DENSITY AND SUM SETS

R.C. VAUGHAN

This is an exposition of two of the standard theorems on density and sum sets, namely
the Cauchy-Davenport—Chowla theorem and Mann’s theorem. There are various proofs
of these theorems and their many variations in the literature. The purpose here is to give
short and simple proofs of both theorems the core of which are based on a common and
generic idea. This is that one or more elements can be removed from one of the sets and
their translates added to the other in such a way that the orginal sum set is contained in

the new sum set, and so an induction on the number of elements of one of the sets can be
established.

Given a positive integer g and a collection A of residue classes modulo ¢, its local
density p = p(A) modulo g is defined by p = ¢~ 'card(A).

Theorem 1 (Cauchy—Davenport—Chowla). Suppose that q is a positive integer, that A
and B are sets of residue classes modulo q of local density modulo q, a and 3 respectively,
that 0 € B and that every non—zero residue class in B is a reduced residue class modulo
q. Then

p(A+ B) > min(l,a+ 8 —1/q).

This is best possible, as is seen by the example A = {0,1,...,r—1}, B={0,1,...,s—1},
A+B={0,1,...,r+s—2} whenr+s—1<gq.

Proof. If a = 1, then the conclusion is trivial. Thus we may suppose that r = qa =
card(A) < q. We now proceed by induction on s = ¢f = card(B). When s = 1 the
conclusion is immediate. Thus it remains to consider the case s > 1 (and o < 1), and we
may assume the conclusion holds for all & when cardB < s. When b € B\{0} we cannot
have a + b € A for every a € A, for otherwise

Z a+br= Z a’ (mod q) (0.1)
acA a’eA

whence br = 0 (mod ¢) and it would follow that (b,q) > 1. Hence there are ag € A,
by € B such that ag + by & A.

Let
A'=AUu{ag+b:beBag+bd A} (0.2)
and
B ={b:beBag+be A} (0.3)
Then card(A") + card(B') = card(A) + card(B) =r + s and 1 < card(B’) < s — 1. Hence,
by the inductive hypothesis

p(A"+ B') > min (1, p(A") 4+ p(B') — 1/¢q) = min(1,a+ 8 — 1/q). (0.4)
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Suppose that a’ € A" and b’ € B’. When a’ € A we have o' +0 € A+ B. When a' ¢ A
there is a b’ € B such that ¢/ = ap+ 6" andso a' +b = ag+b"+b =ag+ b +V".
Moreover ag +b' € A, so d’ +V' € A+ B in this case also. Hence A’ + B’ C A+ B and the
theorem follows. O

For convenience, given A C Z we define
A(n) =cardfac A:1<a<n}. (0.5)
Then the Schnirel’'man density o(A) of a set of integers A is given by
o(A) = inf n~tA(n). (0.6)

Note that it is permitted for 0 or negative integers to be in A, and if 0 ¢ A, then the
theorem below is false. For example take A = B to be the set of positive odd integers.

Then the Schnirel’'man density of each is %, but the sum set has Schnirel’'man density 0.

There are many examples in which the theorem is best possible. For example, let
A=B={0,1,9+1,9+2,9g+3...} where ¢ > 2. Then 0 A =08 = % and o(A+B) = %.

Theorem 2 (Mann). Suppose that A and B are sets of integers of Schnirel’'man density
a and [ respectively and that 0 € ANB. Then

o(A+ B) > min(1,a + B).

Proof. The case a + 8 > 1 can be disposed of by a simple box argument. For a given
n € N consider the A(n) + B(n) + 2 numbers a with 0 < a <n and a € A and n — b with
0<b<mnandbeB. Since A(n)+ B(n)+2>an+ fn+2>n+2, one of the n + 1
numbers m with 0 < m < n must be both an a and an n — b. Hence n = a + b. Thus
N C A + B and the theorem follows.

Henceforward we suppose that
a+p<1 (0.7)

If a8 = 0, then the conclusion follows from the observation that A C A+B and B C A+B.
Hence we may suppose that a8 > 0 and therefore

le ANB. (0.8)
It suffices to prove that for n € N we have
n_lcard{m:1§m§n:m€A+B}2a—|—ﬂ (0.9)

and we proceed by induction on n. Then the case n = 1 is trivial, since 1 € A+ B.

Now suppose that n > 2. In particular, if
s = B(n) (0.10)

then case s = 0 has been established and we may assume that s > 1 and proceed by
subinduction on s.

Suppose next that a +b € A whenever a € A, b € B and a +b < n. Then for
m=1,2,...n—1 we have 1 € A and if m € A, then m+ 1 € A. Hence A(n) = n and
since A C A + B the desired result follows.
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Thus we may suppose that there are ag € A, by € B such that ag > 1, by > 1, ag+by < n
and ag + by € A. Let

A'=A+{ap+b:beBag+b<n,ao+b¢g A} (0.11)
B'={b:beB,ag+b<n,a+be A}. (0.12)

Then B'(n) < s—1 and
A'(n) + B'(n) = A(n) + B(n) > n(a+ B). (0.13)

Suppose that a’ € A" and b’ € B'. When o’ € A we have o’ +V' € A+ B. When a’ € A
there is a b’ € B such that ¢/ = ag + 6" and so a’ +b = a9 +b" +b = a9+ b +V".
Moreover ag +b' € A, so a’ +V € A+ B in this case also. Hence A"+ B’ C A+ B and the
theorem follows. d
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