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Dirichlet series: I

1.1 Generating functions and asymptotics

The general rationale of analytic number theory is to derive statistical informa-
tion about a sequence {an} from the analytic behaviour of an appropriate gen-
erating function, such as a power series

∑
anzn or a Dirichlet series

∑
ann−s .

The type of generating function employed depends on the problem being in-
vestigated. There are no rigid rules governing the kind of generating function
that is appropriate – the success of a method justifies its use – but we usually
deal with additive questions by means of power series or trigonometric sums,
and with multiplicative questions by Dirichlet series. For example, if

f (z) =
∞∑

n=1

znk

for |z| < 1, then the nth power series coefficient of f (z)s is the number rk,s(n)
of representations of n as a sum of s positive k th powers,

n = mk
1 + mk

2 + · · · + mk
s .

We can recover rk,s(n) from f (z)s by means of Cauchy’s coefficient formula:

rk,s(n) = 1

2π i

∮
f (z)s

zn+1
dz.

By choosing an appropriate contour, and estimating the integrand, we can de-
termine the asymptotic size of rk,s(n) as n → ∞, provided that s is sufficiently
large, say s > s0(k). This is the germ of the Hardy–Littlewood circle method,
but considerable effort is required to construct the required estimates.

To appreciate why power series are useful in dealing with additive prob-
lems, note that if A(z) =∑ ak zk and B(z) =∑ bm zm then the power series
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2 Dirichlet series: I

coefficients of C(z) = A(z)B(z) are given by the formula

cn =
∑

k+m=n

akbm . (1.1)

The terms are grouped according to the sum of the indices, because
zk zm = zk+m .

A Dirichlet series is a series of the form α(s) =∑∞
n=1 ann−s where s is

a complex variable. If β(s) =∑∞
m=1 bmm−s is a second Dirichlet series and

γ (s) = α(s)β(s), then (ignoring questions relating to the rearrangement of terms
of infinite series)

γ (s) =
∞∑

k=1

akk−s
∞∑

m=1

bmm−s =
∞∑

k=1

∞∑
m=1

akbm(km)−s =
∞∑

n=1

( ∑
km=n

akbm

)
n−s .

(1.2)

That is, we expect that γ (s) is a Dirichlet series, γ (s) =∑∞
n=1 cnn−s , whose

coefficients are

cn =
∑

km=n

akbm . (1.3)

This corresponds to (1.1), but the terms are now grouped according to the
product of the indices, since k−sm−s = (km)−s .

Since we shall employ the complex variable s extensively, it is useful to have
names for its real and complex parts. In this regard we follow the rather peculiar
notation that has become traditional: s = σ + i t .

Among the Dirichlet series we shall consider is the Riemann zeta function,
which for σ > 1 is defined by the absolutely convergent series

ζ (s) =
∞∑

n=1

n−s . (1.4)

As a first application of (1.3), we note that if α(s) = β(s) = ζ (s) then the
manipulations in (1.3) are justified by absolute convergence, and hence we see
that

∞∑
n=1

d(n)n−s = ζ (s)2 (1.5)

for σ > 1. Here d(n) is the divisor function, d(n) =∑d|n 1.
From the rate of growth or analytic behaviour of generating functions we

glean information concerning the sequence of coefficients. In expressing our
findings we employ a special system of notation. For example, we say, ‘f (x) is
asymptotic to g(x)’ as x tends to some limiting value (say x → ∞), and write
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1.1 Generating functions and asymptotics 3

f (x) ∼ g(x) (x → ∞), if

lim
x→∞

f (x)

g(x)
= 1.

An instance of this arises in the formulation of the Prime Number Theorem
(PNT), which concerns the asymptotic size of the number π (x) of prime num-
bers not exceeding x ; π (x) =∑p≤x 1. Conjectured by Legendre in 1798, and
finally proved in 1896 independently by Hadamard and de la Vallée Poussin,
the Prime Number Theorem asserts that

π (x) ∼ x

log x
.

Alternatively, we could say that

π (x) = (1 + o(1))
x

log x
,

which is to say that π (x) is x/ log x plus an error term that is in the limit
negligible compared with x/ log x . More generally, we say, ‘f (x) is small oh
of g(x)’, and write f (x) = o(g(x)), if f (x)/g(x) → 0 as x tends to its limit.

The Prime Number Theorem can be put in a quantitative form,

π (x) = x

log x
+ O

(
x

(log x)2

)
. (1.6)

Here the last term denotes an implicitly defined function (the difference be-
tween the other members of the equation); the assertion is that this function has
absolute value not exceeding Cx(log x)−2. That is, the above is equivalent to
asserting that there is a constant C > 0 such that the inequality∣∣∣π (x) − x

log x

∣∣∣ ≤ Cx

(log x)2

holds for all x ≥ 2. In general, we say that f (x) is ‘big oh of g(x)’, and write
f (x) = O(g(x)) if there is a constant C > 0 such that | f (x)| ≤ Cg(x) for all
x in the appropriate domain. The function f may be complex-valued, but g
is necessarily non-negative. The constant C is called the implicit constant;
it is an absolute constant unless the contrary is indicated. For example, if C
is liable to depend on a parameter α, we might say, ‘For any fixed value of
α, f (x) = O(g(x))’. Alternatively, we might say, ‘ f (x) = O(g(x)) where the
implicit constant may depend on α’, or more briefly, f (x) = Oα(g(x)).

When there is no main term, instead of writing f (x) = O(g(x)) we save a
pair of parentheses by writing instead f (x) 	 g(x). This is read, ‘f (x) is less-
than-less-than g(x)’, and we write f (x) 	α g(x) if the implicit constant may
depend on α. To provide an example of this notation, we recall that Chebyshev
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4 Dirichlet series: I
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Figure 1.1 Graph of π (x) (solid) and x/ log x (dotted) for 2 ≤ x ≤ 106.

proved that π (x) 	 x/ log x . This is of course weaker than the Prime Number
Theorem, but it was derived much earlier, in 1852. Chebyshev also showed
that π (x) 
 x/ log x . In general, we say that f (x) 
 g(x) if there is a positive
constant c such that f (x) ≥ cg(x) and g is non-negative. In this situation both
f and g take only positive values. If both f 	 g and f 
 g then we say that f
and g have the same order of magnitude, and write f � g. Thus Chebyshev’s
estimates can be expressed as a single relation,

π (x) � x

log x
.

The estimate (1.6) is best possible to the extent that the error term is not
o(x(log x)−2). We have also a special notation to express this:

π (x) − x

log x
= �

(
x

(log x)2

)
.

In general, if lim supx→∞ | f (x)|/g(x) > 0 then we say that f (x) is ‘Omega of
g(x)’, and write f (x) = �(g(x)). This is precisely the negation of the statement
‘ f (x) = o(g(x))’. When studying numerical values, as in Figure 1.1, we find
that the fit of x/ log x to π (x) is not very compelling. This is because the error
term in the approximation is only one logarithm smaller than the main term.
This error term is not oscillatory – rather there is a second main term of this
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1.1 Generating functions and asymptotics 5

size:

π (x) = x

log x
+ x

(log x)2
+ O

(
x

(log x)3

)
.

This is also best possible, but the main term can be made still more elaborate to
give a smaller error term. Gauss was the first to propose a better approximation to
π (x). Numerical studies led him to observe that the density of prime numbers in
the neighbourhood of x is approximately 1/ log x . This suggests that the number
of primes not exceeding x might be approximately equal to the logarithmic
integral,

li(x) =
∫ x

2

1

log u
du.

(Orally, ‘li’ rhymes with ‘pi’.) By repeated integration by parts we can show
that

li(x) = x
K−1∑
k=1

(k − 1)!

(log x)k
+ OK

(
x

(log x)K

)
for any positive integer K ; thus the secondary main terms of the approximation
to π (x) are contained in li(x).

In Chapter 6 we shall prove the Prime Number Theorem in the sharper
quantitative form

π (x) = li(x) + O

(
x

exp(c
√

log x)

)
for some suitable positive constant c. Note that exp(c

√
log x) tends to infinity

faster than any power of log x . The error term above seems to fall far from
what seems to be the truth. Numerical evidence, such as that in Table 1.1,
suggests that the error term in the Prime Number Theorem is closer to

√
x in

size. Gauss noted the good fit, and also that π (x) < li(x) for all x in the range of
his extensive computations. He proposed that this might continue indefinitely,
but the numerical evidence is misleading, for in 1914 Littlewood showed that

π (x) − li(x) = �±

(
x1/2 log log log x

log x

)
.

Here the subscript ± indicates that the error term achieves the stated or-
der of magnitude infinitely often, and in both signs. In particular, the dif-
ference π − li has infinitely many sign changes. More generally, we write
f (x) = �+(g(x)) if lim supx→∞ f (x)/g(x) > 0, we write f (x) = �−(g(x))
if lim infx→∞ f (x)/g(x) < 0, and we write f (x) = �±(g(x)) if both these re-
lations hold.
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6 Dirichlet series: I

Table 1.1 Values of π (x), li(x), x/ log x for x = 10k , 1 ≤ k ≤ 22.

x π (x) li(x) x/ log x

10 4 5.12 4.34
102 25 29.08 21.71
103 168 176.56 144.76
104 1229 1245.09 1085.74
105 9592 9628.76 8685.89
106 78498 78626.50 72382.41
107 664579 664917.36 620420.69
108 5761455 5762208.33 5428681.02
109 50847534 50849233.90 48254942.43
1010 455052511 455055613.54 434294481.90
1011 4118054813 4118066399.58 3948131653.67
1012 37607912018 37607950279.76 36191206825.27
1013 346065536839 346065458090.05 334072678387.12
1014 3204941750802 3204942065690.91 3102103442166.08
1015 29844570422669 29844571475286.54 28952965460216.79
1016 279238341033925 279238344248555.75 271434051189532.39
1017 2623557157654233 2623557165610820.07 2554673422960304.87
1018 24739954287740860 24739954309690413.98 24127471216847323.76
1019 234057667276344607 234057667376222382.22 228576043106974646.13
1020 2220819602560918840 2220819602783663483.55 2171472409516259138.26
1021 21127269486018731928 21127269486616126182.33 20680689614440563221.48
1022 201467286689315906290 201467286691248261498.15 197406582683296285295.97

In the exercises below we give several examples of the use of generating
functions, mostly power series, to establish relations between various counting
functions.

1.1.1 Exercises

1. Let r (n) be the number of ways that n cents of postage can be made, using
only 1 cent, 2 cent, and 3 cent stamps. That is, r (n) is the number of ordered
triples (x1, x2, x3) of non-negative integers such that x1 + 2x2 + 3x3 = n.
(a) Show that

∞∑
n=0

r (n)zn = 1

(1 − z)(1 − z2)(1 − z3)

for |z| < 1.
(b) Determine the partial fraction expansion of the rational function above.
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1.1 Generating functions and asymptotics 7

That is, find constants a, b, . . . , f so that the above is

a

(z − 1)3
+ b

(z − 1)2
+ c

z − 1
+ d

z + 1
+ e

z − ω
+ f

z − ω

where ω = e2π i/3 and ω = e−2π i/3 are the primitive cube roots of unity.
(c) Show that r (n) is the integer nearest (n + 3)2/12.
(d) Show that r (n) is the number of ways of writing n = y1 + y2 + y3 with

y1 ≥ y2 ≥ y3 ≥ 0.
2. Explain why

∞∏
k=0

(
1 + z2k

)
= 1 + z + z2 + · · ·

for |z| < 1.
3. (L. Mirsky & D. J. Newman) Suppose that 0 ≤ ak < mk for 1 ≤ k ≤ K , and

that m1 < m2 < · · · < mK . This is called a family of covering congruences
if every integer x satisfies at least one of the congruences x ≡ ak (mod mk).
A system of covering congruences is called exact if for every value of x
there is exactly one value of k such that x ≡ ak (mod mk). Show that if the
system is exact then

K∑
k=1

zak

1 − zmk
= 1

1 − z

for |z| < 1. Show that the left-hand side above is

∼ e2π iaK /mK

mK (1 − r )

when z = re2π i/mK and r → 1−. On the other hand, the right-hand side is
bounded for z in a neighbourhood of e2π i/mK if mK > 1. Deduce that a family
of covering congruences is not exact if mk > 1.

4. Let p(n; k) denote the number of partitions of n into at most k parts, that is, the
number of ordered k-tuples (x1, x2, . . . , xk) of non-negative integers such
that n = x1 + x2 + · · · + xk and x1 ≥ x2 ≥ · · · ≥ xk . Let p(n) = p(n; n) de-
note the total number of partitions of n. Also let po(n) be the number of
partitions of n into an odd number of parts, po(n) =∑2�k p(n; k). Finally,
let pd(n) denote the number of partitions of n into distinct parts, so that
x1 > x2 > · · · > xk . By convention, put p(0) = po(0) = pd(0) = 1.
(a) Show that there are precisely p(n; k) partitions of n into parts not

exceeding k.
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8 Dirichlet series: I

(b) Show that

∞∑
n=0

p(n; k)zn =
k∏

j=1

(1 − z j )−1

for |z| < 1.
(c) Show that

∞∑
n=0

p(n)zn =
∞∏

k=1

(1 − zk)−1

for |z| < 1.
(d) Show that

∞∑
n=0

pd(n)zn =
∞∏

k=1

(1 + zk)

for |z| < 1.
(e) Show that

∞∑
n=0

po(n)zn =
∞∏

k=1

(1 − z2k−1)−1

for |z| < 1.
(f) By using the result of Exercise 2, or otherwise, show that the last two

generating functions above are identically equal. Deduce that po(n) =
pd(n) for all n.

5. Let A(n) denote the number of ways of associating a product of n terms;
thus A(1) = A(2) = 1 and A(3) = 2. By convention, A(0) = 0.
(a) By considering the possible positionings of the outermost parentheses,

show that

A(n) =
n−1∑
k=1

A(k)A(n − k)

for all n ≥ 2.
(b) Let P(z) =∑∞

n=0 A(n)zn . Show that

P(z)2 = P(z) − z.

Deduce that

P(z) = 1 − √
1 − 4z

2
=

∞∑
n=1

(1/2

n

)
22n−1(−1)n−1zn.

(c) Conclude that A(n) = ( 2n−2
n−1

)
/n for all n ≥ 1. These are called the Cata-

lan numbers.
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1.1 Generating functions and asymptotics 9

(d) What needs to be said concerning the convergence of the series used
above?

6. (a) Let nk denote the total number of monic polynomials of degree k in
Fp[x]. Show that nk = pk .

(b) Let P1, P2, . . . be the irreducible monic polynomials in Fp[x], listed in
some (arbitrary) order. Show that

∞∏
r=1

(1 + zdeg Pr + z2 deg Pr + z3 deg Pr + · · · ) = 1 + pz + p2z2

+p3z3 + · · ·
for |z| < 1/p.

(c) Let gk denote the number of irreducible monic polynomials of degree k
in Fp[x]. Show that

∞∏
k=1

(1 − zk)−gk = (1 − pz)−1 (|z| < 1/p).

(d) Take logarithmic derivatives to show that

∞∑
k=1

kgk
zk−1

1 − zk
= p

1 − pz
(|z| < 1/p).

(e) Show that

∞∑
k=1

kgk

∞∑
m=1

zmk =
∞∑

n=1

pnzn (|z| < 1/p).

(f) Deduce that ∑
k|n

kgk = pn

for all positive integers n.
(g) (Gauss) Use the Möbius inversion formula to show that

gn = 1

n

∑
k|n

µ(k)pn/k

for all positive integers n.
(h) Use (f) (not (g)) to show that

pn

n
− 2pn/2

n
≤ gn ≤ pn

n
.

(i) If a monic polynomial of degree n is chosen at random from Fp[x], about
how likely is it that it is irreducible? (Assume that p and/or n is large.)
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10 Dirichlet series: I

(j) Show that gn > 0 for all p and all n ≥ 1. (If P ∈ Fp[x] is irreducible and
has degree n, then the quotient ring Fp[x]/(P) is a field of pn elements.
Thus we have proved that there is such a field, for each prime p and
integer n ≥ 1. It may be further shown that the order of a finite field
is necessarily a prime power, and that any two finite fields of the same
order are isomorphic. Hence the field of order pn , whose existence we
have proved, is essentially unique.)

7. (E. Berlekamp) Let p be a prime number. We recall that polynomials in a
single variable (mod p) factor uniquely into irreducible polynomials. Thus
a monic polynomial f (x) can be expressed uniquely (mod p) in the form
g(x)h(x)2 where g(x) is square-free (mod p) and both g and h are monic. Let
sn denote the number of monic square-free polynomials (mod p) of degree
n. Show that ( ∞∑

k=0

sk zk

)( ∞∑
m=0

pm z2m

)
=

∞∑
n=0

pnzn

for |z| < 1/p. Deduce that

∞∑
k=0

sk zk = 1 − pz2

1 − pz
,

and hence that s0 = 1, s1 = p, and that sk = pk(1 − 1/p) for all k ≥ 2.
8. (cf Wagon 1987) (a) LetI = [a, b] be an interval. Show that

∫
I e2π i x dx = 0

if and only if the length b − a of I is an integer.
(b) LetR = [a, b] × [c, d] be a rectangle. Show that

∫∫
R e2π i(x+y) dx dy =

0 if and only if at least one of the edge lengths of R is an integer.
(c) Let R be a rectangle that is a union of finitely many rectangles Ri ; the

Ri are disjoint apart from their boundaries. Show that if all the Ri have
the property that at least one of their side lengths is an integer, then R
also has this property.

9. (L. Moser) If A is a set of non-negative integers, let rA(n) denote the number
of representations of n as a sum of two distinct members ofA. That is, rA(n) is
the number of ordered pairs (a1, a2) for which a1 ∈ A, a2 ∈ A, a1 + a2 = n,
and a1 �= a2. Let A(z) =∑a∈A za .
(a) Show that

∑
n rA(n)zn = A(z)2 − A(z2) for |z| < 1.

(b) Suppose that the non-negative integers are partitioned into two sets A
and B in such a way that rA(n) = rB(n) for all non-negative integers n.
Without loss of generality, 0 ∈ A. Show that 1 ∈ B, that 2 ∈ B, and
that 3 ∈ A.

(c) With A and B as above, show that A(z) + B(z) = 1/(1 − z) for |z| < 1.
(d) Show that A(z) − B(z) = (1 − z)

(
A(z2) − B(z2)

)
, and hence by
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1.2 Analytic properties of Dirichlet series 11

induction that

A(z) − B(z) =
∞∏

k=0

(
1 − z2k

)
for |z| < 1.

(e) Let the binary weight of n, denoted w(n), be the number of 1’s in the
binary expansion of n. That is, if n = 2k1 + · · · + 2kr with k1 > · · · > kr ,
then w(n) = r . Show that A consists of those non-negative integers n
for which w(n) is even, and that B is the set of those integers for which
w(n) is odd.

1.2 Analytic properties of Dirichlet series

Having provided some motivation for the use of Dirichlet series, we now turn to
the task of establishing some of their basic analytic properties, corresponding
to well-known facts concerning power series.

Theorem 1.1 Suppose that the Dirichlet seriesα(s) =∑∞
n=1 ann−s converges

at the point s = s0, and that H > 0 is an arbitrary constant. Then the series
α(s) is uniformly convergent in the sector S = {s : σ ≥ σ0, |t − t0| ≤ H (σ −
σ0)}.

By taking H large, we see that the series α(s) converges for all s in the
half-plane σ > σ0, and hence that the domain of convergence is a half-plane.
More precisely, we have

Corollary 1.2 Any Dirichlet series α(s) =∑∞
n=1 ann−s has an abscissa of

convergence σc with the property that α(s) converges for all s with σ > σc, and
for no s with σ < σc. Moreover, if s0 is a point with σ0 > σc, then there is a
neighbourhood of s0 in which α(s) converges uniformly.

In extreme cases a Dirichlet series may converge throughout the plane (σc =
−∞), or nowhere (σc = +∞). When the abscissa of convergence is finite, the
series may converge everywhere on the line σc + i t , it may converge at some
but not all points on this line, or nowhere on the line.

Proof of Theorem 1.1 Let R(u) =∑n>u ann−s0 be the remainder term of the
series α(s0). First we show that for any s,

N∑
n=M+1

ann−s = R(M)Ms0−s − R(N )N s0−s + (s0 − s)
∫ N

M
R(u)us0−s−1 du.

(1.7)
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To see this we note that an = (R(n − 1) − R(n)) ns0 , so that by partial
summation

N∑
n=M+1

ann−s =
N∑

n=M+1

(R(n − 1) − R(n))ns0−s

= R(M)Ms0−s−R(N )N s0−s −
N∑

n=M+1

R(n −1)((n −1)s0−s − ns0−s).

The second factor in this last sum can be expressed as an integral,

(n − 1)s0−s − ns0−s = −(s0 − s)
∫ n

n−1
us0−s−1 du,

and hence the sum is

(s − s0)
N∑

n=M+1

R(n − 1)
∫ n

n−1
us0−s−1 du = (s − s0)

N∑
n=M+1

∫ n

n−1
R(u)us0−s−1 du

since R(u) is constant in the interval [n − 1, n). The integrals combine to give
(1.7).

If |R(u)| ≤ ε for all u ≥ M and if σ > σ0, then from (1.7) we see that∣∣∣∣ N∑
n=M+1

ann−s

∣∣∣∣ ≤ 2ε + ε|s − s0|
∫ ∞

M
uσ0−σ−1 du ≤

(
2 + |s − s0|

σ − σ0

)
ε.

For s in the prescribed region we see that

|s − s0| ≤ σ − σ0 + |t − t0| ≤ (H + 1)(σ − σ0),

so that the sum
∑N

M+1 ann−s is uniformly small, and the result follows by the
uniform version of Cauchy’s principle. �

In deriving (1.7) we used partial summation, although it would have been
more efficient to use the properties of the Riemann–Stieltjes integral (see
Appendix A):

N∑
n=M+1

ann−s = −
∫ N

M
us0−s d R(u) = −us0−s R(u)

∣∣∣∣N
M

+
∫ N

M
R(u) dus0−s

by Theorems A.1 and A.2. By Theorem A.3 this is

= Ms0−s R(M) − N s0−s R(N ) + (s0 − s)
∫ N

M
R(u)us0−s−1 du.

In more complicated situations it is an advantage to use the Riemann–Stieltjes
integral, and subsequently we shall do so without apology.

The series α(s) =∑ ann−s is locally uniformly convergent for σ > σc, and
each term is an analytic function, so it follows from a general principle of
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1.2 Analytic properties of Dirichlet series 13

Weierstrass that α(s) is analytic for σ > σc, and that the differentiated series is
locally uniformly convergent to α′(s):

α′(s) = −
∞∑

n=1

an(log n)n−s (1.8)

for s in the half-plane σ > σc.
Suppose that s0 is a point on the line of convergence (i.e., σ0 = σc), and that

the series α(s0) converges. It can be shown by example that

lim
s→s0
σ>σc

α(s)

need not exist. However, α(s) is continuous in the sector S of Theorem 1.1, in
view of the uniform convergence there. That is,

lim
s→s0
s∈S

α(s) = α(s0), (1.9)

which is analogous to Abel’s theorem for power series.
We now express a convergent Dirichlet series as an absolutely convergent

integral.

Theorem 1.3 Let A(x) =∑n≤x an. If σc < 0, then A(x) is a bounded func-
tion, and

∞∑
n=1

ann−s = s
∫ ∞

1
A(x)x−s−1 dx (1.10)

for σ > 0. If σc ≥ 0, then

lim sup
x→∞

log |A(x)|
log x

= σc, (1.11)

and (1.10) holds for σ > σc.

Proof We note that
N∑

n=1

ann−s =
∫ N

1−
x−s d A(x) = A(x)x−s

∣∣∣∣N
1−

−
∫ N

1−
A(x) dx−s

= A(N )N−s + s
∫ N

1
A(x)x−s−1 dx .

Let φ denote the left-hand side of (1.11). If θ > φ then A(x) 	 xθ where the
implicit constant may depend on the an and on θ . Thus ifσ > θ , then the integral
in (1.10) is absolutely convergent. Thus we obtain (1.10) by letting N → ∞,
since the first term above tends to 0 as N → ∞.

Suppose that σc < 0. By Corollary 1.2 we know that A(x) tends to a finite
limit as x → ∞, and hence φ ≤ 0, so that (1.10) holds for all σ > 0.
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14 Dirichlet series: I

Now suppose that σc ≥ 0. By Corollary 1.2 we know that the series in (1.10)
diverges when σ < σc. Hence φ ≥ σc. To complete the proof it suffices to show
that φ ≤ σc. Choose σ0 > σc. By (1.7) with s = 0 and M = 0 we see that

A(N ) = −R(N )N σ0 + σ0

∫ N

0
R(u)uσ0−1du.

Since R(u) is a bounded function, it follows that A(N ) 	 N σ0 where the implicit
constant may depend on the an and on σ0. Hence φ ≤ σ0. Since this holds for
any σ0 > σc, we conclude that φ ≤ σc. �

The terms of a power series are majorized by a geometric progression at
points strictly inside the circle of convergence. Consequently power series con-
verge very rapidly. In contrast, Dirichlet series are not so well behaved. For
example, the series

∞∑
n=1

(−1)n−1n−s (1.12)

converges for σ > 0, but it is absolutely convergent only for σ > 1. In general
we letσa denote the infimum of thoseσ for which

∑∞
n=1 |an|n−σ < ∞. Thenσa ,

the abscissa of absolute convergence, is the abscissa of convergence of the series∑∞
n=1 |an|n−s , and we see that

∑
ann−s is absolutely convergent if σ > σa ,

but not if σ < σa . We now show that the strip σc ≤ σ ≤ σa of conditional
convergence is never wider than in the example (1.12).

Theorem 1.4 In the above notation, σc ≤ σa ≤ σc + 1.

Proof The first inequality is obvious. To prove the second, suppose that ε > 0.
Since the series

∑
ann−σc−ε is convergent, the summands tend to 0, and hence

an 	 nσc+ε where the implicit constant may depend on the an and on ε. Hence
the series

∑
ann−σc−1−2ε is absolutely convergent by comparison with the series∑

n−1−ε. �

Clearly a Dirichlet series α(s) is uniformly bounded in the half-plane
σ > σa + ε, but this is not generally the case in the strip of conditional conver-
gence. Nevertheless, we can limit the rate of growth of α(s) in this strip.

To aid in formulating our next result we introduce a notational convention
that arises because many estimates relating to Dirichlet series are expressed
in terms of the size of |t |. Our interest is in large values of this quantity, but
in order that the statements be valid for small |t | we sometimes write |t | + 4.
Since this is cumbersome in complicated expressions, we introduce a shorthand:
τ = |t | + 4.
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1.2 Analytic properties of Dirichlet series 15

Theorem 1.5 Suppose that α(s) =∑ ann−s has abscissa of convergence σc.
If δ and ε are fixed, 0 < ε < δ < 1, then

α(s) 	 τ 1−δ+ε

uniformly for σ ≥ σc + δ. The implicit constant may depend on the coefficients
an, on δ, and on ε.

By the example found in Exercise 8 at the end of this section, we see that
the bound above is reasonably sharp.

Proof Let s be a complex number with σ ≥ σc + δ. By (1.7) with s0 = σc + ε

and N → ∞, we see that

α(s) =
M∑

n=1

ann−s + R(M)Mσc+ε−s + (σc + ε − s)
∫ ∞

M
R(u)uσc+ε−s−1 du.

Since the series α(σc + ε) converges, we know that an 	 nσc+ε, and also that
R(u) 	 1. Thus the above is

	
M∑

n=1

n−δ+ε + M−δ+ε + |σc + ε − s|
σ − σc − ε

Mσc+ε−σ .

By the integral test the sum here is

<

∫ M

0
u−δ+ε du = M1−δ+ε

1 − δ + ε
	 M1−δ+ε.

Hence on taking M = [τ ] we obtain the stated estimate. �

We know that the power series expansion of a function is unique; we now
show that the same is true for Dirichlet series expansions.

Theorem 1.6 If
∑

ann−s =∑ bnn−s for all s with σ > σ0 then an = bn for
all positive integers n.

Proof We put cn = an − bn , and consider
∑

cnn−s . Suppose that cn = 0 for
all n < N . Since

∑
cnn−σ = 0 for σ > σ0 we may write

cN = −
∑
n>N

cn(N/n)σ .

By Theorem 1.4 this sum is absolutely convergent for σ > σ0 + 1. Since each
term tends to 0 as σ → ∞, we see that the right-hand side tends to 0, by
the principle of dominated convergence. Hence cN = 0, and by induction we
deduce that this holds for all N . �
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16 Dirichlet series: I

Suppose that f is analytic in a domain D, and that 0 ∈ D. Then f can
be expressed as a power series

∑∞
n=0 anzn in the disc |z| < r where r is the

distance from 0 to the boundary ∂D of D. Although Dirichlet series are analytic
functions, the situation regarding Dirichlet series expansions is very different:
The collection of functions that may be expressed as a Dirichlet series in some
half-plane is a very special class. Moreover, the line σc + i t of convergence
need not contain a singular point of α(s). For example, the Dirichlet series
(1.12) has abscissa of convergence σc = 0, but it represents the entire function
(1 − 21−s)ζ (s). (The connection of (1.12) to the zeta function is easy to establish,
since

∞∑
n=1

(−1)n−1n−s =
∞∑

n=1

n−s − 2
∞∑
n=1

n even

n−s = ζ (s) − 21−sζ (s)

for σ > 1. That this is an entire function follows from Theorem 10.2.) Since a
Dirichlet series does not in general have a singularity on its line of convergence,
it is noteworthy that a Dirichlet series with non-negative coefficients not only
has a singularity on the line σc + i t , but actually at the point σc.

Theorem 1.7 (Landau) Let α(s) =∑ ann−s be a Dirichlet series whose ab-
scissa of convergence σc is finite. If an ≥ 0 for all n then the point σc is a
singularity of the function α(s).

It is enough to assume that an ≥ 0 for all sufficiently large n, since any finite
sum

∑N
n=1 ann−s is an entire function.

Proof By replacing an by ann−σc , we may assume that σc = 0. Suppose that
α(s) is analytic at s = 0, so that α(s) is analytic in the domain D = {s : σ >

0} ∪ {|s| < δ} if δ > 0 is sufficiently small. We expand α(s) as a power series
at s = 1:

α(s) =
∞∑

k=0

ck(s − 1)k . (1.13)

The coefficients ck can be calculated by means of (1.8),

ck = α(k)(1)

k!
= 1

k!

∞∑
n=1

an(− log n)kn−1.

The radius of convergence of the power series (1.13) is the distance from 1 to
the nearest singularity of α(s). Since α(s) is analytic in D, and since the nearest
points not in D are ±iδ, we deduce that the radius of convergence is at least√

1 + δ2 = 1 + δ′, say. That is,

α(s) =
∞∑

k=0

(1 − s)k

k!

∞∑
n=1

an(log n)kn−1
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1.2 Analytic properties of Dirichlet series 17

for |s − 1| < 1 + δ′. If s < 1 then all terms above are non-negative. Since
series of non-negative numbers may be arbitrarily rearranged, for −δ′ < s < 1
we may interchange the summations over k and n to see that

α(s) =
∞∑

n=1

ann−1
∞∑

k=0

(1 − s)k(log n)k

k!

=
∞∑

n=1

ann−1 exp
(
(1 − s) log n

) =
∞∑

n=1

ann−s .

Hence this last series converges at s = −δ′/2, contrary to the assumption that
σc = 0. Thus α(s) is not analytic at s = 0. �

1.2.1 Exercises

1. Suppose that α(s) is a Dirichlet series, and that the series α(s0) is boundedly
oscillating. Show that σc = σ0.

2. Suppose that α(s) =∑∞
n=1 ann−s is a Dirichlet series with abscissa of con-

vergence σc. Suppose that α(0) converges, and put R(x) =∑n>x an . Show
that σc is the infimum of those numbers θ such that R(x) 	 xθ .

3. Let Ak(x) =∑n≤x an(log n)k .
(a) Show that

A0(x) − A1(x)

log x
= a1 +

∫ x

2

A1(u)

u(log u)2
du.

(b) Suppose that A1(x) 	 xθ where θ > 0 and the implicit constant may
depend on the sequence {an}. Show that

A0(x) = A1(x)

log x
+ O(xθ (log x)−2).

(c) Let σc denote the abscissa of convergence of
∑

ann−s , and σ ′
c the ab-

scissa of convergence of
∑

an(log n)n−s . Show that σ ′
c = σc. (The re-

marks following the proof of Theorem 1.1 imply only that σ ′
c ≤ σc.)

4. (Landau 1909b) Let α(s) =∑ ann−s be a Dirichlet series with abscissa of
convergence σc and abscissa of absolute convergence σa > σc. Let C(x) =∑

n≤x ann−σc and A(x) =∑n≤x |an|n−σc .
(a) By a suitable application of Theorem 1.3, or otherwise, show that

C(x) 	 xε and that A(x) 	 xσa−σc+ε for any ε > 0, where the implicit
constants may depend on ε and on the sequence {an}.

(b) Show that if σ > σc then∑
n>N

ann−s = −C(N )N σc−s + (s − σc)
∫ ∞

N
C(u)uσc−s−1 du.
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18 Dirichlet series: I

Deduce that the above is 	 τN σc−σ+ε uniformly for s in the half-plane
σ ≥ σc + ε where the implicit constant may depend on ε and on the
sequence {an}.

(c) Show that

N∑
n=1

|an|n−σ = A(N )N−σ+σc + (σ − σc)
∫ N

1
A(u)u−σ+σc−1 du

for any σ . Deduce that the above is 	 N σa−σ+ε uniformly for σ in the
interval σc ≤ σ ≤ σa , for any given ε > 0. Here the implicit constant
may depend on ε and on the sequence {an}.

(d) Let θ (σ ) = (σa − σ )/(σa − σc). By making a suitable choice of N , show
that

α(s) 	 τ θ (σ )+ε

uniformly for s in the strip σc + ε ≤ σ ≤ σa .
5. (a) Show that if α(s) =∑ ann−s has abscissa of convergence σc < ∞, then

lim
σ→∞α(σ ) = a1.

(b) Show that ζ ′(s) = −∑∞
n=1(log n)n−s for σ > 1.

(c) Show that limσ→∞ ζ ′(σ ) = 0.
(d) Show that there is no half-plane in which 1/ζ ′(s) can be written as a

convergent Dirichlet series.
6. Let α(s) =∑ ann−s be a Dirichlet series with an ≥ 0 for all n. Show that

σc = σa , and that

sup
t

|α(s)| = α(σ )

for any given σ > σc.
7. (Vivanti 1893; Pringsheim 1894) Suppose that f (z) =∑∞

n=0 anzn has radius
of convergence 1 and that an ≥ 0 for all n. Show that z = 1 is a singular point
of f .

8. (Bohr 1910, p. 32) Let t1 = 4, tr+1 = 2tr for r ≥ 1. Put α(s) =∑ ann−s

where an = 0 unless n ∈ [tr , 2tr ] for some r , in which case put

an =

⎧⎪⎪⎨⎪⎪⎩
t i tr
r (n = tr ),

nitr − (n − 1)i tr (tr < n < 2tr ),

−(2tr − 1)i tr (n = 2tr ).

(a) Show that
∑2tr

tr
an = 0.
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1.3 Euler products and the zeta function 19

(b) Show that if tr ≤ x < 2tr for some r , then A(x) = [x]i tr where A(x) =∑
n≤x an .

(c) Show that A(x) 	 1 uniformly for x ≥ 1.
(d) Deduce that α(s) converges for σ > 0.
(e) Show that α(i t) does not converge; conclude that σc = 0.
(f) Show that if σ > 0, then

α(s) =
R∑

r=1

2tr∑
n=tr

ann−s + s
∫ ∞

tR+1

A(x)x−s−1 dx .

(g) Suppose that σ > 0. Show that the above is

2tR∑
n=tR

ann−s + O
(
tR−1

)+ O

( |s|
σ tσR+1

)
.

(h) Show that if σ > 0, then

2tR∑
n=tR

ann−s = s
∫ 2tR

tR

[x]i tR x−s−1 dx .

(i) Show that if n ≤ x < n + 1, then �(nitR x−i tR ) ≥ 1/2. Deduce that∣∣∣∣ ∫ 2tR

tR

[x]i tR x−σ−i tR−1 dx

∣∣∣∣
 t−σ
R .

(j) Suppose that δ > 0 is fixed. Conclude that if R ≥ R0(δ), then |α(σ +
i tR)| 
 t1−σ

R uniformly for δ ≤ σ ≤ 1 − δ.
(k) Show that

∑ |an|n−σ < ∞ when σ > 1. Deduce that σa = 1.

1.3 Euler products and the zeta function

The situation regarding products of Dirichlet series is somewhat complicated,
but it is useful to note that the formal calculation in (2) is justified if the series
are absolutely convergent.

Theorem 1.8 Let α(s) =∑ ann−s and β(s) =∑ bnn−s be two Dirichlet se-
ries, and put γ (s) =∑ cnn−s where the cn are given by (1.3). If s is a point at
which the two series α(s) and β(s) are both absolutely convergent, then γ (s) is
absolutely convergent and γ (s) = α(s)β(s).

The mere convergence of α(s) and β(s) is not sufficient to justify (1.2).
Indeed, the square of the series (1.12) can be shown to have abscissa of conver-
gence ≥ 1/4.
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20 Dirichlet series: I

A function is called an arithmetic function if its domain is the set Z of inte-
gers, or some subset of the integers such as the natural numbers. An arithmetic
function f (n) is said to be multiplicative if f (1) = 1 and if f (mn) = f (m) f (n)
whenever (m, n) = 1. Also, an arithmetic function f (n) is called totally multi-
plicative if f (1) = 1 and if f (mn) = f (m) f (n) for all m and n. If f is multi-
plicative then the Dirichlet series

∑
f (n)n−s factors into a product over primes.

To see why this is so, we first argue formally (i.e., we ignore questions of con-
vergence). When the product∏

p

(1 + f (p)p−s + f (p2)p−2s + f (p3)p−3s + · · · )

is expanded, the generic term is

f
(

pk1
1

)
f
(

pk2
2

) · · · f
(

pkr
r

)(
pk1

1 pk2
2 · · · pkr

r
)s .

Set n = pk1
1 pk2

2 · · · pkr
r . Since f is multiplicative, the above is f (n)n−s . More-

over, this correspondence between products of prime powers and positive inte-
gers n is one-to-one, in view of the fundamental theorem of arithmetic. Hence
after rearranging the terms, we obtain the sum

∑
f (n)n−s . That is, we expect

that
∞∑

n=1

f (n)n−s =
∏

p

(1 + f (p)p−s + f (p2)p−2s + · · · ). (1.14)

The product on the right-hand side is called the Euler product of the Dirichlet
series. The mere convergence of the series on the left does not imply that the
product converges; as in the case of the identity (1.2), we justify (1.14) only
under the stronger assumption of absolute convergence.

Theorem 1.9 If f is multiplicative and
∑ | f (n)|n−σ < ∞, then (1.14) holds.

If f is totally multiplicative, then the terms on the right-hand side in (1.14)
form a geometric progression, in which case the identity may be written more
concisely,

∞∑
n=1

f (n)n−s =
∏

p

(1 − f (p)p−s)−1. (1.15)

Proof For any prime p,

∞∑
k=0

| f (pk)|p−kσ ≤
∞∑

n=1

| f (n)|n−σ < ∞,
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1.3 Euler products and the zeta function 21

so each sum on the right-hand side of (1.14) is absolutely convergent. Let
y be a positive real number, and let N be the set of those positive integers
composed entirely of primes not exceeding y, N = {n : p|n ⇒ p ≤ y}. (Note
that 1 ∈ N .) Since a product of finitely many absolutely convergent series may
be arbitrarily rearranged, we see that

�y =
∏
p≤y

(
1 + f (p)p−s + f (p2)p−2s + · · · ) =

∑
n∈N

f (n)n−s .

Hence ∣∣∣∣�y −
∞∑

n=1

f (n)n−s

∣∣∣∣ ≤ ∑
n /∈N

| f (n)|n−σ .

If n ≤ y then all prime factors of n are ≤ y, and hence n ∈ N . Consequently
the sum on the right above is

≤
∑
n>y

| f (n)|n−σ ,

which is small if y is large. Thus the partial products �y tend to
∑

f (n)n−s as
y → ∞. �

Let ω(n) denote the number of distinct primes dividing n, and let �(n) be
the number of distinct prime powers dividing n. That is,

ω(n) =
∑
p|n

1, �(n) =
∑
pk |n

1 =
∑
pk‖n

k. (1.16)

It is easy to distinguish these functions, sinceω(n) ≤ �(n) for all n, with equal-
ity if and only if n is square-free. These functions are examples of additive
functions because they satisfy the functional relation f (mn) = f (m) + f (n)
whenever (m, n) = 1. Moreover, �(n) is totally additive because this func-
tional relation holds for all pairs m, n. An exponential of an additive function is
a multiplicative function. In particular, the Liouville lambda function is the to-
tally multiplicative function λ(n) = (−1)�(n). Closely related is the Möbius mu
function, which is defined to be µ(n) = (−1)ω(n) if n is square-free, µ(n) = 0
otherwise. By the fundamental theorem of arithmetic we know that a multi-
plicative (or additive) function is uniquely determined by its values at prime
powers, and similarly that a totally multiplicative (or totally additive) function
is uniquely determined by its values at the primes. Thus µ(n) is the unique
multiplicative function that takes the value −1 at every prime, and the value 0
at every higher power of a prime, while λ(n) is the unique totally multiplicative
function that takes the value −1 at every prime. By using Theorem 1.9 we can

Cambridge Books Online © Cambridge University Press, 2010https://doi.org/10.1017/CBO9780511618314.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511618314.003


22 Dirichlet series: I

determine the Dirichlet series generating functions of λ(n) and of µ(n) in terms
of the Riemann zeta function.

Corollary 1.10 For σ > 1,
∞∑

n=1

n−s = ζ (s) =
∏

p

(1 − p−s)−1, (1.17)

∞∑
n=1

µ(n)n−s = 1

ζ (s)
=
∏

p

(1 − p−s), (1.18)

and
∞∑

n=1

λ(n)n−s = ζ (2s)

ζ (s)
=
∏

p

(1 + p−s)−1. (1.19)

Proof All three series are absolutely convergent, since
∑

n−σ < ∞ for σ >

1, by the integral test. Since the coefficients are multiplicative, the Euler product
formulae follow by Theorem 1.9. In the first and third cases use the variant
(1.15). On comparing the Euler products in (1.17) and (1.18), it is immediate
that the second of these Dirichlet series is 1/ζ (s). As for (1.19), from the identity
1 + z = (1 − z2)/(1 − z) we deduce that∏

p

(1 + p−s) =
∏

p(1 − p−2s)∏
p(1 − p−s)

= ζ (s)

ζ (2s)
.

�

The manipulation of Euler products, as exemplified above, provides a pow-
erful tool for relating one Dirichlet series to another.

In (1.17) we have expressed ζ (s) as an absolutely convergent product; hence
in particular ζ (s) �= 0 for σ > 1. We have not yet defined the zeta function
outside this half-plane, but we shall do so shortly, and later we shall find that
the zeta function does have zeros in the half-plane σ ≤ 1. These zeros play an
important role in determining the distribution of prime numbers.

Many important relations involving arithmetic functions can be expressed
succinctly in terms of Dirichlet series. For example, the fundamental elementary
identity ∑

d|n
µ(d) =

{
1 if n = 1,

0 if n > 1.
(1.20)

is equivalent to the identity

ζ (s) · 1

ζ (s)
= 1,
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1.3 Euler products and the zeta function 23

in view of (1.3), (1.17), (1.18), and Theorem 1.6. More generally, if

F(n) =
∑
d|n

f (d) (1.21)

for all n, then, apart from questions of convergence,∑
F(n)n−s = ζ (s)

∑
f (n)n−s .

By Möbius inversion, the identity (1.21) is equivalent to the relation

f (n) =
∑
d|n

µ(d)F(n/d),

which is to say that ∑
f (n)n−s = 1

ζ (s)

∑
F(n)n−s .

Such formal manipulations can be used to suggest (or establish) many useful
elementary identities.

For σ > 1 the product (1.17) is absolutely convergent. Since log(1 − z)−1 =∑∞
k=1 zk/k for |z| < 1, it follows that

log ζ (s) =
∑

p

log(1 − p−s)−1 =
∑

p

∞∑
k=1

k−1 p−ks .

On differentiating, we find also that

ζ ′(s)

ζ (s)
= −

∑
p

∞∑
k=1

(log p)p−ks

for σ > 1. This is a Dirichlet series, whose nth coefficient is the von Mangoldt
lambda function: �(n) = log p if n is a power of p, �(n) = 0 otherwise.

Corollary 1.11 For σ > 1,

log ζ (s) =
∞∑

n=1

�(n)

log n
n−s

and

− ζ ′(s)

ζ (s)
=

∞∑
n=1

�(n)n−s .

The quotient f ′(s)/ f (s), obtained by differentiating the logarithm of f (s),
is known as the logarithmic derivative of f . Subsequently we shall often write
it more concisely as f ′

f (s).
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The important elementary identity∑
d|n

�(d) = log n (1.22)

is reflected in the relation

ζ (s)
(

− ζ ′

ζ
(s)
)

= −ζ ′(s),

since

−ζ ′(s) =
∞∑

n=1

(log n)n−s

for σ > 1.
We now continue the zeta function beyond the half-plane in which it was

initially defined.

Theorem 1.12 Suppose that σ > 0, x > 0, and that s �= 1. Then

ζ (s) =
∑
n≤x

n−s + x1−s

s − 1
+ {x}

xs
− s

∫ ∞

x
{u}u−s−1 du. (1.23)

Here {u} denotes the fractional part of u, so that {u} = u − [u] where [u]
denotes the integral part of u.

Proof of Theorem 1.12 For σ > 1 we have

ζ (s) =
∞∑

n=1

n−s =
∑
n≤x

n−s +
∑
n>x

n−s .

This second sum we write as∫ ∞

x
u−s d[u] =

∫ ∞

x
u−s du −

∫ ∞

x
u−s d{u}.

We evaluate the first integral on the right-hand side, and integrate the second
one by parts. Thus the above is

= x1−s

s − 1
+ {x}x−s +

∫ ∞

x
{u} du−s .

Since (u−s)′ = −su−s−1, the desired formula now follows by Theorem A.3.
The integral in (1.23) is convergent in the half-plane σ > 0, and uniformly so
for σ ≥ δ > 0. Since the integrand is an analytic function of s, it follows that the
integral is itself an analytic function for σ > 0. By the uniqueness of analytic
continuation the formula (1.23) holds in this larger half-plane. �
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Figure 1.2 The Riemann zeta function ζ (s) for 0 < s ≤ 5.

By taking x = 1 in (1.23) we obtain in particular the identity

ζ (s) = s

s − 1
− s

∫ ∞

1
{u}u−s−1 du (1.24)

for σ > 0. Hence we have

Corollary 1.13 The Riemann zeta function has a simple pole at s = 1 with
residue 1, but is otherwise analytic in the half-plane σ > 0.

A graph of ζ (s) that exhibits the pole at s = 1 is provided in Figure 1.2. By
repeatedly integrating by parts we can continue ζ (s) into successively larger
half-planes; this is systematized by using the Euler–Maclaurin summation for-
mula (see Theorem B.5). In Chapter 10 we shall continue the zeta function by a
different method. For the present we note that (1.24) yields useful inequalities
for the zeta function on the real line.

Corollary 1.14 The inequalities

1

σ − 1
< ζ (σ ) <

σ

σ − 1

hold for all σ > 0. In particular, ζ (σ ) < 0 for 0 < σ < 1.

Proof From the inequalities 0 ≤ {u} < 1 it follows that

0 ≤
∫ ∞

1
{u}u−σ−1 du <

∫ ∞

1
u−σ−1 du = 1

σ
.

This suffices. �
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We now put the parameter x in (1.23) to good use.

Corollary 1.15 Let δ be fixed, δ > 0. Then for σ ≥ δ, s �= 1,∑
n≤x

n−s = x1−s

1 − s
+ ζ (s) + O(τ x−σ ). (1.25)

In addition, ∑
n≤x

1

n
= log x + C0 + O(1/x) (1.26)

where C0 is Euler’s constant,

C0 = 1 −
∫ ∞

1
{u}u−2 du = 0.5772156649 . . . . (1.27)

Proof The first estimate follows by crudely estimating the integral in (1.23):∫ ∞

x
{u}u−s−1 du 	

∫ ∞

x
u−σ−1 du = x−σ

σ
.

As for the second estimate, we note that the sum is∫ x

1−
u−1 d[u] =

∫ x

1−
u−1 du −

∫ x

1−
u−1 d{u}

= log x + 1 − {x}/x −
∫ x

1
{u}u−2 du.

The result now follows by writing
∫ x

1 = ∫∞
1 − ∫∞

x , and noting that∫ ∞

x
{u}u−2 du 	

∫ ∞

x
u−2 du = 1/x .

�

By letting s → 1 in (1.25) and comparing the result with (1.26), or by letting
s → 1 in (1.24) and comparing the result with (1.27), we obtain

Corollary 1.16 Let

ζ (s) = 1

s − 1
+

∞∑
k=0

ak(s − 1)k (1.28)

be the Laurent expansion of ζ (s) at s = 1. Then a0 is Euler’s constant, a0 = C0.

Euler’s constant also arises in the theory of the gamma function. (See
Appendix C and Chapter 10.)

Corollary 1.17 Let δ > 0 be fixed. Then

ζ (s) = 1

s − 1
+ O(1)
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uniformly for s in the rectangle δ ≤ σ ≤ 2, |t | ≤ 1, and

ζ (s) 	 (1 + τ 1−σ ) min
( 1

|σ − 1| , log τ
)

uniformly for δ ≤ σ ≤ 2, |t | ≥ 1.

Proof The first assertion is clear from (1.24). When |t | is larger, we obtain
a bound for |ζ (s)| by estimating the sum in (1.25). Assume that x ≥ 2. We
observe that ∑

n≤x

n−s 	
∑
n≤x

n−σ 	 1 +
∫ x

1
u−σ du

uniformly for σ ≥ 0. If 0 ≤ σ ≤ 1 − 1/ log x , then this integral is
(x1−σ − 1)/(1 − σ ) < x1−σ /(1 − σ ). If |σ − 1| ≤ 1/ log x , then u−σ � u−1

uniformly for 1 ≤ u ≤ x , and hence the integral is � ∫ x
1 u−1 du = log x . If

σ ≥ 1 + 1/ log x , then the integral is <
∫∞

1 u−σ du = 1/(σ − 1). Thus∑
n≤x

n−s 	 (1 + x1−σ ) min
( 1

|σ − 1| , log x
)

(1.29)

uniformly for 0 ≤ σ ≤ 2. The second assertion now follows by taking x = τ

in (1.25). �

1.3.1 Exercises

1. Suppose that f (mn) = f (m) f (n) whenever (m, n) = 1, and that f is not
identically 0. Deduce that f (1) = 1, and hence that f is multiplicative.

2. (Stieltjes 1887) Suppose that
∑

an converges, that
∑ |bn| < ∞, and that

cn is given by (1.3). Show that
∑

cn converges to (
∑

an)(
∑

bn). (Hint:
Write

∑
n≤x cn =∑n≤x bn A(x/n) where A(y) =∑n≤y an .)

3. Determine
∑

ϕ(n)n−s ,
∑

σ (n)n−s , and
∑ |µ(n)|n−s in terms of the zeta

function. Here ϕ(n) is Euler’s ‘totient function’, which is the number of a,
1 ≤ a ≤ n, such that (a, n) = 1.

4. Let q be a positive integer. Show that if σ > 1, then

∞∑
n=1

(n,q)=1

n−s = ζ (s)
∏
p|q

(1 − p−s).

5. Show that if σ > 1, then

∞∑
n=1

d(n)2n−s = ζ (s)4/ζ (2s).
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6. Let σa(n) =∑d|n da . Show that

∞∑
n=1

σa(n)σb(n)n−s = ζ (s)ζ (s − a)ζ (s − b)ζ (s − a − b)/ζ (2s − a − b)

when σ > max (1, 1 + �a, 1 + �b, 1 + �(a + b)).
7. Let F(s) =∑p(log p)p−s , G(s) =∑p p−s for σ > 1. Show that in this

half-plane,

− ζ ′

ζ
(s) =

∞∑
k=1

F(ks),

F(s) = −
∞∑

d=1

µ(d)
ζ ′

ζ
(ds),

log ζ (s) =
∞∑

k=1

G(ks)/k,

G(s) =
∞∑

d=1

µ(d)

d
log ζ (ds).

8. Let F(s) and G(s) be defined as in the preceding problem. Show that if
σ > 1, then

∞∑
n=1

ω(n)n−s = ζ (s)G(s) = ζ (s)
∞∑

d=1

µ(d)

d
log ζ (ds),

∞∑
n=1

�(n)n−s = ζ (s)
∞∑

k=1

G(ks) = ζ (s)
∞∑

k=1

ϕ(k)

k
log ζ (ks).

9. Let t be a fixed real number, t �= 0. Describe the limit points of the sequence
of partial sums

∑
n≤x n−1−i t .

10. Show that
∑N

n=1 n−1 > log N + C0 for all positive integers N , and that∑
n≤x n−1 > log x for all positive real numbers x .

11. (a) Show that if an is totally multiplicative, and if α(s) =∑ ann−s has
abscissa of convergence σc, then

∞∑
n=1

(−1)n−1ann−s = (1 − 2a22−s)α(s)

for σ > σc.
(b) Show that

∞∑
n=1

(−1)n−1n−s = (1 − 21−s)ζ (s)

for σ > 0.
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(c) (Shafer 1984) Show that
∞∑

n=1

(−1)n(log n)n−1 = C0 log 2 − 1

2
(log 2)2.

12. (Stieltjes 1885) Show that if k is a positive integer, then∑
n≤x

(log n)k

n
= (log x)k+1

k + 1
+ Ck + Ok

( (log x)k

x

)
for x ≥ 1 where

Ck =
∫ ∞

1
{u}(log u)k−1(k − log u)u−2 du.

Show that the numbers ak in (1.28) are given by ak = (−1)kCk/k!.
13. Let D be the disc of radius 1 and centre 2. Suppose that the numbers εk tend

monotonically to 0, that the numbers tk tend monotonically to 0, and that
the numbers Nk tend monotonically to infinity. We consider the Dirichlet
series α(s) =∑n ann−s with coefficients an = εknitk for Nk−1 < n ≤ Nk .
For suitable choices of the εk , tk , and Nk we show that the series converges
at s = 1 but that it is not uniformly convergent in D.

(a) Suppose thatσk = 2 −
√

1 − t2
k , so that sk = σk + i tk ∈ D. Show that if

N
t2
k

k 	 1, (1.30)

then ∣∣∣ ∑
Nk−1<n≤Nk

ann−sk

∣∣∣
 εk log
Nk

Nk−1
.

Thus if

εk log
Nk

Nk−1

 1 (1.31)

then the series is not uniformly convergent in D.
(b) By using Corollary 1.15, or otherwise, show that if (a, b] ⊆ (Nk−1, Nk],

then ∑
a<n≤b

ann−1 	 εk

tk
.

Hence if
∞∑

k=1

εk

tk
< ∞, (1.32)

then the series α(1) converges.
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(c) Show that the parameters can be chosen so that (1.30)–(1.32) hold, say
by taking Nk = exp(1/εk) and tk = ε

1/2
k with εk tending rapidly to 0.

14. Let t(n) = (−1)�(n)−ω(n)∏
p|n(p − 1)−1, and put T (s) =∑n t(n)n−s .

(a) Show that for σ > 0, T (s) has the absolutely convergent Euler product

T (s) =
∏

p

(
1 + 1

(p − 1)(ps + 1)

)
.

(b) Determine all zeros of the function 1 + 1/((p − 1)(ps + 1)).
(c) Show that the line σ = 0 is a natural boundary of the function T (s).

15. Suppose throughout that 0 < α ≤ 1. For σ > 1 we define the Hurwitz zeta
function by the formula

ζ (s, α) =
∞∑

n=0

(n + α)−s .

Thus ζ (s, 1) = ζ (s).
(a) Show that ζ (s, 1/2) = (2s − 1)ζ (s).
(b) Show that if x ≥ 0 then

ζ (s, α) =
∑

0≤n≤x

(n + α)−s + (x + α)1−s

s − 1
+ {x}

(x + α)s

− s
∫ ∞

x
{u}(u + α)−s−1 du.

(c) Deduce that ζ (s, α) is an analytic function of s for σ > 0 apart from a
simple pole at s = 1 with residue 1.

(d) Show that

lim
s→1

(
ζ (s, α) − 1

s − 1

)
= 1/α − logα −

∫ ∞

0

{u}
(u + α)2

du.

(e) Show that

lim
s→1

(
ζ (s, α) − 1

s − 1

)
=
∑

0≤n≤x

1

n + α
− log(x + α) + {x}

x + α

−
∫ ∞

x

{u}
(u + α)2

du.

(f) Let x → ∞ in the above, and use (C.2), (C.10) to show that

lim
s→1

(
ζ (s, α) − 1

s − 1

)
= − �′

�
(α).

(This is consistent with Corollary 1.16, in view of (C.11).)
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1.4 Notes

Section 1.1. For a brief introduction to the Hardy–Littlewood circle method,
including its application to Waring’s problem, see Davenport (2005). For a
comprehensive account of the method, see Vaughan (1997). Other examples
of the fruitful use of generating functions are found in many sources, such as
Andrews (1976) and Wilf (1994).

Algorithms for the efficient computation of π (x) have been developed
by Meissel (Lehmer, 1959), Mapes (1963), Lagarias, Miller & Odlyzko
(1985), Deléglise & Rivat (1996), and by X. Gourdon. For discussion
of these methods, see Chapter 1 of Riesel (1994) and the web page of
Gourdon & Sebah at http://numbers.computation.free.fr/Constants/Primes/
countingPrimes.html.

The ‘big oh’ notation was introduced by Paul Bachmann (1894, p. 401). The
‘little oh’ was introduced by Edmund Landau (1909a, p. 61). The � notation
was introduced by Hardy (1910, p. 2). Our notation f ∼ g also follows Hardy
(1910). The Omega notation was introduced by G. H. Hardy and J. E. Littlewood
(1914, p. 225). Ingham (1932) replaced the�R and�L of Hardy and Littlewood
by �+ and �−. The 	 notation is due to I. M. Vinogradov.

Section 1.2. The series
∑

ann−s is called an ordinary Dirichlet series,
to distinguish it from a generalized Dirichlet series, which is a sum of the
form

∑
ane−λns where 0 < λ1 < λ2 < · · · , λn → ∞. We see that generalized

Dirichlet series include both ordinary Dirichlet series (λn = log n) and power
series (λn = n). Theorems 1.1, 1.3, 1.6, and 1.7 extend naturally to generalized
Dirichlet series, and even to the more general class of functions

∫∞
0 e−us d A(u)

where A(u) is assumed to have finite variation on each finite interval [0,U ].
The proof of the general form of Theorem 1.6 must be modified to depend on
uniform, rather than absolute, convergence, since a generalized Dirichlet series
may be never more than conditionally convergent (e.g.,

∑
(−1)n(log n)−s).

If we put a = lim sup(log n)/λn , then the general form of Theorem 1.4
reads σc ≤ σa ≤ σc + a. Hardy & Riesz (1915) have given a detailed ac-
count of this subject, with historical attributions. See also Bohr & Cramér
(1923).

Jensen (1884) showed that the domain of convergence of a generalized
Dirichlet series is always a half-plane. The more precise information provided
by Theorem 1.1 is due to Cahen (1894) who proved it not only for ordinary
Dirichlet series but also for generalized Dirichlet series.

The construction in Exercise 1.2.8 would succeed with the simpler choice
an = nitr for tr ≤ n ≤ 2tr , an = 0 otherwise, but then to complete the argu-
ment one would need a further tool, such as the Kusmin–Landau inequality
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(cf. Mordell 1958). The square of the Dirichlet series in Exercise 1.2.8 has ab-
scissa of convergence 1/2; this bears on the result of Exercise 2.1.9. Information
concerning the convergence of the product of two Dirichlet series is found in
Exercises 1.3.2, 2.1.9, 5.2.16, and in Hardy & Riesz (1915).

Theorem 1.7 originates in Landau (1905). The analogue for power series had
been proved earlier by Vivanti (1893) and Pringsheim (1894). Landau’s proof
extends to generalized Dirichlet series (including power series).

Section 1.3. The hypothesis
∑ | f (n)|n−σ < ∞ of Theorem 1.9 is equivalent

to the assertion that∏
p

(1 + | f (p)|p−σ + | f (p2)|p−2σ + · · · ) < ∞,

which is slightly stronger than merely asserting that the Euler product converges
absolutely. We recall that a product

∏
n(1 + an) is said to be absolutely con-

vergent if
∏

n(1 + |an|) < ∞. To see that the hypothesis
∏

p(1 + | f (p)p−s +
· · · |) < ∞ is not sufficient, consider the following example due to Ingham:
For every prime p we take f (p) = 1, f (p2) = −1, and f (pk) = 0 for k > 2.
Then the product is absolutely convergent at s = 0, but the terms f (n) do not
tend to 0, and hence the series

∑
f (n) diverges. Indeed, it can be shown that∑

n≤x f (n) ∼ cx as x → ∞ where c =∏p

(
1 − 2p−2 + p−3

)
> 0.

Euler (1735) defined the constant C0, which he denoted C .
Mascheroni (1790) called the constant γ , which is in common use, but
we wish to reserve this symbol for the imaginary part of a zero of the
zeta function or an L-function. It is conjectured that Euler’s constant C0

is irrational. The early history of the determination of the initial digits of
C0 has been recounted by Nielsen (1906, pp. 8–9). More recently, Wrench
(1952) computed 328 digits, Knuth (1963) computed 1,271 digits, Sweeney
(1963) computed 3,566 digits, Beyer & Waterman (1974) computed 4,879
digits, Brent (1977) computed 20,700 digits, Brent & McMillan (1980)
computed 30,100 digits. At this time, it seems that more than 108 digits
have been computed – see the web page of X. Gourdon & P. Sebah at
http://numbers.computation.free.fr/Constants/Gamma/gamma.html. To 50
places, Euler’s constant is

C0 = 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992.

Statistical analysis of the continued fraction coefficients of C0 suggest that it
satisfies the Gauss–Kusmin law, which is to say that C0 seems to be a typical
irrational number.

Landau & Walfisz (1920) showed that the functions F(s) and G(s) of Ex-
ercise 1.3.7 have the imaginary axis σ = 0 as a natural boundary. For further
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work on Dirichlet series with natural boundaries see Estermann (1928a,b) and
Kurokawa (1987).
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