffices
to construct the characters for any finite Abelian group. More generally, if
G is a group, then a homomorphism h : G −→ GL(n,C) is called a group
representation, and the trace of h(g) is a group character. Note that if a and
b are conjugate elements of G, say a = gbg−1, then h(a) and h(b) are similar
matrices. Hence they have the same eigenvalues, and in particular tr h(a) =
tr h(b). Thus a group character is constant on conjugacy classes. In the case of a
finite Abelian group it suffices to take n = 1, and in this case the representation
and its trace are essentially the same. For an introduction to characters in a
wider setting, see Serre (1977).

Section 4.3. Dirichlet (1837a,b,c) first proved Corollary 4.10 in the case that
q is prime. The definition of the Dirichlet characters is not difficult in that case,
since the multiplicative group (Z/pZ)× of reduced residues is cyclic. The most
challenging part of the proof is to show that L(1, χ ) when χ is the Legendre
symbol (mod p). If p ≡ 3 (mod 4), then

p−1∑
a=1

a

(
a

p

)
≡

p−1∑
a=1

a = p(p − 1)

2
≡ 1 (mod 2),

and hence the sum on the left is non-zero. It follows by (9.9) that L(1, χp) �= 0
in this case. If p ≡ 1 (mod 4), then one has the identity of Exercise 9.3.7(c),
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and thus to show that L(1, χp) �= 0 it suffices to show that Q �= 1. Dirichlet
established this by means of Gauss’s theory of cyclotomy. Accounts of this are
found in Davenport (2000, Sections 1–3), and in Narkiewicz (2000, pp. 64–
65). An alternative proof that Q �= 1 was given more recently by Chowla &
Mordell (1961) (cf. Exercise 9.3.8). In order to prove that L(1, χ ) �= 0 when χ

is quadratic, Dirichlet related L(1, χ ) to the class number of binary quadratic
forms. Suppose that d is a fundamental quadratic discriminant, and put χd (n) =(

d
n

)
, the Kronecker symbol (as discussed in Section 9.3). Suppose first that

d > 0. Among the solutions of Pell’s equation x2 − dy2 = 4, let (x0, y0) be
the solution with x0 > 0, y0 > 0, and y0 minimal, and put η = 1

2 (x0 + y0

√
d).

Dirichlet showed that

L(1, χd ) = h log η√
d

(4.35)

where h is the number of equivalence classes of binary quadratic forms with
discriminant d . Since h ≥ 1 and y0 ≥ 1, it follows that L(1, χd ) 
 (log d)/

√
d

in this case. Now suppose that d < 0 and that w denotes the number of auto-
morphs of the positive definite binary quadratic forms of discriminant d (i.e.,
w = 6 if d = −3, w = 4 if d = −4, and w = 2 if d < −4). Dirichlet showed
that

L(1, χd ) = 2πh

w
√−d

. (4.36)

Thus L(1, χd ) ≥ π/
√−d when d < −4.

Our treatment of quadratic characters in the proof of Theorem 4.9 is due
to Landau (1906). Mertens (1895a,b, 1897, 1899) gave two elementary proofs
that L(1, χ ) > 0 when χ is quadratic; cf. Exercises 2.4.2 and 2.4.3. For a
definitive account of Mertens’ methods, see Bateman (1959). Other proofs
have been given by Teege (1901), Gel’fond & Linnik (1962, Chapter 3 Section
2), Bateman (1966, 1997), Pintz (1971), and Monsky (1993). See also Baker,
Birch & Wirsing (1973).
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