Notation

Symbol	Meaning	Found on page
\mathbb{C}	The set of complex numbers.	109
\mathbb{F}_p	A field of <i>p</i> elements.	9
N	The set of natural numbers, 1, 2,	114
Q	The set of rational numbers.	120
\mathbb{R}	The set of real numbers.	43
\mathbb{T}	\mathbb{R}/\mathbb{Z} , known as the <i>circle group</i> or	110
	the one-dimensional torus, which is	
	to say the real numbers modulo 1.	
\mathbb{Z}	The set of rational integers.	20
В	constant in the Hadamard product	347, 349
	for $\xi(s)$	
B_k	Bernoulli numbers.	496ff
$B_k(x)$	Bernoulli polynomials.	45, 495ff
$B(\chi)$	constant in the Hadamard product	351, 352
	for $\xi(s, \chi)$	
C_0	Euler's constant	26
$c_q(n)$	The sum of $e(an/q)$ with a running	110
1	over a reduced residue system	
	modulo q; known as <i>Ramanujan's</i>	
	sum.	
$c_{\chi}(n)$	$=\sum_{a=1}^{q}\chi(a)e(an/q).$	286, 290
d(n)	The number of positive divisors of n ,	2
	called the <i>divisor function</i> .	
$d_k(n)$	The number of ordered <i>k</i> -tuples of	43
	positive integers whose product	
	is <i>n</i> .	
$E_0(\chi)$	= 1 if $\chi = \chi_0$, 0 otherwise.	358

Symbol	Meaning	Found on page
E_k	The Euler numbers, also known as	506
	the secant coefficients.	
$e(\theta)$	$=e^{2\pi i\theta}$; the complex exponential	64, 108ff
	with period 1.	
$L(s, \chi)$	A Dirichlet <i>L</i> -function.	120
Li(x)	$=\int_0^x \frac{du}{\log u}$ with the Cauchy	189
	principal value taken at 1; the	
	logarithmic integral.	
li(x)	$=\int_{2}^{x} \frac{du}{\log u}$; the logarithmic	5
	integral.	
M(x)	$=\sum_{n\leq x} \mu(n)$	182
M(x;q,a)	The sum of $\mu(n)$ over those $n \le x$	383
	for which $n \equiv a \pmod{q}$.	
$M(x, \chi)$	The sum of $\chi(n)\mu(n)$ over those	383
	$n \leq x$.	
N(T)	The number of zeros $\rho = \beta + i\gamma$	348, 452ff
	of $\zeta(s)$ with $0 < \gamma \leq T$.	
$N(T, \chi)$	The number of zeros $\rho = \beta + i\gamma$	454
· · · · · · · · · · · · · · · · · · ·	of $L(s, \chi)$ with $\beta > 0$ and	
	$0 \leq \beta \leq T.$	
P(n)	The largest prime factor of <i>n</i> .	202
Q(x)	the number of square-free numbers	36
	not exceeding x	
S(t)	$=\frac{1}{\pi}\arg\zeta(\frac{1}{2}+it).$	452
$S(t, \chi)$	$=\frac{1}{2} \arg L(\frac{1}{2}+it,\chi).$	454
si(x)	$= -\int_{x}^{\infty} \frac{\sin u}{u} du$; the sine integral.	139
T_k	The tangent coefficients.	505
w(u)	The Buchstab function, defined by	216
	the equation $(uw(u))' = w(u-1)$	
	for $u > 2$ together with the initial	
	condition $w(u) = 1/u$ for	
	$1 < u \leq 2.$	
Z(t)	Hardy's function. The function	456ff
	Z(t) is real-valued, and	
	$ Z(t) = \zeta(\frac{1}{2} + it) .$	
β	The real part of a zero of the zeta	173
	function or of an <i>L</i> -function.	
$\Gamma(s)$	$=\int_0^\infty e^{-x}x^{s-1}dx$ for $\sigma > 0$;	30, 520ff
	called the Gamma function.	

Symbol	Meaning	Found on page
$\Gamma(s, a)$	$=\int_{a}^{\infty}e^{-w}w^{s-1}dw$; the <i>incomplete</i>	327
	Gamma function.	
γ	The imaginary part of a zero of the	172
	zeta function or of an L-function.	
$\Delta_N(\theta)$	$= 1 + 2 \sum_{n=1}^{N-1} (1 - n/N) \cos 2\pi n\theta;$	174
	known as the <i>Fejér kernel</i> .	
$\varepsilon(\chi)$	$= \tau(\chi) / (i^{\kappa} q^{1/2}).$	332
$\zeta(s)$	$=\sum_{n=1}^{\infty} n^{-s}$ for $\sigma > 1$, known as the	2
	Riemann zeta function.	
$\zeta(s, \alpha)$	$=\sum_{n=0}^{\infty}(n+\alpha)^{-s}$ for $\sigma > 1$; known	30
	as the Hurwitz zeta function.	
$\zeta_K(s)$	$\sum_{\mathfrak{a}} N(\mathfrak{a})^{-s}$; known as the <i>Dedekind</i>	343
	zeta function of the algebraic number	
	field K.	
Θ	$= \sup \Re \rho$	430, 463
$\vartheta(x)$	$=\sum_{p\leq x}\log p.$	46
$\vartheta(z)$	$=\sum_{n=-\infty}^{\infty}e^{-\pi n^2 z}$ for $\Re z > 0.$	329
$\vartheta(x;q,a)$	The sum of log p over primes $p \le x$	128, 377ff
	for which $p \equiv a \pmod{q}$.	
$\vartheta(x,\chi)$	$=\sum_{p\leq x}\chi(p)\log p.$	377ff
К	$=(1-\chi(-1))/2.$	332
$\Lambda(n)$	$= \log p$ if $n = p^k$, $= 0$ otherwise;	23
	known as the von Mangoldt Lambda	
	function.	
$\Lambda_2(n)$	$= \Lambda(n) \log n + \sum_{bc=n} \Lambda(b) \Lambda(c).$	251
$\Lambda(x;q,a)$	The sum of $\lambda(n)$ over those $n \leq x$	383
	such that $n \equiv a \pmod{q}$.	
$\Lambda(x,\chi)$	$=\sum_{n\leq x}\chi(n)\lambda(n).$	383
$\lambda(n)$	$= (-1)^{\Omega(n)}$; known as the <i>Liouville</i>	21
	lambda function.	
$\mu(n)$	$= (-1)^{\omega(n)}$ for square-free $n, = 0$	21
	otherwise. Known as the Möbius mu	
	function.	
$\mu(\sigma)$	the Lindelöf mu function	330
$\xi(s)$	$= \frac{1}{2}s(s-1)\zeta(s)\Gamma(s/2)\pi^{-s/2}.$	328
$\xi(s,\chi)$	$= L(s,\chi)\Gamma((s+\kappa)/2)(q/\pi)^{(s+\kappa)/2}$	333
	where χ is a primitive character	
	modulo $q, q > 1$.	

Symbol	Meaning	Found on page
$\Pi(x)$	$=\sum_{n\leq x} \Lambda(n)/\log n.$	416
$\pi(x)$	The number of primes not exceeding x .	3
$\pi(x;q,a)$	The number of $p \le x$ such that $p \equiv a$	90, 358
	$(\mod q),.$	
$\pi(x,\chi)$	$=\sum_{p\leq x}\chi(p).$	377ff
ρ	$=\beta + i\gamma$; a zero of the zeta function or	173
	of an <i>L</i> -function.	
$\rho(u)$	The Dickman function, defined by the	200
	equation $u\rho'(u) = -\rho(u-1)$ for $u > 1$	
	together with the initial condition	
	$\rho(u) = 1 \text{ for } 0 \le u \le 1.$	
$\sigma(n)$	The sum of the positive divisors of <i>n</i> .	27
$\sigma_a(n)$	$=\sum_{d n}d^{a}.$	28
τ	= t + 4.	14
$\tau(\chi)$	$=\sum_{a=1}^{q} \chi(a)e(a/q)$; known as the	286ff
	Gauss sum of χ .	
$\Phi_q(z)$	The q^{th} cyclotomic polynomial, which is	64
	to say a monic polynomial with integral	
	coefficients, of degree $\varphi(q)$, whose roots	
	are the numbers $e(a/q)$ for $(a, q) = 1$.	
$\Phi(x, y)$	The number of $n \le x$ such that all prime	215
	factors of <i>n</i> are \geq <i>y</i> .	
$\Phi(y)$	$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{y}e^{-t^2/2}dt$; the cumulative	235
	distribution function of a normal random	
	variable with mean 0 and variance 1.	
$\varphi(n)$	The number of $a, 1 \le a \le n$, for which	27
	(a, n) = 1; known as <i>Euler's totient</i>	
	function.	
$\chi(n)$	A Dirichlet character.	115
$\psi(x)$	$=\sum_{n\leq x} \Lambda(n).$	46
$\psi(x, y)$	The number of $n \le x$ composed entirely	199
	of primes $p \leq y$.	
$\psi(x;q,a)$	The sum of $\Lambda(n)$ over $n \leq x$ for which	128, 377ff
	$n \equiv a \pmod{q}.$	
$\psi(x,\chi)$	$=\sum_{n\leq x}\chi(n)\Lambda(n).$	377ff
$\Omega(n)$	The number of prime factors of n ,	21
	counting multiplicity.	
$\omega(n)$	The number of distinct primes dividing n .	21

Symbol	Meaning	Found on page
[<i>x</i>]	The unique integer such that	15, 24
	$[x] \le x < [x] + 1$; called the <i>integer</i>	
	<i>part</i> of <i>x</i> .	
$\{x\}$	= x - [x]; called the <i>fractional part</i> of x.	24
x	The distance from x to the nearest	477
	integer.	
f(x) = O(g(x))	$ f(x) \le Cg(x)$ where <i>C</i> is an absolute	3
	constant.	
f(x) = o(g(x))	$\lim f(x)/g(x) = 0.$	3
$f(x) \ll g(x)$	f(x) = O(g(x)).	3
$f(x) \gg g(x)$	g(x) = O(f(x)), g non-negative.	4
$f(x) \asymp g(x)$	$cf(x) \le g(x) \le Cf(x)$ for some positive	4
	absolute constants c, C.	
$f(x) \sim g(x)$	$\lim f(x)/g(x) = 1.$	3

https://doi.org/10.1017/C Banabridges Backs ผิยไม้คะผิวผิสภาษที่ช่อยะ ไปยุ่งครอย่างเราะ 2010