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Notation

Some symbols are used in more than one way. The intended interpreta-
tion should be clear from the context in which it arises.

Symbol Meaning

C The set of complex numbers. See page 1.

Q The set of rational numbers.

R The set of real numbers.

T R/Z, i.e., the real numbers modulo 1. See page xx.
/ The set of rational integers.

A* The adjoint of the matrix A. See page 77.
J pag

T Norm of the vector x.
|l
I A]l The operator norm of the matrix A. See page 77.

@ The distance from « to the nearest integer. See page 77.
el g pag
Ey(x) = 1if x = x,, = 0 otherwise. See page 7?7
s(x) The sawtooth function. See page 77.
si(x) The sine integral. See page 77.

deg P The degree of the polynomial P.
A(s) C(s) = A(s)¢(1 — s). See page

> A sum over primitive characters modulo ¢. See page ?77.






23

Probabilistic number theory

C:ProbNoThy

We say that an arithmetic function f is additive if

Fmn) = f(m) + f(n) (23.1)

whenever (m,n) = 1. The values of an additive function are determined
by its values on prime-powers, since

Fiy =" 1) (23.2)

pFln

If the identity holds for all pairs m, n, then we say that f is totally
(or completely) additive. If f is additive and f(p¥) = f(p) for all p and
all £ > 1, then we say that f is strongly additive. For example, log n and
Q(n) are totally additive functions, log(n/¢(n)) and w(n) are strongly
additive, while Q(n) —w(n) and log d(n) are additive but neither totally
additive nor strongly additive.

In our study of sieves in Chapter 3 we saw that things do not always
work out as one would expect on probabilistic grounds. However, we
find that the distribution of the values of an additive function follow the
natural probabilistic model very closely. Suppose that f is an additive
function. The asymptotic density of integers n for which p*||n is p=*(1 —
1/p). It is with this ‘probability’ that the term f(pk) is one of the terms
in the sum. Accordingly, for each prime number p we define a random
variable X, that has the distribution

(X, = 1) =+ 2

P(X,=0)=1-1/p.

(k=1,2,...),

@

If p and ¢ are distinct primes, then by the Chinese remainder theorem
we see that the asymptotic density of the integers n for which both

1



2 Probabilistic number theory

p¥||n and ¢f||n is p~*(1 — 1/p)g=*(1 — 1/q). Hence the two events p*|n
and ¢‘||n are asymptotically independent. Thus it is natural to take the
random variables X, to be independent, and we set

X=>X,. (23.4)

This sum either converges almost always or almost nowhere. We shall
find that when it converges almost always, the values of f have a limiting
distribution that is the same as the distribution of X, and that when it
converges almost nowhere, f does not have a limiting distribution.

We have already established a scattering of results concerning a few
additive functions. In §2.3 we estimated the mean of w(n), and also
its variance about its mean. In §2.4 we determined the distribution of
the additive function 2(n) — w(n) by calculating the mean value of the
multiplicative function 2™ =«(") Tn §7.4 we put

Q(n) —loglogn
v/ loglogn

Ay, =

and found that the distribution of «,, is asymptotically normal with
mean 0 and variance 1. In this chapter we are more concerned with
developing a general theory than with special examples.

23.1 The Turan—Kubilius inequality

[PT34

Turan| (1934) showed (cf Theorem 2.12) that

Z(w(n) —loglogz)? < zloglogz,

n<x

LIKE6
and [Kubilius| (1956) generalized this to arbitrary additive functions.
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Suppose that f is an additive function. Then

Yo =33 e

n<wz n<a pk|in
Zf )21
- R
-3 (2] )
—e X D o( e ess)
pF<z pF<z

For ease of reference, we set

k
Alw) = Af.0) = Y f(i)(kl). (23.6)

pF <z

We anticipate that the variance of f about its mean should not be much
more than

Blr) = -y 'f (23.7)

pk<z
By Cauchy’s inequality,
1/2

T
f 1/2 oF < Blz)V2_*
;; B(x) (Z ) ()
Thus from we see that
Z f(n) = A(@)a + O(B(x)a(loga) 2) . (238)
n<z

As concerns the potential size of A(z) relative to B(x), we note by
Cauchy’s inequality that

( Z |f )(pgx %) < B(z)loglog . (23.9)

pk<z

We now show that B(xz) is within a constant factor of being an upper
bound for the variance of the values of f about its mean.

Theorem 23.1 (The Turdn—Kubilius inequality) Let [ be an additive
function, with A(z) and B(zx) defined as in and (23.7). Then

3 (fln) - A(x)” < xB(:E). (23.10)

n<x
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The implicit constant in the above is absolute: It is independent of

both f and z. From (123.9) we see that
Z |A(z)|> < 2B(x)loglog =,

n<x

and by (23.10)) it follows that also

Z |f(n)]? < zB(z)loglog .

n<lz

Thus we see that the estimate (23.10]) is never more than a factor of
loglog x from being trivial. Despite this lack of quantitative depth, the
Turan—Kubilius inequality turns out to be a quite useful result.

Proof We expand the sum on the left hand side, and obtain three terms.
The simplest is

To = |A@)f = A@2)P[e] = |A(x) Pz + O(|A(2)]?)

n<lz

= 2|A(2)|* + O(B(x) log log ) (23.11)

. The intermediate term is Ty = —2Re A(z) >_,, -, f(n). Thus

by
by

[N N
ol o
03] | [N=)

)

Ty = —2|A(z)z + O(|A(2)| B(z)"/*z(log z) ~*/?),
and by (23.9) this is
= —2|A(z)|*z + O(B(x)z(log x) "*/*(loglog #)/?) . (23.12)

Finally,

=2l =302 £ Y F(d

n<x n<x pk||n an
=2 2 fNId) X1
pk<z q¢'<z n<z
P n
q‘lln

where ¢ denotes a prime number. The contribution of those terms for
which p = q is

- SRR [ < e

pk<z
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The remaining terms contribute

7 = 3 16476 () - [ ] - ] + )

P e <z e’
PF#q
k\ f£( 0 1 1
w3 IR0 D6-)) 1)
_ k£ (C
+0< > }f(p’“)f(qe)|>+0<:c > W) (23.15)
phgf<a pkti<z

By Cauchy’s inequality the first error term is

<3 PR

prqt<wz

> qu€>1/2.

prgi<z
Here the first sum is < B(z)?, and the second sum is

<z Z 1 < 2%(logz) ' loglog =
n<z
w(n)<2

by (7.54). By Cauchy’s inequality the second error term in ([23.15]) is

<<:c< 3 W>1/Q< > wy/z

pk+ﬂgz pk+lf.gw
B 12
:xZM Z i@<<mB(x).
ph<u p p
B p'<z/p*

The expression ([23.14)) is

By Cauchy’s inequality the sum on the right has absolute value

<5 WLy Ly

p’;éx p:iw
q <z q <z
p’“qe>z pkq£>z
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Here the first sum is < B(z)?, and the second sum is

s s e (S

pk<zl/2 z/pk<q’<wz 21/2<pk <z

k:lo
< E 8p + 1k1.
k< 1/2

On assembling our estimates we deduce that
T3 = 2|A(2)]” + O(x(B(2))) -

The stated result now follows by combining this with (23.11))—(23.13)).
O

23.1l1 Exercises

1. Show that almost all integers n have (1/2 + o(1))loglogn prime
factors =1 (mod 4).

2. Let k be a fixed positive integer. Show that dj,(n) = (logn)(*+e(1)logk
for almost all integers.

3. Show that

ZQ Q(n + k) = z(loglog )* + cxloglog x + O(z)
n<lxz
where

C =

4. Show that -, (w(n? +1) —loglog n)2 < xloglog .

5. Show that Zpgx (w(p +1)—log logp)2 < zloglogx.
6. Suppose that f is an additive function, and let A(x) and B(x) be

defined as in and ( -

(a) Show that if n < z, then

(b) Show that
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(¢) Conclude that
ST If(n) — A(m)P? < 2B(x).

. Suppose that f is an additive function and that B(z) is defined as in
(123.7).

(a) Show that

(b) Show that

pi<z
k>1

(c) Put A'(z) =3, f(p)/p. Show that if f is an additive function,
then

ST f(n) - A'()]? < 2B().

n<z

. The Kubilius class H consists of those additive functions f with the
two properties

(i) B(f,z) = o0 as x — o0;

k 2
i Y lr@) =o(B(z)) (z— ).

zl/2<pk<z

Show that if f € H, then

D 1f(n) = A@@)]® = (1 + o(1))zB(x)
as T — 0. )
. Let f(n) = logn.

(a) Show that A(x) =logz + O(1).

(b) Show that B(z) = £ (logz)? 4+ O(log z).
(¢) Deduce that f ¢ H.

(d) Show that >, .. |f(n) — A(z)|* < =.
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10. Suppose that f is strongly additive, so that f(n) =3, f(p) for all
n. Consider the bilinear form inequality

2
SI)IOED SEELIRENS PR 23.16)
n<z pln p<z p<z

in the variables f(p).

(a) By the change of variables g(p) = f(p)/\/p, show that the above
is equivalent to the bilinear form inequality

PP DS ]gf/)z) SAY gl (23.17)

‘2
n<z pln p<lx p<z

(b) Use Theorem ?? to show that the above is equivalent to the
bilinear form inequality

So| Shm - S nwf AT pwP @)
p<z n<lz n<x n<x
pln

in the variables h(n).

(c) Apply the large sieve, as discussed in §xx.x to show that

Z p‘ Zh(n) - % Zh(n)‘2 < xz |h(n)|?.

p<zl/2 n<z n<wz n<lwz
pln

(d) Show that if /2 < p < x, then
2

‘ 3 h(n)‘ < Z37 ().

n<z p n<z

pln pln
(e) Show that

2
Z p‘ Z h(n)‘ <L Z |h(n)|?.
z1/2<p<z n<z n<z
pln

(f) Show that

O PUIGIEES SO

11/2<p§z n<z n<lz

(g) Deduce that (23.18)) and hence also (23.16]) hold with A <« x.
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23.2 Mean values of multiplicative functions

Suppose that f is a multiplicative function, which is to say that f(mn) =
f(m)f(n) whenever (m,n) = 1. Hence f(n) = Hpk”nf(pk). We let My
denote the class of those multiplicative functions f for which |f(n)] <1
for all n. Our object is to characterize those members of M, that have
an asymptotic mean value. If f is a real-valued additive function, then
e(tf(n)) € Mo, so an ability to compute mean values of multiplicat-
ive functions will help us to determine the Fourier transform of the
distribution of additive functions. We begin with several simple results
concerning (not necessarily multiplicative) arithmetic functions.

Theorem 23.2. If f(n) = }_4, 9(d), if the series Yoci9(d)/d con-

verges, say to a, and if >, |9(d)| = o(x) as x — oo, then

S(x) =Y f(n) = azx +o(z). (23.19)

n<x

Proof Clearly

S@) =33 9@ =Y gl)e/d) =Y gld)/d+O( Y lg(@)]).

n<z din d<z d<zx d<z

Thus we have the stated result. O

Corollary 23.3 (Wintner). If f(n) = >, 9(d) and Yoo lg(d)|/d <
o0, then (23.19) holds with a = >, g(d)/d.

Proof From the hypothesis that Y57 | |g(d)|/d < oo, it follows by par-

tial summation that 3, [g(d)| = o(z). O
Corollary 23.4. If f is multiplicative, if
1—
> L=rl 00, (23.20) |E:sum|1-£(p) | /p<infty
> p
and if

p

k
Z ‘f(li)‘ < 00,

then (23.19) holds with
_ 1 flp) | f(P?) :
a= | | (1 - p) (1 + ) + P +- ) . (23.21) |E:Mvaform

P
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Proof Let g be the multiplicative function for which g(pk) =f (pk) —
f(p*71). Then f(n) = > djn 9(d), and

— lg(d fo) =1 | |f@*) —f
dz_lgd)|:1;[(1+| (p;) P )p2 (p)|+m><oo’
and thus
o 9(d) flo) =1 f*) - fp)
;%E{(H pp + pr Pi)=a
where a is defined by . O

In the same vein we have

Theorem 23.5. If f(n) =32, 9(d)h(n/d), if 3°0°_; |h(m)|/m < oo,

and if 3 <, 9(d) = ba+to(x), then we have 23.19) witha = b3 7 _, h(m)/m.
Here we see that a mean value for g yields one for f, provided that f

is near g in the sense that > |h(m)|/m < co. If A(1) =1 and h(m) =0

for all m > 1, then f =g.

Proof Put
r(z) = Zg(d) — bx.
d<z
Then
S(@) =Y g(dh(n/d) =" h(m) Y g(d)
n<z d|n m<x d<z/m
= bz Z @ + Z h(m)r(z/m).

There is a constant C' (depending on g) such that |r(x)| < Cz for all
x > 1, and for every ¢ > 0 there is a § such that |r(z)| < ex for all
2 > 1/4. Thus the second sum above has absolute value not exceeding

ex Y |h(m)|/m + Cx Y |h(m)|/m.
m<dzx dx<m<zx
Here the first term is < ex, and the second sum is small since it is part
of the tail of a convergent series. Thus we have the stated result. O

In Theorem we found a connection between the mean value of
f and the convergence of the series 3 g(d)/d, but we find it more pro-
ductive to pursue the line suggested by Corollary 23.4] which we now
sharpen.
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Theorem 23.6 (Delange). Suppose that f € My, and that the series
1—
> 1= Jip) (23.22)

p p

converges. Then (23.19) holds with a given by (23.21)).

Since Re f(p) < |f(p)] < 1, we see that the convergence of the series
implies that the sum of the real parts is absolutely convergent,
just as it was in Corollary[23.4] Thus Theorem [23.6]is stronger by virtue
of the fact that we are no longer assuming that the sum of the imaginary
parts is absolutely convergent. Given the convergence of the product
, we see that a # 0 unless one of the individual factors vanishes.
This happens only in the single case that

f@=-1  (k=1,2,3,...). (23.23)

Proof We suppose first that in addition to the stated hypotheses, f has
the further properties that

@) = (k=12 (23.24)

and that
Re f(p) > 1/2 (23.25)
for all p. Once we have established the theorem for such f, we extend
the result to general f by an appeal to Theorem Let P be a large
parameter, let P; denote the set of primes not exceeding P, and let

Py denote the primes larger than P. Let f; be multiplicative, f; (pk) =
f(p)* for p € P;, and f;(p*¥) =1 for p ¢ P;. Thus f = f1f2, and by

Corollary [23:4]
Z fi(n) = a(P)x + o(x)
with _
a(P):pgD(l—;)(l—fg?)) .

Since |f(p*)| < 1, we see by (23.24) and (23.25) that we may write
fa(n) = €9 where g is an additive function such that —log2 <
Reg(p) <0 and |Img(p)| < w/3. If Rez <0, then

|6Z71|:|/Z6wdw}§\z|,
0

|E:sum1—f(p)/pconv

E:fTotMult

E:Reflarge
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so we see that
S s = )| < 3 ) 1) < 3 lgn)

Let A(z) = A(g,x) be defined as in (23.6)). Then by Cauchy’s inequality
the above is

< 2lA@)|+ Y lo(n) — A < 2l A@)] +272( 3 lglm) —~ A@)P)

n<z n<z

and by the Turdn—Kubilius inequality (Theorem [23.1)), this is

< z|A(x)| + zB(x)'/?.

We now relate A(z) and B(z) to >_,(1 — f(p))/p. While the imaginary
part of this sum is not necessarily absolutely convergent, the real part of
each term is nonnegative, and so the sum of the real parts is absolutely
convergent. Also, [1 — f(p)] =1 —2Re f(p) + |f(p)]* < 2 —2Re f(p),
g9(p*) <k, and [g(p)| = [1 - f(p)l’ so that

I S

pk<z p>P P<p<lz
— f(p)
< F +Re Y T.
P<p<z
We also observe that g(p) = f(p) — 1+ O(|1 — f(p)|?), so that

a0=L 005 £

p

pk<z P<p<lz
1
ro( y B o 30 )
P<p<ac P<p<z p
1—
< = + ’ > ‘
P<p<z

On assembling our estimates, we find that
1-— 1/2
) = a(P)e +ofo) + 0/ P + 0o 3 LI,
p
P<p<lz

Since P can be arbitrarily large, this gives the desired result, subject to
(23.24)) and (23.25)).
To complete the proof we now suppose only that f € My and that
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>-p(1 = f(p))/p converges. Let P denote the set of primes p for which
Re f(p) < 1/2. We note that

1 1-—
Zf < 2Rezﬂ < 0.
pe?p p p

We define multiplicative functions g and h by the Euler products

oo

s) = g(n) _ _i*l _@—1
G(s) > pg(l ps) p];(l ps) ,
_ N b 1 o) | f0?)
H(s) = nz::l prali ng(l—s)(1+;:+ pigs +)
><H(l—f;f))(1+f}§f)+f;£§j)+...>.

p¢?P
Thus

We observe that g € Mo, (1 —g(p))/p converges, and that g satisfies

and (23.25). Hence
d gy =z ][ (1 - %) (1 - @)‘1 + o),
p¢P

n<lz p

:H(1+f(p)+f(p2)+~-~)ZG(S)H(S).

S 2s
» p p

and we obtain the desired result from Theorem [23.5| since

img)'S}g,(1+127+2922+"')H(1+p22+;3+"')

p¢?P
1
<<exp(227> < 00.
pEpr

O

In Delange’s Theorem (Theorem 23.6), the mean value is nonzero un-
less holds. In we shall characterize those f € My with
vanishing mean value, in terms of the behaviour of the generating Di-
richlet series

- (0>1). (23.26)

F(s) = Z f(zi)

To prepare for the proof of our next result we establish a variant of
the Hardy-Littlewood tauberian theorem (Theorem 5.7).

E:DefF(s)
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Lemma 23.7. Suppose that the numbers c(p) are bounded, and that

lim Z@

o—1+ p°

exists and has the (finite) value c. Then ) c(p)/p converges, and has
the value c.

Proof Put
a(u) = Z @ .

ev—l<p<Llen p
Then a(u) < 1/u for u > 1, and

o —e? c
I(u) :/0 a(u)e™ %" du = ! 3 Zpl(ﬁl

P

tends to ¢ as § — 07. Thus by the Hardy—Littlewood tauberian theorem
(Theorem 5.7 with 8 = 0) it follows that fOU a(u) du tends to ¢ as U —
oco. But

U

c(p c(p

JACOTTED SR SR T
0 p<eU b eU—1op<el p

and the second sum is < 1/U, so 3 ¢(p)/p converges to c. O

For members of My with nonzero mean value, we have the following
comprehensive result.

Theorem 23.8 (Delange). Suppose that f € My, and let S(z), the

number a, and the function F(s) be defined as in (23.19), (23.21) and
(123.26)), respectively. Then the following assertions are equivalent:

(a) S(z) ~ ax and a # 0;
(b) Z @ ~ alogz and a # 0;

n<x
(c) F(o) ~ ilasa—>1+anda7é0;
. 1—f(p) . :
(d) 111111+276 exists and (23.23)) fails;
o— P

1_
(e) Z ]jc(p) converges and (23.23)) fails.

P
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Proof We deduce (b) from (a) by partial summation, and similarly
deduce (c) from (b). But (c¢) asserts that lim,_,,+ F(0)/((0) = a, which
is to say that
1 2
lim (174J(1+£@2+igl+~~):a¢0
o1+ o o pe
Each factor of the product has modulus not exceeding 1, so if (23.23)

were to hold, then the limit would be 0. Thus (23.23]) fails and the
product is comparable to

1— f(p)
oxp (32 1250
¥
P
Hence we have (d). That (d) implies (e) is immediate from Lemma[23.7]
and that (e) implies (a) follows from Theorem [23.6] O

23.2l1 Exercise

1. Suppose that > 57 g(d)/d converges, say to a.
(a) Show that ), g(d) = o(x).
(b) Suppose also that 3", |g(d)| < 2. Use Axer’s Theorem (The-
orem 8.1) to show that >, g(d){z/d} = o(x).
(c) Put f(n) = > g, 9(d). Under the above hypotheses, show that
Y on<s f(n) = ax + o(z). (Note that this improves upon The-

orem [23.2])

23.3 The distribution of additive functions

We now employ our understanding of the mean values of multiplicative
functions to establish

Theorem 23.9 (Erdés—Wintuner). Let f be a real-valued additive func-
tion. The following are equivalent:

(a) Fach of the following series is convergent:

Z f;p)’ Z |f(p)‘, Z

p p p p
f(p)|<1 F(p)I<1 7 (p)[>1

()

"=
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(b) There is an increasing function F(u) such that lim,_, o F(u) =0,
lim, 40 =1, and such that

lim %card{n <N : f(n) <u} = F(u), (23.28)

N—o00

whenever u is not a point of discontinuity of F.

Since F' is increasing, the set of its discontinuities is is at most count-
able. Later we shall see that if we define F' to be right-continuous, so that
F(u) = F(u™), then holds for all values of u. When (b) holds
we may say that F' is the asymptotic distribution of f. Given F' with
the above properties, there is a unique probability measure p such that
F(u)= [ foo 1du. Moreover, we can construct a probability measure py
that attaches weight 1/N to each of the points f(n) for 1 < n < N.

Then (23.28]) asserts that

u u

lim ldpy = / 1duy,
N—oo J_ — oo

which is to say that the measures py tend weakly to . Our proof of the

Erd6s—Wintner Theorem depends on our discussion in §?7 concerning

the weak convergence of measures.

Proof Suppose that (a) holds. By virtue of Theorem in order to
show that (b) holds it suffices to show that

1 N
fin(t) = [ e(=tu) () = 55 3 e(-tf() (23.29)

has a limit r(t) as N — oo, and that r is continuous at ¢ = 0. Let
g(n) = g:(n) = e(—tf(n)). Then g € My, so by Theorem the above
tends to

ro=1I (1-3) (o LD, WD), esa)

P p?

provided that the sum

E:DistFcnf

E:muhatN
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converges. The above is

=omit ) I@) ) L —2mitf(p) — e(=tf(p))

i<t P i< p
| e(mti(p)) (23.32)
oy ),
F(p)I>1 P

By the hypotheses (a) we see that the first sum is a constant, and that
the third sum is absolutely and uniformly convergent. Since e(f) = 1 +
276 + O(6?), the second sum is absolutely convergent, and uniformly so
for ¢ in a bounded set. Thus the sum converges. Moreover, the
expression tends to 0 as ¢ — 0, so r(¢) tends to 1, and hence we
have (b).

We now show that (b) implies (a). If the py tend weakly to u, then
by Theorem it follows that fin(¢t) — fi(t). Since fi(t) is continuous
and 1(0) = 1, it follows from that the multiplicative function
g has a non-zero mean value for all £ near 0, and that this mean value
tends to 1 as t — 0. Hence by Theorem we deduce that the sum
converges for all small ¢, and tends to 0 as ¢ — 0. Let s(t) denote
the real part of the series . Since each term has non-negative real
part, the sum of the real parts is absolutely convergent, and uniformly
bounded for |¢t| < . But then

I 1 sin 278
25 ) S0t = zp:p(l - W(J;()p)),
and hence this latter sum is finite. But

1-— ? > min(1,6?),
so the second and third sums in are convergent. Hence the second

and third sums in (23.32)) are convergent, and since the sum (23.31]) is
convergent, it follows that the first sum in (23.32)) is convergent. O

In the next section we shall find that much can be said about the
distribution function F' of a real-valued additive function f. At this
point we content ourselves with the following simple result.

Theorem 23.10. Let f be a real-valued additive function with limiting
distribution function F. If the series

> 1 (23.33)

f(p)#0 p

| E:sumpexpanded
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converges, then each value assumed by f is attained on a set of positive
density, so that F has jump discontinuities but is otherwise constant
(i.e., the associated measure p is discrete). If the series diverges, then
the distribution function F is continuous, and hence any value of f is
assumed only on a set of density 0.

Proof Let P denote the set of primes p for which f(p) # 0, let Ny
denote the set of positive integers composed entirely of primes p € P,
let Ny denote the set of integers composed entirely of primes p ¢ P with
each prime occurring with multiplicity > 1, and finally let N3 denote
the set of squarefree integers composed entirely of primes p ¢ P. Each
n can be written uniquely in the form n = ningong with n; € N; and
(na,n3) =1, and f(n) depends only on n; and ng. The number of n < z
with prescribed ny and ng is the number of squarefree n3 < z/(ninz)
such that ng € N3 and (ng,ng) = 1. By Corollary this is

e L) =) T -5)

plng

~

pina
1 1\-1 1
- TO-DT0+Y 0 2)

Moreover, these densities sum to 1 as ny and nsy range over N7 and No.
Now suppose that the series (23.33]) diverges. By Theorem [23.33| it
suffices to show that

T
JRCOREEY (23.34)
-T

as T — oo. In the case at hand we know that

A(t) = H (1 B 1) (1 . e(—t]{(p)) i e(—th(zﬂ)) 4. ) . (23.35)

p p

Let P be a finite set of primes for which f(p) # 0, and put s = Zpe? 1/p.
In the above product, each prime contributes a factor whose absolute
value is < 1. Thus

o< 1| 2) (10 42 )

peEP

<<H’1 J’<<exp( QZSIH mtf(p )

peEP peP
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Hence by Holder’s inequality

e 5 1 T sin? 7t f (p)
— | 0P dt < = ( —4 7) dt
o7 | AOPd < o5 | ew E; ;

1 (T ) 1/(sp)
< — —4sssi .
< H (2T [Texp( 4ssin 7rtf(p))dt>
pe®P
Suppose that f(p) > 0. The integrand has period 1/ f(p), and

1/f(p) 1
f(p) / exp(—4ssin® it f(p)) dt = / exp(—4s sin® rt) dt
0 0

1/2 0o
< / exp(—16st?) dt < / exp(—16st?) dt = VT

—-1/2 —o0 4\/g .
Hence
L[ exp(—dssin? mtf (o) dt < -

— exp(—4ssin“w —

o |, &P pdt<
for all sufficiently large T', and so

I 1
lim sup — a2 dt < —.
msup o [ < -

By choosing P suitably, we may make s as large as we please. Thus we
have (23.34]), and the proof is complete. O

23.3l1 Exercises

1. (a) Show that logo(n)/n has a limiting distribution.

(b) Show that this limiting distribution is continuous.

(¢) Deduce that the set of perfect numbers (i.e., those for which
o(n) = 2n is a set of density 0.

2. Show that an integer-valued additive function f has a limiting distri-
bution if and only if

Z %<oo.

f(®)#0

3. Let f be a multiplicative function that takes only positive real values.
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Show that f has a limiting distribution if and only if each of the
following four series converges:

Z 1*f(p), Z |1*f(p)|2’ Z }’ Z 1

e<iimi<e P apdimice P o2 P < ?

4. Let fi,...,fr be real-valued additive functions, and put f(n) =
(fi(n),..., fr(n)). Give necessary and sufficient conditions that f
should have a limiting distribution in R*. Deduce a variant of the
Erdds—Wintner Theorem (Theorem for complex-valued addit-
ive functions.

5. Let f be a real-valued additive function with limiting distribution F,
and let p denote the associated limiting measure. Show that either

1i(t) is never 0, or that its zeros form an arithmetic progression of the
form ¢(2k + 1) for k € Z.

23.4 Applications of probability theory

Let f be a real-valued additive function, and for each prime p let X,
denote the random variable defined in (23.3). We take the X, to be

independent, and ask whether the random variable X defined in ([23.4))
exists. In this connection we quote without proof

Theorem 23.11 (Kolmogorov’s Three Series Theorem). Let Y;, be in-
dependent random variables. If each of the three series

2
zn:/Yn|<1 r Zn:/Yn|<1/|Yn| ’ zn:/ynxl

converges, then the sum Y = 'Y, converges almost everywhere. If
any one of these series diverges, then the sum ) Y, diverges almost
everywhere.

For our sum , the conditions of Kolmogorov’s theorem are pre-
cisely the conditions of part (a) of the Erdés—Wintner Theorem (The-
orem [23.9)). Hence the random variable X exists precisely when f has
a limiting distribution F. In the context of Kolmogorov’s Three Series
Theorem, when Y exists its Fourier transform is

Y(t) = /e(—tY) = /ge(—tYn) = g/e(—tYn) = E[?n(t)
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by the independence of the Y,,. In the case of the variable X, we find
that

)?p(t) = /e(_tXp) =1- % + d—tf(p))%(l — 1) 4.

p
(=Y e(—t;f(p» ) e(—t;;(p?)) ),
and hence
() - 1;[ (1 B %) (1+ e(—tg(p)) N 6(_t£2(p2)) +> _

But this is the same as i(t) given in (23.35)), so by the uniqueness of
the Fourier transform (Corollary it follows that F' is the distribution
function of X. A great deal is known concerning the distribution function
of a sum of random variables, so by appealing to this theory we obtain
further information concerning F'. In particular, we note the Law of Pure
Types:

Theorem 23.12 (Jessen-Wintner). LetY,, be independent random vari-
ables such that Y = )Y, converges almost everywhere, and suppose
that there is a countable set C such that P(Y, € C) =1 for all n. Then
the distribution of Y is of pure type: Fither it is discrete, singular, or
absolutely continuous.

Hence we see that the distribution function F' of a real-valued ad-
ditive function is of pure type. In Theorem [23.10] we characterized the
situation in which the distribution is discrete; this can also be obtained
by applying a general theorem of Lévy (get reference) concerning sums
of independent random variables. We have no similar criterion to distin-
guish between singular and absolutely continuous distributions, although
all three types do occur. In particular, the distribution of log ¢(n)n is
singular, as we now show.

Theorem 23.13. Let 1 denote the probability measure such that
Jim eard{n < N 5 pln)/n < ¢} = (o0,
Let o be fized, 1 < a<e—1, put I, = [p(k)/k — 1/k*, p(k)/k], and set
S={z€l0,1] : x € I}y for infinitely many k}.
Then m(8) =0, and u(8) = 1.

Here m(8) denotes the Lebesgue measure of 8.
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Proof The first assertion is clear, since

SQUIk

k>K

for any K, so that

m) <y ke

k>K

As for the second assertion, we show that for any € > 0 and any K there
is an L such that

u( U Ik) >1-c. (23.36)
K<k<L

The advantage of this finite form of the assertion is that we can estimate
the left hand side by considering densities of set of integers: If N = {n :
e(n)/n € Ugor<r I}, then d(N) = ,u(UK<k§L I;). In establishing
, we may assume that K is large, for if the above holds for one
value of K, then it also holds for all smaller values of K. For a given
number n, write n = H?:(?) p; with p1 < p2 < -+ < poen), and set
dr = [[;<, pi- We shall show that if L is sufficiently large, then most
integers n have a divisor d,., K < d,, < L, such that
p(n/dy)

— = >1—-d“.
n/d, "

In this case p(n)/n € I, , since

d, n d, n/d, d; a dy, a
wilr)ngl)szIT)wgl//Clr)Zwilr)(l_dr )ngr)_dr _

Let Ny denote the complementary set of numbers, i.e., the n for which
o(n/d.)/(n/d,) < 1 —d ® for all d, € (K,L]. To estimate the size
of Ny we consider various possibilities. Let N7 be the set of n such
that the interval (K, log L] contains none of the special divisors d,. Let
B=a/2+(e—1)/2,s0 that 1 < o < < e—1, and let Ny be the set of
numbers nsuch that p,; < d? whenever d, € (K, L]. Finally, let N3 be
the set of those n such that there is a d, € (K, L] for which p,,; > d?
and p(n/d,)/(n/d,) < 1—d_ . The sets N; possess asymptotic densities,
but for our present purpose it suffices to bound their upper asymptotic
densities where the upper asymptotic density of a set A is

- 1
d(A) =limsup — card{n <z : n € A}.
T

T—r 00
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The main estimates to be established are that

— log K
d(N —_— 23. E:DensityN1
Ny) <« Toglog L (23.37) ensity
1

060) < 5
(NiN2) < loglog L (23.38) ensity
d(N3) < Koot (23.39)

Once these estimates are in place, we argue that Nog = N3N UN;N§ C
Ny UN§N,. Since d(A U B) < d(A) + d(B), it follows from and
that

log K
loglog L °
We also observe that NoN§ C N3. Thus Ny = NoNa U NgN§ C No U N3,
so from ([23.39) and (23.40) we deduce that

dNo) < (23.40) |E:DensityN2Est

log K

d(Ng) < d(N d(N Ke—etl .
(No) < d(N2) +d(N3) < JrloglogL

Thus d(Ny) < € if K is sufficiently large and if L is sufficiently large
compared with K.

To prove (23.37)), we suppose, as we may, that L > exp(K?). For
n € Ny, choose r so that d, < K and d,4+1 > logL. Thus n = d,m
with m composed entirely of primes > (log L)/d,. This decomposition is
unique, since d,. is composed entirely of primes < K, and m is composed
entirely of primes > (log L)/d, > K?/d, > K. Hence

card{n <z : neN;} = Z card{m < z/d : plm = p> (logL)/d}.
d<K

By the theorem of Eratosthenes-Legendre (Theorem 3.1), this is

1 1 1 1
~edo g I (=5) =o(Xg) 11 (1-5)
d<K = polosL d<k © pclosn

< log K
log((log L)/ K)’

so we have ([23.37)).
As for (23.38), suppose that n € N{Ny and that d,. € (K, L]. Then

dry1 = drpry1 < di"‘b. Thus by induction, if ry is the least r for which
d, > K, then

dp < dT < (log L)MHOT
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provided that this bound is < L. Set

n_ {log log L — log loglogL}
B log(1+b)

Then d,. < L for r <ry+ R. Let

QL(n) = Z 1.

p*n
p<L

Thus Q1 (n) > R if n € Ny. By the Turdn—Kubilius inequality (Theorem
531),

Z(QL(n) —loglog L)* < zloglog L.

n<x
Let ¢ = 1/log(1+0). Here ¢ > 1, since 1+ < e, and R > (c—¢)loglog L
if L is sufficiently large. Thus 1, (n) —loglog L > loglog L when n € Ny,
and so we have (23.38]).

If n € N3, then we may write n = dm where K < d < L, p|m implies
p > d?, and ¢(m)/m < 1—d~. This decomposition may not be unique,
but
card{n <z : n € N3}

< Z card{m < z/d : plm = p>d° @(m)/m <1 —d °}.
K<d<L

(23.41) |E:DensityN3Est

Let
fy(m) = log(1—1/p)~".

pln
P>y

This is an additive function with

A(fy,2) < (1 +01)(ylogy)™",  B(fy,2z) <y *(logy)~".

Thus if V' > 2/(ylogy), then by the Turdn-Kubilius inequality we see

that
z
card{m < z : fy(n) >V} < ViZloay
On taking z = x/d, y = d?, V = log(1 — d~%)~! < d“, we see that the
m < z/d for which f,(m) >V includes the m in (23.41)), and hence

xKQa—?ﬁ

, —142a-28 -1
card{n <z : neNs} <z Z d (logd)™ < e K

K<d<L
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This gives (23.39), in view of the definition of . Thus the proof is
complete. O

23.5 Multiplicative functions with vanishing mean
value

Suppose that

S(z) =Y f(n). (23.42)

n<lx

If S(z) < x, then by Theorem 1.3 the Dirichlet series

F(s)=Y_ f(n)n"* (23.43)
n=1

converges for ¢ > 1, and

F(s) = 3/100 S(x)z="tdx

for o > 1. From this formula it is immediate that if S(z) = az + o(z),

then
a T
Fls) = (o)
)= 7o\

as ¢ — 11. This is a simple abelian theorem. In prior discussions of
tauberian converses, such as in §5.2, we imposed a bound on the size of
f(n) so that S(x) could not change to quickly. In the present context, the
hypothesis that | f(n)] < 1 for all n does not yield a converse (cf Exercise
28.5.1.1), but we find that the hypothesis that f € M is sufficient. The
lesson is that for f € My, the quantity |S(z)| changes more slowly on
average than it might under the weaker assumption that |f(n)| < 1.

Theorem 23.14. Suppose that f € My, let S(x) and F(s) be defined
by (23.42)) and (23.43), and for oo > 0 put

) 1 1/2
M@‘( 2 T S FW) :
k=—o00 lt—k|<1/2

Then

1
s@) < e | M) 4. (23.44)
1

logz Jij105 @
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From the trivial bound F(s) < 1/(c —1) it follows that M(a) < 1/a,
and when this is inserted in we find that S(z) < x, which is also
trivial. However, if for every T we have F(s) = o(1/(c — 1)) uniformly
for |t| < T, then M(«) = o(1/«), and hence S(z) = o(x).

We show below that

M(a) > 1 (23.45)
uniformly for f € My. Thus the right hand side of (23.44) is
log 1
S 2 oglogz
log x

That this should be the limit of the method is not surprising, in view of
the example considered in Exercise 27.5.1.2, for which f € My, M (a) <
1, and yet there is a large x for which |S(z)| > z(logz) ™! loglog z.

To establish (23.45)), we write
F(s) = (14 D(s))G(s)H(s) (23.46)

where
D)= 318, ae =1 (1- 12",
k=1 p>2
H(8)=H(1— f;f)>(l+f<f)+igf)+---).
Here

(-2 (4 L I6D )
P’ P’ P

2 2 3 2
f(p )p;f(p) AR I NIV 7

=1+ p33

which is 1 plus an amount not exceeding 2p~27 (1 — p~7)~! in absolute
value. Thus the product H(s) is absolutely and uniformly convergent for
o >2/3, and so

logH(s) <1  (00>2/3). (23.47)

Choose a real number to with |tg| < 7/log 2, so that f(2)/2¢% is positive
real. Then Re f(2)/2% > 0 for |t —to| < 7/(2log2), and so |1+ D(s)| >
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1/2 for o > 1, |t — to] < 7/(2log2). Also,

[ st vina = Y3 SO [
log G(o +it)dt = 7/ p~ "t dt
to—1 p>2 k1 kpk?(1+a) to—1
- 1
D S)
" k:lk pFlogp

Thus there is an absolute constant ¢ > 0, and a t1, [tg — #1] < 1, such
that |1 + D(1 4+ a + it1)] > 1/2 and |G(1 4+ « + it1)| > ¢, so we have

©3.45).

Proof of Theorem We shall establish the two main estimates

18 log1
S(x) < ° / | (g)l du + T8 ng, (23.48) |E:S(x)Estl
1

log x U log x

" S(w)]logu
[P e < M2 og o) ogr (23.49)

1

These suffice to give the stated result, since from (23.49) it is evident
that

T g 2/logx M
/ 1S <g)| du < M(2/logz) < / Mla) da
z/2 U 1/logz «

We replace x by 21/2" and sum over k to show that

/x |S(“)du<</1 Mia) 4,

2
U /logz &

We insert this in (23.48)) to obtain the stated result. The second term in
(23.48]) can be neglected, in view of (23.45|).

To establish (23.48]) we first observe that

(log x) Z f(n) — Z f(n)logn

n<lx n<lx

= Zf(n) logz/n < Zlogm/n L. (23.50)

n<zx n<z
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Furthermore,

> f(n)logn=">" f(n)>_ A(d)
d|n

n<x n<x

— S A@) S fmd)

d<zx m<z/d

—Zlogp Z f(mp) +O( ZIOg‘D>

p<z m<z/p pk<z

= (logp)f(p)S(x/p)

p<z

+0(Z<1ogp> > 17 mp) = f(m)fp)]) +O@).

p<z m<zx/p

Since f(mp) = f(m)f(p) unless p|m, we see that the sum over m < x/p
is < x/p?, and so the first error term above is < #. On combining this
with (23.50)), we deduce that

S(x) logm<<x+Z|S(:r/p)|logp. (23.51)

p<z

Here we have a bound for |S(z)| in terms of S at smaller arguments.
The trivial bound for either side is zlogx. Thus if it were the case that
S(x) were of the order of x, then S(z/p) would have to be of the order of
2 /p for many primes p. If the primes were exactly uniformly distributed,
then the sum over p would be

/ 1S(z/v) / |S£2)|du.

Of course the primes are rather irregularly distributed, but as x var-
ies the points x/p also move, so by averaging over x we can pass to
a smoother average of |S|. Suppose that X > Y > Z > 2. Since
[S(X) — S(x)] <|X — x|+ 1, we see that

1 X+Y
|S(X)|log X <<?/ |S(z)|logxdr +Ylog X .
e

By (27.50) this is

X+4Y
<K X+YiogX + — / Z|S x/p)|logp dx .

p<lx

E:S(x)Est3
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We bound the contribution of the smaller primes trivially:

> 1S(x/p)|logp < x Z P« XlogX/Z.
p<X/Z p<X/Z

As for the contribution of the larger primes, we note that

X+Y XA4Y
/ |S(z/p)|logp dz = Z / |S(z/p)|dz logp
X/Z<p<2X X/Z<p<2X
(X+Y)/p
= > [ istldupiogp
X/z<p<2x ' X/P
27
— [Iswl Y plogpdu,
1 X/Z<p<2X

X/u<p<(X+Y)/u
Here we can restrict to u < 27 because the two intervals that p must
lie in are disjoint if w > 2Z. In estimating the above, we now drop the
condition X/Z < p < 2X. The remaining condition stipulates that p
must lie in an interval whose length is Y/u > Y/(22) > 2 if Z < Y/4.
Thus by the Brun—Titchmarsh inequality (Corollary 3.4) the number of
primes in the interval is bounded by the length of the interval divided
by the logarithm of its length. Hence the above sum over primes is
XY log X/u
u2logY/u
Here the quotient of logarithms is an increasing function of u, so the
above is uniformly
XYlogX/(22)
wlogY/(27)

We take Y = X/log X and Z = X/(log X)?, and on assembling our
estimates discover that

S(X)logX<<X/ du+XloglogX
That is, we have (23.48)).

Finally we prove (23.49). Let Si(z) = >_,, -, f(n)logn. By (23.45)
and (23.50) it suffices to show that

1

|S1( )| ,
/ 02 du < M(2/logx)logx. (23.52)
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By the Cauchy—Schwarz inequality,

T T 2 1/2 z 1/2
[ B ([ B[ 1)
1 1 1
It now suffices to show that
<18 (u)|? M(a)?
[ e (2359

for 0 < a < 1, since we obtain (23.52) by taking a = 2/logz. By
Plancherel’s formula as in (5.26), we see that

/°° |S1(u)|2d 1 /°° ‘F’(1+oz+it)’dt

witza T op ool 1+ a+it
S o [ )2
< 7/ F'(14+a+it)|"dt.
R+ e

We multiply and divide by |F(1 + « + it)|? to see that the above is

o0 ‘Lt(k) /k+1/2 F/ ) 2
< —(1 t)| dt
_k;ka"'l k F( ot

—1/2

where

k) = F(1 it)]? .
(k) |t_%i’i/z| (1+a+it)]

Thus to obtain (23.53]) it suffices to show that

k+1/2 1o 2 1
/ ’—(1+a+it) dt < —. (23.54) |E:IntIF’/FI‘2Est
k—1/2 F «

By (23.46)) we see that

F D'(s) G . I

FO= e TeW !
From (23.47)) we deduce that Hﬁ,(s) < 1 uniformly for o > 1. By The-
orem [I] we see that

k+1/2 ) o 2 1/2
/ ‘—(1+a+z‘t)’ dt§3/
A G

—1/2 —1/2

¢ NG
Z(l—l—a—i—zt) dt .

If 0 < @ <1, then by Theorem 6.7 this latter integral is

1/2 1
<</ o 4 it| "2 dt < — .
-1/2 (0%
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Clearly D'(s) < 1 for ¢ > 1. For ¢ > 1 we write

1 N j

This is a Dirichlet series whose coefficients do not exceed those of

>© > VA o= s i 25—1
1+Z( 2 )_1+Z(2—1)J_25_2.
1 j=1

J=1 k=

Hence by Lemma ?7,

k+1/2 /2 gltatit _ 12
/ |1+D(1+a+it)|_2dt§3/
k—1/2 —1/2

Here |21 T+ — 1] < 1 uniformly for 0 < a < 1, and
) a+it
gltotit _ 9 — 2(log2) / 2% ds .
0

This integrand has real part > 1/2 for ¢ > 0 and [¢| < 7/(3log2) =
1.5107867. .., so [21To+i — 2| > | + it| for a > 0 and [¢t| < 1/2. Thus
the right hand side of (23.55) is

1/2 1
<</ |l +it| 72 dt < —,
—1/2 (0%

so we have (23.54)), and the proof is complete. O

We comment that the first part of our proof is reminiscent of the
elementary proof of the Prime Number Theorem, as found in §8.2.

Moreover, the identity on the left hand side of (23.50) is equivalent
to integrating by parts in Perron’s formula, as

1 c+io0o F s 1 c+ioo F s
oga:/ (s)x ds / (s)x ds

27TZ —ico S o % —ico 52
1 c+ioco F/ s
_ 1 / Fls)z® oo
270 Jo—ioo s

This is expected to produce a gain, since we expect that F'(s)/s is not
generally very rapidly changing, while x* is spinning fairly rapidly. In-
deed, suppose we tried to do something as simple as using Perron’s
formula to show that [x] < 2. Since

1
1
/ IC(1+ a+it) |z T dt < 21 log —,
1 «

girati —| - (23.55)
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we are unable to obtain a bound better than zloglogz. On the other

hand, if we were to use Perron’s formula to show that > logn <

n<z
x log z, we fare better, since

1 plto
/ I (1 + a +it)|x' T dt < ——o

1 @
and we can take & = 1/logz. In both of these approaches, we would
still have the problem that the kernel in Perron’s formula decays only
like an inverse first power. This could be overcome by smoothing, but
in the argument just completed we avoided that problem by averaging
over x, which allows us to appeal to Plancherel’s identity.

The proof just completed depends only on properties of the zeta func-
tion in a neighbourhood of s = 1, but if we take f(n) = u(n), so that
F(s) =1/{(s), then the further information that {(1 +4t) # 0 allows us
to deduce that M (z) = o(x).

We now relate the behaviour of F(s) to the values of f(p).

Theorem 23.15 (Haldsz). Suppose that f € My, and let S(x) and F(s)
be defined as in (23.42)) and (23.43). Then the following are equivalent:

(a) S(z) = o(x) as x — oo;

(b) For each T > 0, F(s) = o(1/(c — 1)) as ¢ — 17 uniformly for
t| < T,

(c) For each fizred t, F(o +it) = o(1/(c — 1)) as ¢ — 17;

(d) For each t, at least one of the following holds:

; L—Re(f(pp™™) _ ,
0 Zp: p ls (23.56)

(i) f(2F) = 2% fork=1,2,....

Moreover, there is at most one real number t for which (23.56))(1) fails,
and at most one real number t for which (23.56)(ii) s true.

Delange’s Theorem (Theorem [23.8]), when combined with Haldsz’s

Theorem (Theorem [23.15]) is rather comprehensive, for if (23.56) fails
and

> p
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converges, then by Theorem [23.8 we have

Z f(n)n™" = ax + o(x)

n<zx

where

GZEI(l_;)(H fo)  f?) +)

pltit | p2t2i
is nonzero, and by partial summation,
a
S(x) = ——
(z) 14t

In the one remaining case, in which (23.56)) fails for some ¢, and ([23.57)

does not hold for that ¢, then with more work it can be shown that

Sty = 2T (1 - D+ 52+ S W) o) +ola). (2359

y 1+t 2424t
1+ztpS prT o prTe

o o).

Proof That (a) implies (b) was the subject of the opening remarks of
this section. That (b) implies (a) was established in a strong quantitative
form in Theorem To see that (c) and (d) are equivalent, we recall
the decomposition (23.46]). By (23.47)) we know that H(s) < 1 uniformly
for o > 1. Also, lim,_,1 D(s) = D(1 +it), and 1+ D(1 +4t) = 0 if and
only if (23.56) (ii) holds. Finally,

Gle)o — 1) =[S = exp (- 30 B )y

g b

Here the summands are nonnegative, so the expression is bounded, and
tends to 0 if and only if the sum tends to infinity. But since the sum-
mands are nonnegative, this is equivalent to (23.56))(i). Thus (c) and (d)
are equivalent. Next we show that (d) implies (b). Suppose first that
(23.56) (i) holds for all ¢ in an interval [T7,T5]. We observe that

Re(1 — f(p)p*“)>
p° '

F(s)(071)<<exp(—z

The function on the right hand side decreases to 0 as ¢ — 1%. Thus
we obtain (b) for the interval [T, Ts] by appealing to the following ele-
mentary consequence of compactness: If r(o,t) is continuous in ¢ for
each fixed o > 1, and if for each fixed ¢ € [T1,T5] the function r(o, 1)
is monotonically decreasing to 0 as ¢ — 17, then r(o,t) tends to 0 as

E:A1tEstS(x)
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o — 17 uniformly for ¢ € [T}, T»]. Now suppose that (23.56) (i) fails for
t = to, but that ([23.56|)(ii) holds for ¢ = to. Then for |t —to| < 1 we have
Re(1 — f(p)p*“))
»° '

F(s)(o—1) < |s—1 7Z't0|exp<7 3

Again the right hand side decreases monotonically to 0 as o — 17, since
(23.56) (i) holds for 0 < |t — tg| < 1. Thus by the compactness principle
again, we have (b) uniformly for |t —to| < 1. Thus (d) implies (b). Since
(b) clearly implies (c), we have shown that (a)—(d) are equivalent.

As for the last assertion, let ¢; < to be fixed real numbers, and let P
be the set of primes p for which argp’*>=*) € [27/3,47/3] (mod 27).
That is, if

Iy = [exp(2m(k +1/3)/(t2 = 1)), exp(27(k + 2/3) /(2 — t1))];

then P consists of those primes such that p € I for some k. By the Prime
Number Theorem we see that Zpelk 1/p =< 1/k for all large k. Hence
Ypep 1/p = +00. If Re(1 — f(p)p~") < 1/2, then |arg f(p)p~"| < m/3.
If this holds for both ¢; and t,, then | arg p**1—*2)| < 27/3. Thus if p € P,
then the inequality Re(1 — f(p)p~%) < 1/2 fails for at least one value
of j, and so

5 ]% s Re(1 — gp)pitl) 2y Re(1 — J;(P)P

pEP

—ito )

Consequently at most one of the sums on the right is convergent, and
the proof is complete. O

Suppose that f € M. If there is a point of the unit circle |z| = 1 that
is not a limit point of the numbers f(p), then for any ¢ # 0 there is a
delta such that

P
Re(1—f(p)p~**)>6
so (23.56)(i) holds for all ¢ # 0. In closing we mention a commonly

occurring situation.

Corollary 23.16. Suppose that f € My, and that there is a constant
¢ > 0 such that |Im f(p)| < ¢ Re(l — f(p)). Then

. 1
Jim 2> fn)

exists.
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Proof In view of the remark made prior to this Corollary, the condition
(23.56) (i) holds for all ¢ # 0. If (23.56) holds when ¢t = 0, then by
Theorem [23.15| the mean value tends to 0. Otherwise,

Z\l— <ZRe1— + | Im f(p)]

» p
Re(1 - f(p))
<(c+1 — < oo,
<+ ——
P
so the mean value exists and is non-zero, by Corollary [23.4] O

23.5l1 Exercises

1. Put f(n) =1for N <n < 2N, f(n) =0 otherwise, and let F'(s) be
defined as in (123.26]).

(a) By Theorem 1.12, or otherwise, show that F(s) < 1+ 7/N uni-
formly for o > 1.
(b) Note that S(z) < z when = = 2N.
2. (Montgomery 1978) (a) Let fo(n) = i®*(™). By Theorem 7.18, or oth-

erwise, show that

= fo(n) = cx(logz)""* + O(x(logz) *)

n<x

= 0061

(b) Let Fy(s) = > o2, fo(n)n™*. By means of Theorem 6.7, or oth-
erwise, show that Fj(s) < log 7 uniformly for o > 1.

where

(¢) Let f be a totally multiplicative function with

i (if < a2 orp>x),
e(0,) (for x1/2 < p <)

flp) =

where the 0, are to be determined.
(d) Explain why

S(x) = S fon) + D el6p)So(x/p).

n<z z/2<p<z
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(e) Deduce that there is a choice of the 6, such that

s@i=| X aw+ X IS
pln :nfpxgxl/z z!/2<p<z

(f) Show that
xloglogx

Z [So(z/p)| =<

1 ensa log x
(g) Show that M(a) < 1 uniformly for a > 0.

3. Recall that the ‘negative binomial theorem’ asserts that

e i (nZT))z”

n=0
for |z| < 1. Here r is any complex number.
(a) Show that if r > —1, then (™/") > 0 for all n.
(b) Suppose that f is totally multiplicative, that |f(n)| < 1 for all
n, and let F' be defined as in (23.26]). Show that if ¢ is a positive

real number, then

To+T T

/ Fo +it)]e dt < 3/ C(o + i) dt.
To—T T

(c¢) Use (23.46]) to show that if f € My and ¢ > 0, then

To+T T

/ (o +it)|? dt <<q/ C(o +it)|7 dt
To-T T

4. (Turdn) Let f(n) be an integer-valued additive function, and let
N(z;q,a) denote the number of n < x such that f(n) =a (mod q).

(a) Show that lim, o N(z;,q,a)/z = n(q,a) exists for all a and g.
(b) Show that n(g,a) = 1/q for all a if and only if both the following
hold:

(i) For each odd prime p1|q,

(ii) If 2|g, then
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or both of the following hold: f(2F) is odd for all £ > 0, and
if 4|q, then

23.6 Notes

S:NotesProbNoThy

Our use of probabilistic modelling is necessarily a little informal, since
the size of sets of integers as measured by asymptotic density do not form
a probability space. One of Kolmogorov’s fundamental axioms states
that if E1, Es, ..., are pairwise disjoint events (i.e., sets) in a probability
space, then

P(n[_jl En) = g P(E,).

However, if F,, = {n}, then the asymptotic density of E,, is 0 for all n,
while the density of the union of the F,, is 1.
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Exponential Sums II: Vinogradov’s method

24.1 Vinogradov’s mean value theorem

In Chapter ??—we derived nontrivial bounds for sums of the sort
> elf(n)
a<n<b

from information regarding the first few derivatives of f. However, in
studying the zeta function near the line Res = 1 we have to examine

§ n—l—zt7

a<n<b

sums such as

and here the situation is much more delicate. To obtain a satisfactory
treatment it is necessary to consider derivatives of

f(z) = %logw

of order r, where r depends on the interrelationship between a and t.
It is possible to make use of Theorem 7?7 in this regard, although the
dependence on r in the implicit constant there needs to be made explicit.
The amount of saving which can be made in this way is rather poor
because the exponent is dropping off like 27", but Littlewood was able
to show that the zeta function has a zero free region of the form

We now introduce a much more efficient way of making use of higher
derivatives, or rather, what is tantamount to the same thing, polynomial
approximations to f(z) of arbitrary degree. The underlying idea is to

40



24.1 Vinogradov’s mean value theorem

relate the individual sums to a mean value. Let

and let

a=(ag,as,...

n*) = (n,n?,...

aak)v

S(a, 2) = Z e(n™ . a)

necAa

41

where 4 is a finite set of integers. We are interested in the mean value

Jk(/q’ b) =

Now

Tk

|S(c, 2)|? dav.

S(a, a)b = Zr(m, A")e(m - )

m

where r(m, ﬂb) denotes the number of solutions of the system

ny +
n% +
n’f +

+
+ nf
+ n{f

with n; € 4. Thus by Parseval’s identity,

Ji(A4,b) = Zr(m7ﬂlb)2.

m

2t

When B and C are subsets of R? containing only finitely many lattice
points, let N(B, C,1) denote the number of solutions of

mq + e + mp
m% + e + mg
my o+ e 4+ my

ni
ni

nf

+
+

+

+ n + I
+ ng + 12
+ n’lf + Ik

with m € B and n € C, and for brevity write N(B,l) = N(B,B,1),
N(B) = N(B,0) and N(B,C) = N(B,(,0). Then we can define the

more general mean

Tu(A.b,1) = N (2°,1),

so that

Je(4,b) = N(a%),
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concerning which the following elementary observations are useful.

L:N(B)eqs+ineqs| Lemma 24.1. In the above notation,

(a) If B C C, then N(B,1) < N(C,1),

b) N(B,1) < ( ) for all l,

) IfC=BU---UB;, then N(C) < jSI_, N(B),

d) Ifd = (d,d,...,d), then N(B+d,C+d) = N(B,0),
e) Jk(ﬂl,b, ) < Jk(ﬂLb)

A~ N N

Proof (a) If B C C, then the solutions counted in N(B, B,l) are also
counted in N(C, C,1).
(b) Let r(m, B) denote the number of solutions of (24.1) with n € B.

Then
N(B,l) = /
’]l‘k

<),
Tk

(c) In the above notation,

r(m, C) SZT

=1

2
‘ e(-1l-a)da

> r(m,B)e(m - )

3 r(m, B)e(m - a)f do = N(B),

as desired.

<.

and so by Cauchy’s inequality

J
2 SjZT(m B;)?
i=1

It now suffices to sum this over m, since

N(C) = Zr(mv C)Zr N(Q;Z) = ZT(’I’TL, $i)2
(d) Suppose that
ml + e + mb — nl + P + nb7
mf 4+ - 4+ mf o= b+ o 4+ b

By the binomial theorem we see that if 1 < j < k, then
b J

O 0 e ) S

i=1 =0
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Thus N(B,C) < N(B+d, C + d). Hence also,
N(B+d,C+d)<N(B+d)—d,(C+d)—d)=N(B,C).

(e) is a special case of (b). O
Let 01,...,0, denote real or complex numbers and let
q q
Q(z:0) =[[(z—0;) =D (~1)forzt* (24.2)
j=1 k=0
where 09 = 1 and 01,09, ...,04 are the elementary symmetric functions

of the 6;, which is to say that if Q = {1,2,...,¢}, then

or = 0.(0) = Z Hﬂj.

scQ jes
card S=r

For m =1,2,... we also form the power sums of the 6,

q
Sm = $m(0) = ZH;“
j=1

These are also symmetric polynomials in the §;, and are related to the
o; by means of the Newton—Girard formule, which assert that

r—1
> (1 ous, = v, 213)
k=0

for 1 <r < ¢, and that

q

> (—DFors, k=0 (24.4)

k=0

for r > ¢. In this second identity, the quantity sy arises when k =
r = ¢. It is to be understood that sy = ¢ even if one or more of the 0;
vanishes. We use the first of these identities (a proof of which is sketched
in Exercise|[l)) to establish our next result.

Lemma 24.2. (a) Suppose that 61,...,04,¢1,...,04 are such that
5.(0)=s.(@)  (1<r<q).
Then
Q2 0) = Q(z; )
identically.
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(b) Suppose that p is a prime number with p > q, that u is a positive
integer and that 61,...,04,¢1,..., ¢4 are integers such that

5:(0)=s5,(¢) (modp")  (1<7<q).
Then
Q(2:0) = Q(z;¢) (mod p")
for all integers z.

Proof (a) For r = 1 we observe that 1(0) = s1(0) = s1(¢p) = o1(9).
For r > 1 we argue by induction. In we see that o, is expressed
in terms of si,S9,...,8, and 0g,01,...,0,_1. Hence by the inductive
hypothesis the left hand side of with respect to 0 is equal to the
same expression with respect to ¢.

(b) As in the preceding case we find that o1(0) = o1(¢p) (mod p*).
In the inductive step we find that ro,.(0) = ro.(¢) (mod p*). Since
r < q < p, it follows that (r,p*) = 1, and hence that 0,.(8) = 0,(¢)
(mod p*). O

Lemma 24.3. Let Ji(z,b) = Ji((0,2],b). Then

(a) Ji(z,b) < blaz® when b <k,

(b) Ji(z,b) < k!22*=% when b > k,

(c) Jp(x,b) > [x]°,

(d) Jy(z,b) > (20 + 1)~k |2 ]2b-k(k+1)/2,

Proof (a) From (24.1) we see that Ji(x,b) is the number of choices of
m, n in (0,7]° such that

sr(m) = sp(n) (1<r<k). (24.5) |E:sr(m)=sr(n)

Hence by Lemma with @ = m, ¢ = n we have
Q(z;m) = Q(z;n)

identically. Hence the roots (counting multiplicity) coincide. Thus the
n; are permutations of the m;.
(b) When b > k,

T A

n<x n<x
by part (a).

< g2k gk
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(c) Since Jg(z,b) is the number of solutions of (24.5)), by taking m; =
Ny, Mo = Na, ..., My, = Ny we see that there exist at least La?jb solutions.
(d) For brevity put N = |z]. Then

/.

The integral on the left hand side is the number of solutions of

N 2
Z e(n(k) . a)‘ be(—l ) da‘ < Ji(z,b). (24.6)

spr(m) —s.(n)=10 (1<r<k)

with m, n in (0,7]°. Since 0 < s,.(m) < bN" there are no solutions
unless I satisfies

| <BNT  (1<r<k). (24.7)

We sum both sides of (24.6]) over all such I, and note that on the left we
are just counting all possible choices of m and n, the number of which
is N2b. The number of I satisfying (24.7) is at most

(2b 4 1)k N 2RO+,
Thus
N? < (2b+ 1)FN 2D 1 (2 b),
which gives the desired conclusion. O

Our treatment of Ji(xz,b) when b > k is via a local or “p-adic” argu-
ment, and the following lemma, due originally to Linnik, is the sparking
point of the method.

Lemma 24.4. Suppose that p is a prime number with p > k. Let A(p, h)
denote the number of solutions of the simultaneous congruences

Y omi=h; (modp)) (1<j<k)

with m, < p* and the m, distinct modulo p. Then
A(p, h) < klpzhE=b,

Proof Let B(p,g) denote the number of solutions of

k
Y mi=g; (modp*) (1<j<k) (24.8)

r=1

with m, < p* and the m,. distinct modulo p. Then for each h, A(p, h)

E: |S|2bFC

E:summr jmodpk
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is the sum of those B(p,g) with g; = h; (mod p?) and 1 < g; < pk
for 1 < j < k. The total number of possible choices for g is p%k(k’_l).
Thus it suffices to show that B(p,g) < k!. For a given g suppose that
mi,...,my is a solution of (??) with m, < p* and the m, distinct
modulo p. Suppose that nq,...,n; is another such solution. Then, by

Lemma [24.2|b),
Q(z;m) = Q(z;n) (mod p*)

and so0 Q(ns;m) =0 (mod p*) whenever 1 < s < k. Since

k
Q(z;m) = H(Z —my),

r=1

for each s there is an r such that ny, = m, (mod p). Also, since the
m, are distinct modulo p it follows that m, is unique, and so n; = m,.
(mod pk). Thus ns = m,.. Since the n, are distinct modulo p, and so are
distinct, it follows that the n are a permutation of the m. O

We now have all the machinery we need to establish a useful version
of the Vinogradov Mean Value Theorem.

Theorem 24.5. There is a positive number C' such that when k > 2, r
is a positive integer and x is a real number with x > 1 we have

Ji(x, kr) < D(k,r)xQ’“k*%k(k“)*"(W)
where
D(k,r) = exp (Crk®log k)

and
1

2 T

n(k,r) = 3k (1 — E) :

Proof We induct on 7. The case r = 1 is immediate from{24.3((a) and the

observations that 2k — 1k(k-+1)+n(k,1) = k and that k! < k* < D(k, 1)
provided that C' > 1.

Suppose now that r > 2 and that the Theorem holds with r replaced
by r—1. Then 1 — (1—%)T§ %,SO

1
§k(k +1) = n(k,r) < min(k?, rk).

Hence if z < exp(C max(k,r)log k), then zzk¢k+D=n(kr) < D(k ), and



24.1 Vinogradov’s mean value theorem 47

the trivial estimate Jj(z,kr) < 22" gives the Theorem. Thus we can
suppose that

x > exp(C max(k,r)logk). (24.9)
Let
y = gl/k

and choose z to be the least number such that the number of primes p
withy <p <y+zis %k(/ﬂz —1). From (24.9) it follows that y > k',
and so by the prime number theorem

z<y

if C' is a sufficiently large absolute constant. For brevity we write b for
kr. Let Ry(h) denote the number of solutions to the system

Swion =ik (2110

with m, <z and mq,...,m; distinct, and let Ro(h) denote the number
of solutions in which the mq,..., my are not distinct. Then

Jo(2,0) = 3 (Ri(h) + Ra(h))* < 2(S1 + Sa)
h

where

Si =Y Ri(h)*.
h

We consider two cases: S; < S, and S7 > S3. We deal first with the
easy case, in which Sy > Sj. In this case, Ji(x,b) < 4S5 and Ra(h) <
(g) R3(h) where R3(h) is the number of solutions to the system ([24.10])
with m, <z and m; = ms. Let

£B) = en™.p).

n<z

Then
S < k4/ |f(2a)2f(a)2b*4| da.
Tk

Hence by two applications of the simplest form of Holder’s inequality
(or by a single application of the extended form found in Exercise [4))

} -
S, < k4</ F(200)[2 da) (/ f(a)|2bda) — k() E
Tk Tk
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Thus the Theorem holds in the first case provided that C > 6.
We now suppose that Se < .S, which implies that

Jk(ac,b) S 451
For a solution m of (24.10) counted by Ry (h) let

Pm)=[[ (mi—my).
1<i<j<k
Then 0 < |P| < z2**=1)_ Since y = /¥, the number of prime divisors
p of P with p > y is at most $k?(k — 1) < 3k(k* — 1). Thus there is a
prime p with

y<p<z
such that p t P, and so for such a p the my, ..., my are distinct modulo
p. Hence
Ry < Y Rilh,p)
y<p<y+z
where Ry(h,p) denotes the number of solutions of (24.10]) subject to
m, < x and myq, ..., m; distinct modulo p. Let

I(p) =Y Ru(h,p).
h

Then I(p) is the number of solutions of
sim) =s;(n)  (1<j<h)

with mq,...,mp,n1,...,np in (0,], mq,...,my distinct modulo p and
ni,...,nk distinct modulo p. Thus

Ji(z,b) <4 Ri(h))?
h

<aY R Y Rahp)?

h y<p<y+z
<265 Y I(p)
y<p<y+z
< kS max I(p).
y<p<y+tz
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Let
g(a,a) = Z e(n(k) a)
n<z
n=a (modp)
Then
9, P2t 202k
10)= [ [ X atenan)gtonan)| | atona| " da
a=0

acAa

where 4 denotes the set of k-tuples a = (aq,...,ax) with 0 < a, < p
and the a, distinct. By Holder’s inequality

p—l 2b—2k p—l
Y| <Y Jg(a a2,
a=0 a=0
and so
I < 2b—2k I
(p) <p X 1(p; a)
where

2
> glevar) - glaar)| lg(er,a) 2 da,
acAq

Ii(p,a) = /Tk

and this is the number of solutions of the simultaneous equations

k b—k
> (mi—nd) =" (pur+a) = (por+a))  (1<j<k)
i=1 r=1

with m; < 2z, n; < 2z, —a/p < ur < (x —a)/p, —a/p < v, < (x —
a)/p, mi,...,my distinct modulo p and nq,...,n; distinct modulo p.
By Lemma d) this is the number of solutions of

K bk
d (mi—ay —(ni—ay) =Y p(u—v]) (1<j<k)
i=1 r=1

under the same conditions. Let B(p, a) denote the set of 2k-tuples
(m,n) = (ml,...,mk,nl,...,nk)

such that m; <z, n; <z, mq,...,my are distinct modulo p, nq,...,nx

are distinct modulo p, and

k k

Stmi—ay =3 (i —a) (modp))  (1<j<k).

i=1 i=1
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For each such element (m,n) put
hj(m.n) =p~0 Y ((m; —a)! = (n; —a)’).
i=1

Then by Lemma [24.1]e),
L(pa)= ) Jk(<_%,x}—?a]’b_k7h(m,n)>

(m,n)eB(p,a)

Scard@(p,a)Jk((—%,x;a],b—k)

By Lemma [24.4] since p* > y* = 2 we have
card B(p, a) < xkk!p%k(kfl).
Therefore, by Lemma d),

L(p,a) < a*kpFE=1 g, (1 + 2,0~ 1)k>
P

and so by the inductive hypothesis
N 2(r—1)k—Lk(k—=1)4+n(r—1,k)
Li(p,a) < 2 kIpERE=D D — 1)(1 + E) : :
p
Hence

Je(z,7k) < max ApF” n(r=Lk) g 2rk—k—g k(k+1)+n(r—1,k)
y<p<y+z

where

2rk—2k— 3 h(k-+1)+n(r—1,k)
x) ’ ! D(k,r—1).

A= k6k1(1+ S

1/k

Each prime p here satisfies p < y + z < 2y = 2z*/* and so

T, rk) < 28 Ag2rk—a k(e D+n(rk)
and
2k2/\ < ka!2k2 (1 + 2171/]671)%1C exp (C’(r — 1)k2 log k)

Now

(14 221/K-1)*"

< exp (4rkx_1/2),
and by (24.9) this does not exceed e provided that C > 6. Thus

25\ < exp (6logk + klogk + k + 1+ C(r — )k log k),
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and this does not exceed

exp (Crk2 log k)

provided that C' > 6. This completes the proof of the Theorem. O

Exer:NewGirl | 1.

Exer:NewGir2 | 2.

24.1l1 Exercises

Let Q(z) = Q(z;0), o, and s, be defined as in (24.2)) and the sub-
sequent discussion.
(a) Put P(z) = P(#;0) = 29Q(1/z). Show that

q

P(z)=[J(1=0;2)=> (-1)70,2"

j=1 r=0

(b) Deduce that

P’ CNY
?(Z)__Zl—ﬁjz'
j=1

(c) Let R be determined by the equation 1/R = max; |6,|. Show that
the above is

00
- _ § szm—l
m=1

for |z| < R.
(d) Explain why

_<Zq:(—1)kgkzk> <§:1 smzm_1> 3 1)yt

k=0 r=1

for |z| < R.
(e) By considering pairs k,m in the above with k + m = r, deduce
the first Newton—Girard formula, i.e., equation (24.3]).

Let Q(z) be defined as in (24.2)). Observe that

q
0=Q(0;) => (1), "
k=0
where it is understood that 9? = 1 even if §; = 0. Suppose that
7 > g. Multiply both sides of the above by 67~%, and then sum over
j to obtain the second Newton Girard formula, i.e., equation (24.4)).
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3. We say that a sequence u,, satisfies a linear recurrence of order ¢
if there exist real or complex numbers a;,as,...,a, such that u, =
A1 Up—1 + GoUp—2 + -+ + aqU,—q for all n > ¢. Thus asserts
that the s,, satisfy a linear recurrence of order q. More generally, for
arbitrary real or complex constants ci, ¢, ..., cq put

q
Uy = E cj9§”.
i=1

Show that
q

Z(—l)kakur_k =0

k=0
for all r > q.

4. Suppose that p > 1,q > 1,7 > 1 are real numbers such that % + % +

1
= =1.
=

(a) Let an, by, ¢, be nonnegative real numbers. By two applications
of the simplest form of Hoélder’s inequality, or otherwise, show
that

N N

N 1/p 1/, X S\
;anbncng(;aﬁ) (Zf)‘,ﬂ) (;cn) .

n=

(b) Let uy, vy, w, be arbitrary real or complex numbers. Show that

al o 1p & /g ; & 1/r
5 ] < (Sl (S ) (S )
n=1 n=1 n=1 n=1

5. Let

P
S(p,a) = Z 6((a1n +an®+---+ aknk)pfl)

n=1

and
14 p
M@p)=> > ISma)l™
a;=1 ap=1

(a) Show that if p > k, then M (p) < k!p?*.
(b) Suppose that p > k and p { ax. Show that

1

1S(p, a)| < (2k)2p'~F.
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6. Show that if p { a, then

i ()| < (@ep -1 - .

7. Show that N (B, C,h) < N(B)2N(C)=.

8. Show that in Linnik’s lemma, either A(p, h) = 0 or A(p, h) = klpzk(:=1),
Show that if the condition that the m; are distinct is omitted, then
A(p,0) > prk=1),

9. Show that Ji(hN,b) < h2°J,(N,b).
10. Suppose that

k(k+1)
Je(g,b) < g® 2

and for a Dirichlet character ¢ modulo ¢

kg2, %) Z (a1 +---af) /q) x ().

r=1

(a) Show that
q q
Z Z Wk CI» uX |2b < q2b+7]
a1:1 :

(b) Show that if (¢,a1,...,a;) =1, then

Wi(g:a,x) < ¢\~ 5+

24.2 Vinogradov’s method

Here we are mostly concerned to relate an individual exponential sum
to a mean value of exponential sums. A very fruitful way of doing this
is to perturb the endpoints of summation. Excercise 77 givesa a simple
method for doing this. However the situation of particular interest to us
is one of very great delicacy and the presence of the logarithmic factor
in that exercise means that if the bound we are able to obtain for S(3)
is close to the trivial bound, then our resulting estimate is worse than
trivial. Here we develop a method which has no loss of this kind.

We start by establishing such a connection for a rather special expo-
nential sum, for which we require an auxiliary lemma.
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Lemma 24.6. Suppose that X > 1, Y > 1, and that |a — a/q| < ¢ 2
with (¢,a) = 1. Then

1 XY
3 min(Y,iz) <2 L X4Y +q
2V yap) <7

Proof Let § = ¢*a — aq, so that |#| < 1. Then for 1 < n < %q we have
no = %+ % where 0’ = ?, so [¢'| <1 and hence ||nal| > 1|na/q||.
Now suppose that n = uqg+ v where u and v are integers with u > 1 and
lv] < 2q. Then

ud vl va+ [uf] 36"
na—ua—kf—i—f—l—f uag + — + —.
qg q q 2q

Thus, given u, we have

fnall > | 1)

for all but at most 3 values of v. Thus

> min (Y ppape) € O <Y+me( M))

n<X 0Su<X 41 0<v<q
< ¥ (ve ¥ oun(ry)).
0<u<X 44 1<r<3q

and for a suitable R > 0 this is

X q?

<(1+2) (Y + YR+ o).

q Y(R+1)
The choice R = |¢/Y | gives the desired conclusion. O
Theorem 24.7. Let f(n) = n'® .« and suppose that for j =1,2,... k
there are aj, q; so that (a;,q) =1, loj — a;/gqj] < qj_z, and that 1 <
X<X'<2X,1<Y <Y’ '<2Y. Let

T= > >
X<I<X'Y<m<Y’
Then for each b > k we have

1 1
Je(2X,0)Ju(2Y, b) \ 52 111 g \®®
T<<XY< (4XY) 2b—1k(k+1) H 7+E+W+XJ'YJ' ’

j=1
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Proof The number of integers [ such that X <[ <2Xis < X+1 <2X,
so by Holder’s inequality

|T|2b < (2X)2b71 Z ‘ Z

X<I<2X  Y<m<Y’

‘Qb

Now
2 k ,
e(f(lm))‘ = Z e(ZaleFj(m))
Y<m<Y’ Y<mi,...map <Y’ Jj=1
where
Fij(m)=m]+-+mj My g — mi,
Then
k .
TR < exE Y > (L arnm).

Y<mi,...map<2Y | X<I<2X  j=1

Now Holder’s inequality, once more, gives

k 2b
7" < axyyr Y > (S aiirm)
Y <mi,map<2Y | X<I<2X  j=1
For given hy,...,hi we collect those m for which Fj(m) = h; for 1 <

j < k. We note that the contribution is 0 unless |h;| < b(2Y)7 for all j,
1 < j < k. Therefore,

T/ < (axy)™ = ST J(2vb,h) ‘ 3 (Za]h I )

h17...,hk‘ X<I<2X  j=1
| <b(2Y)?
Let
H; =2[b(2Y)|.
Then

T4 < (2X)%° =20 1, (2Y, b)

X Z H2( |h|)‘ Z €<iajhjlj) B

hiy..oshy =1 X<i<2X  j=1
|hj|<H;

On expanding the power to form a 2b-fold sum, and taking the sum over
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the h; inside, we find that the last factor above is
- ¥ H((Z (esnms0)][).
X<ly,ylap<2X j=1

By the estimate (?7?) for the sum of a geometric progression we see that
the above is

k
. 1
< ok Z Hmln (Hj,W)

X<l l2p<2X j=1

g1,---,9k

k
1
<2* 3 Ji(2X,b,g) [[ min (Hjﬁ)
e Hijllog;
l9;1<G;

where G; = b(2X)’. By Lemma this does not exceed, for some
absolute constant C'y,

Ck L (2X,b) ﬁ(
< CFJ, 2ijf[l(4b2 (4XY)! (1 SIS VI S ))

X7 ' Yi ' XiYi
Therefore
T < (AXY)"° =20 7, (2X, b) J, (2, b)CF (4b?)F (4XY) sFRHD A

where

k 1 ”
_ L j
*li[< +YJ+Xij)'
The desired conclusion now follows since b > k. O

Lemma 24.8. For integers h let ¢, denote arbitrary complex numbers
with Y, |cn| < 0o, and let

B) = cne(hB).
h

Further let H be an integer and L and M be natural numbers. Then

DI (%H) maclS@A) + Y el

|h—H|<M M<|h—H|<M+L
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We note that S(8) is uniformly approximated by the continuous func-
tions sy(8) = ZthiN cpe(hp), so S(B) is continuous. Also, S(8) has
period 1, and the circle group T is compact, so the supremum of |S(3)
is attained, so we are free to refer to maxg |S(3)|.

Proof By replacing S(8) by S(8)e(—HfS) we may assume that H = 0.
We note the basic formulee that define the Fejér kernel A, (3), namely

that
M—1

i 3 (oo = (55
h=—M+1

We note that Ay (8) > 0 for all 8, and hence that

1 1
/0 Aur(@]d5 = [ Asi()d5 = B(0) = 1.

(If these properties are not familiar, see Exercise ) Let

(M + L)Anrsr(8) = MAy(8) MK

K(p) = i = Y. KWep)
—M—-L+1
where
1 (In| < M),
K(h)={ (M+L-n)/L (M<|h|<M+L),
0 (|| > M + L).

Since |Kpr(h)| < 1 for M < |h| < M + L it follows by the triangle
inequality that

M M+L—-1
IDORTEED DR ED DR Y
h=—M h=—M—L+1 M<|h|<M+L

On the other hand,

S eukn] =| [ sersa5| < [ KAl asmgxiso

and |K(—f)| = |K(8)| < YAy (8) + HAm(8), so

! M+L M
[ i@las < 2L L

which gives the stated result. O
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Note that in Lemma [24.8] if the ¢;, are bounded, then a good choice
for L would be
1
L= (Ms%p 1S(B))=.

However we would need to deal with sums over h on the right under
somewhat more general conditions, and the following lemma shows how
to do this.

Lemma 24.9. Suppose that c1,co,... are complex numbers, and that
0<X <Nz, >0 len| < o0 and

el < )L

d|n
X <d<2X

Then for each Y, Z with 0 <Y < Z < N we have

Z cn < NZ (1 + max ‘ niojl cne(nﬁ)D

Y<n<Z

1
2

Proof Let H be one of the integers closest to (Y + Z) and choose
M > 1 minimally so that H — M <Y and H + M > Z. Note that
M < N. Then ZY<n§Z ¢, differs from Zlh—H\gM cp, by an amount

< max, <y d(n) < Nz. For convenience we put ¢, = 0 when n < 0.
Now Lemma gives

Z cn K (ML_1+1)max’che(nﬂ)’+N%+ Z len].
Y<n<Z A n=1 M<|h—H|<M+L

The last sum here is bounded by two sums of the form

> el

K<h<K+L'
where K is a non-negative integer and L’ < L. Such a sum is
L L
< 1< (— 1) L+ N3,
)DINED DEETD S CRE) P
K<h<K+L' d|h X<d<2X
X<d<2X
Hence

Z cn < (NL7'+ 1)max‘ che(nﬂ)‘ +L+N3.
Y<n<Z A n=1
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Let S = maxg | > 0" cpe(nf)|. If S < N, then the choice L = [(NS)z |
+1 gives the lemma. If S > N, then the trivial bound

N
Yoo > S <N
Y<n<Z X<d<2X
suffices. O
Lemma 24.10. Suppose that M, M', N and N’ are natural numbers
with M < N and N < N’ < 2N, that X is a positive real number with

X < (2M)2, and that ¢, (m € N) and dy, (b € Z) are complex numbers
such that

o0
em < > 1, > lem| < o0, |dp| < 1.
d|lm m=1
X<d<2X
Then
| Y e Y d
M<m<2M  N<n<N’
1 s %
< NMz2(1+ max max‘ Cmdp_me(m
( ne(M+N,2M+2N] B mz::l mdn—me(mf)

Proof The product
> em ), dn
M<m<2M  N<n<N’
can be rearranged to give

Z Z Cnlp—m = Z Z Crnlp—m.-

M<m<2M N4+m<n<N’'+m M+N<n<2M+N’' M<m<2M
n—N'<m<n—N

Now we apply the preceding lemma, with N replaced by 2M, to the
inner sum. Thus the inner sum is

= 3
1
<K M:= max‘ Cnlp_me(m D,
(ms > (mB)

from which the conclusion follows. O

Theorem 24.11. Suppose that N < N' < 2N, 3 < Q < Nz, k > 2,
R > 0, that f is a k + 1 times continuously differentiable real-valued
function defined on the interval [N — 3Q% 2N + 4Q?], and that

[fEHD ()|

(k+1)! < Q)R
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for all w. Suppose further that b > k, that
0< R] < ij

that for each integer n € [N + Q?,2N + 2Q?| there are as/qo, . .., ar/qk
such that (aj,q;) =1,

27 p—1
and

©) ,
| f i (n) a] S i
J! a1~ q;

Then the exponential sum

S= Y elf(n)

N<n<N’

satisfies

11 Je(2Q,b) Nz 1\
5<<N(Q+@+(W;k<k+l>) (jlle) )

Proof Define

Cn = Z 1.

1>Q,m<2Q
lm=n

>

M<n<2M

Let M = Q?. Now

is a sum over the ordered pairs of integers I, m with Q < [ < 2Q,
Q <m <2Q and M/m < 1 < 2M/l, and this certainly counts every
pair I, m with Q <1 < v2Q, Q@ < m < v2Q and for Q > 3 there are
always >> Q2 such pairs. Hence, by the preceding lemma
o :

2
Q°S < NQ (1 + ne(Q2+HJ%7§,i2XQ2+2N] max } mZ:1 eme(f(n—m) + mﬁ)D .
The innermost sum is

Z Z e(f(n—1Im)+1imp).
Q<I<2Q Q<m=L2Q

By Taylor’s theorem with Lagrange’s form of the remainder,
f(j)(n) N 1 f(k+1)(n70lm(01.)

J! (k+ 1)

k

fln—1m) =Y "(~Iim)’

=0
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with 0 < 6 < 1.Let ag = —f'(n)+ S and a; = —lj&,(") 2<j<k).
J i
Then
k
ImB+ f(n—1m) = f(n) + > (Im)Ya; + O(R™)
j=1

and so

Z Z fln—1m) +1mpB)

Q<I<2Q Q<y<2Q
k
Z Z e(Z(lm)laj) +O0(Q*R™).

Q<IL2Q Q<y<L2Q j=1
For 2 < j < k, the hypothesis of Theorem with a; replaced by
(—1)7a;, is satisfied and we may certainly take g; = 1. Hence, by The-

orem [24.7]
Z Z (n —Im) 4+ Imp)

Q<IL2Q Q<u<2Q
Q2 Jh(2Q,b) iz L e
+ QQ((QQ)Zb—lk(kH)) H ( )

Jj=2

We note that k < 4b2. Thus

ok 1\2
S<<g<1+;+Q2<mj;E,2%)%H( ) )

j=2
O

Theorem 24.12. Suppose that 0 < § < 1, N < N’ < 2N, R > 0,
3<Q<L N%, k> 2, that f is a k+ 1 times continuously differentiable
real-valued function on the interval [N —3Q%,2N + 4Q2] , and that

(k+1)
|f(k - 1(;)| < (2Q)72k72R71_

Suppose further that
0< Rj S ij

that for each integer n € [N + Q?,2N + 2Q?| there are az/qa, - - -, ar/qk
such that (aj,q;) =1,

R; <q; < QYR

and

f@)m) ag)_ 1

5! 4!~ @
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and that there are h > 6k values of j with 2 < j < k such that R; >
Q% . Then there is a number X > 0 depending only on § such that the
exponential sum

satisfies
S< NQ 7 L NR s,

Proof By Theorem

1
Jk(2Q7k‘T) 4k 72 Clogk L (1-1/k)"
- 7 < r .
((QQ)%T—;k(kH) = &Xp ( 4r )QS i

The sum of 65 over the h values of j for which R; > Q% is bounded
below by

37,1.2
h+3h 5hk.

Mr

Thus
S < NO~'+ NR—% + exp (Ciogk) NQw=(a-1/m7 =)

Now we take r = »xk where s is sufficiently large in terms of § so that
N 3
(1-1/k)" < T
O
Theorem 24.13. There is a positive number C such that if t is a real
number and v, N, N' are natural numbers with

t>Ns, Nl<t<N", N<N <2N,
then

Z (n—l—oz)“ < ]\[1—07"2
N<n< N’

uniformly for 0 < a < 1.
Proof Let f(x) = 3= log(x + ). Then, for j > 1

f9 () = (—1)1 ¢ .
5! 2rj(x + a)d
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Suppose that
Q< N 3.
Then for N —3Q? <z < 2N + 4Q2

f(k+1 k+1
T =Y (&)
Also, since t > N™~1 > Nr/g7 ifN+Q?<n<2N+2Q?% thenn+a <
2N 4+ N/2+1 < 4N and
r/9 ©)]
NP t . ‘f (n)
(87N)7 — 2mj(4N +1)7 —

Our aim is to apply Theorem Thus we need to introduce a para-
meter R, and it will be suitable provided it satisfies

4 \k+1
NT (ﬁ) < (2Q)"22R1. (24.12)
We also need to find suitable rational approximations a;/g;. To this end

for each n € [N + Q%,2N + 2Q?] and each j with 2 < j < k let

‘ < N, (24.11)

J!
% =2 75|
Then by Dirichlet’s theorem choose g;, a; so that (a;,q;) =1, ¢; < Q,
and
1

4Q;

gl
If a; = 0, then we would have
’f(j)(n)‘ - }’f(j)(n)
5 < T
4!

‘f(j)( n) a;

)

which is impossible. Thus

FD(n) 1 1\ f9)(n)
1 <laj| < g ;! ‘*Qij*(qi+§>‘ 5!

and so

f(jj)-.(n)‘ - % Sa=Q5= 2‘f(3€!(n) ‘

From the inequalities (24.11)) we now deduce the further inequalities

1 _
SN < < (167 N) N~/

E:Usefullneq
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The upper bound is immediate, as is the lower one provided that j > r.
But g; > 1, so the lower bound above is trivial when j < r. Now we will
be in a position to apply the preceding theorem with R = N, R; = R
provided that (24.12)) holds and that

. 1. . . )

N < SN (16xN)Y N~/9 < Q¥ N~—7° (24.13)
hold for an appreciable range of j. To this end we take
1

§=— — Nz79,
or @A

Then (24.12) holds provided that 165+ N™+9 < NO(2k+2) and this fol-
lows as long as k§ > r and N > 16'/%. We may certainly suppose the
latter of these inequalities since otherwise the conclusion is trivial. Thus

for (24.12) it suffices that
s 1)

The inequalities (24.13)) will follow provided that
N2j5 S Nj—T" N3j5 S N’r/9

and N > 56/ which again we may certainly suppose. The two inequal-
ities above reduce to

r . r
S j S o)

1-20 27
which is to say that

50 _ 100,

19" =7="138
It remains to make a suitable choice for k£ in terms of r, and & = 100r
suffices. 0

24.2l1 Exercises

1. (a) By expanding the mod-square and collecting terms, show that

N-1 2 N-1 N—-1
’ e(mm)‘ = Z (N=|n|)e(nx) = N+2 Z(N—n) cos 2Tn.
m=0 n=—N+1 n=1

(b) Use the formula for the sum of a geometric series to show that

N-1 :
Z e(mz) = e(%ac)M

sin wx
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(¢) Let the Fejér kernel Ay (z) be defined by the formula

AN(i) = N

1 (Sin TNx )2
sinTx /

Show that the above is

N
= 3 (1 [nl/N)e(na).
n=N
(d) Show that
. 1
0 < Ay(z) < min (N’ W)

for all z.
(e) Let L'(T) denote the set of functions f with period 1 such that
iy 1f(x)| da < oo. For f € LI}(T) let

Fln) = / f(@)e(—ne) dx

denote the Fourier coefficients of f, and set
N

on(fix) =Y (1= [nl/N)f(n)e(nz).

—-N

Show that the above is

- / A (e — u) f(u) du.
0

(f) Suppose that f € I}(T). Show that

1
(@) — on(fia) = / Az —u)(f(z) — f(u)) du.

(g) Let C(T) denote the set of continuous functions with period 1.
Suppose that f € C(T). Show that for any £ > 0 there is an
Ny = No(g, f) such that

|f(a) —on(fiz)] <e
for all x, if N > Ny.

2. Let cj h € Z denote arbitrary complex numbers with )", |c,| < oo,
and let

S(8) = Z che(hf).
h
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Show that for any integer H and natural number N we have

1
S o= /0 $B) Y e(-hB)dp.

H<h<H+N H<h<H+N

Hence, or otherwise, show that

> | < GogleN)suplS(3))

H<h<H+N

3. Let S*(a) = maxy<n ‘ Snen e(m® - a)l.

(a) Prove that

S5*(e) dex < (log4N)? J, (N, b).
Tk

(b) Suppose that |o; — ;] < 577 for j =1,..., k. Show that
e "S5 (a) < S*(B) < e"S*(av).

(c) Suppose that k > 3, that |ax —a/q| < ¢~ 2, (a,q) = 1 and that
N < ¢ < N*¥=!. Show that S(a) <, N1~k logk)™"

(d) Suppose that k > 3, that |ax — a/q| < ¢72, (a,q) = 1 and that
Nik < q < Ni*. Show that there is a positive constant ¢ such
that S(ar) < N1k 7

24.3 The Korobov-Vinogradov zero-free region

The Hurwitz zeta function ¢ (s, w) is defined for Res > 1 and 0 < Rew <
1 by

oo

((s,w) =) ﬁ (24.15)

n=0

The following lemma can be established in exact analogy to Theorem

1.12.
Lemma 24.14. Suppose that Res >0,0< a <1 and x > 1. Then
1 1
C(S,OZ)— s—1 - Z (TL—FO&)S

0<n<z

+(fﬂ+04)871—1 {r} + o 73/(’0 {u}

du.
s—1 + (x+ ) (u+ a)stl “
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Theorem 24.15. There is a positive number C' such that if 0 < a < 1
and o and t are real numbers with o > %, then

1 —s 2 _cel

C(s, ) — pomria < (logT)sr

s —

where T = |t| +4 and © = max(0,1 — o), and the implicit constant is
absolute.

To deduce the following corollary we need only observe that when y
is non-principal modulo ¢ we have

q

L(s,x) =q¢* Y _x(a)((s,a/q)

a=1

and then
q e_1q

> xl@)a < L

a=1

with the interpretation that this is log g when © = 0.

Corollary 24.16. There is a positive number C such that if o and t
are real numbers with o > % and © = max(0,1 — o), then
3
2

1
¢(s) — 1< (log 7)37°° (24.16)
s —
If in addition x is a non-principle character modulo q, then
(C]

()

Proof 1If necessary by taking complex conjugates, we may assume that
t > 0 and by Lemma with & = 1 the result is immediate when
t < 4. Thus we may suppose that ¢ > 4. Moreover, the conclusion is

3
Lis,x) < L= 4 ¢!~ (log r) 3 €O (24.17)

trivial when o > 2.
The lemma with x =t gives

1
s—1

((s,a) — —a %= Z(n +a)"P+ 0@t 7).

n<t

Suppose that N < N’ < 2N, N’ < t. Then, by Theorem, [24.13| there is
a positive constant c¢; such that

_ (log N)3
E n+a) "< Nexp(—ci~——=%).
N<n§N’( ) ( (logt)? )

E:vinzeta
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Thus, by partial summation, whenever N < N” < 2N and N” < t,

(logN)3>_

—o—it (S)
Z (n+a) < NP exp (— c1 (og1)2

N<n<N'

We now let N take on the successive values 2°,22,22 ... 2F where k is
chosen so that 2F < ¢ < 251, Thus

3

k
s . _ 3_J
nEq(n +a) <1+ ]E:O exp (@] log2 — ¢1(log2) (log 1)2 )

2
When j2 > 29008 )" the general term is

c1(log2)3
< ex (— A (log2)3 7 )
P g V08 (logt)?
and when j2 < % i

-3

exp (CQG% log t) exp (f c1(log2)3 (lo]g np )

Thus, in general, each term is

c j3
< exp (02@% log t) exp (— El(log 237 2).

(log?)
Hence
k -3
3
Zn*S < 1+ exp (202 logt) ZGXP (— c1(log 2)° . 2)'
n<t =0 (log t>

By monotonicity
Zexp(— 55%) <1 +/ exp (— 0u®) du < §71/3
=0 0

uniformly for 0 < 6 < 1. Thus

k 3
3 J 2
jz::o exp (— c1(log 2) (og )2 > < (logT)s
and the theorem follows. O

Lemma 24.17. Suppose that 0 < r < R < Y and f is analytic in a
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domain containing the closed disc centered at sy and of radius Y. Then
for |s — so| < r we have

Ko

s—s

gy 1
’f() £ <<(R—r)log%log|f(80)|

where the sum is over all zeros sy, of f for which |si| < R and M is the
mazimum modulus of f on the circle centered at so and of radius Y.

Proof This follows by the proof of Lemma 6.3 re-scaled by a factor of
T and keeping the constant explicit. O

Theorem 24.18. There is a positive number C such that whenever

o>1-— 5 L n
C(log )3 (loglogT)3
and T = |t| + 4 we have
C(s) #0,
¢ . .
?(8) < (log7)? (loglog 7)3,

2 1
|log ¢(s)] < 3 loglog T + 3 logloglog T+ O(1),
and

1 2 1
— < (log7)3 (loglog 7)3.
05 < (log7)3 (loglog 7)

Proof We first establish the zero free region. Let 5 + iy be a zero of (
with v > 30. Put t =, 7 =t + 4 and let

(loglog 7) 3

c1(log 7')%

where ¢; is chosen large enough to ensure that T < % Suppose that

1
gg — 1 + ZT’
and put sg = o¢ + iy, s; = 0¢ + 2i7y, We have
1 1 2
< o) o log 7

[C(so)l" [€(sp)| = (o)
and by ,
C(s)] < (log 7)™ (|s —so| < or [s—sp/ <T).
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If 1 — 8 > Y/12, then we are done. Hence we may suppose that S >
1—7"/12. Suppose that 1 < ¢ < g¢. Then by Lemma[24.17|with r = /3,
R =7/2 we find that

!
—Re %(U + 2i7y) < cs(log 7')% (loglog )3,

¢ . 2 . 1
Re c (o +1i7v) < c3(logT)5 (loglog T) et

Moreover,

Then, by the inequality

C/
0< -3
¢
we find that

(o) — 4Re§(a +i7v) —Re CC/(U + 2i7)

4 3

o 7 o_1 §304(10g7)%(10g10g7')%.

Also —T/4 < 146(1—8)—0¢ < Y /4. Thus we may take c = 1+6(1—2).
Then the left hand side is

(o
S \7 2/1-8 14(1-08)’
and the result follows.

To bound the logarithmic derivative we follow the essentials of the
proof of Theorem 6.7 but with
1+ ! + it
S1 = i,
' ¢1(log 7)3 (loglog 7) 3
and in place of Lemma 6.4 we use Lemma with
1 /logl 3
4r=2R="7 = 7( o8 OgT)3
c1 log T

and sp = s1. The bounds for log ((s) and 1/({(s) then follow as in the
proof of Theorem 6.7. O

Theorem 24.19. There is a positive number C such that if x is a Di-
richlet character modulo q, then the region

1
= o >1-—
e {s 7 C(logq+ (10g7)2/3(10g10g7)1/3)}
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contains no zero pf L(s,x) unless x is a quadratic character, in which
case L(s,chi) has at most one, necessarily real zero f <1 in R,

Proof 1If x is principal, then the conclusion follows at once from The-
orem Hence we may suppose that g > 3. If 4loggq > log 7, then
the theorem follows at once by Theorem 11.3. Hence we may suppose
also that 4logg < log 7, and in particular |t| > 50, so that in the proof
we need only consider zeros p = 8 + iy with |y > 50. Now we follow the
proof of Theorem 11.3, but we use and Lemma in place of
Lemma 11.1, following the pattern of the proof of Theorem [24.18
We suppose first that

log g < (log 7)2/3(10g log 7')1/3.

Now when Y is complex we can follow the exact analogue of the proof of
the first assertion of Theorem [24.18| Let p be a zero with |y| > 50 and
as before let t =, 7 = 4]|t|. We take

(loglog 7) 3
c1(log 7)

2
3

where c¢; is chosen large enough to ensure that T < % and as before

in Lemma take so = 1+ 1Y, r = Y/3, R = Y/2. Then for
B8>1-7"/12 and 1 < o < 1+ T /4 we have the inequalities

/

L
—Re f(a + 2y, x%) < c2(log T)% (loglog 7)3,

r 1
—Re (0 +17,x) < ca(log 7)’ (log log 7) p—t

W=

wol=

L 1
—f(a, Xo) < ¢z loglogq + —7
and we can proceed as in the usual way.
When y2 = x0, we have to replace the first of the above inequalities
by
/

L 1-—
—Re f(o + 27y, %) < 7

2 1
Aoz T 2llogr)?(loglogm)?

and again the proof proceeds as that of Theorem 11.3.
That leaves the case when (log7)%/3(loglog)'/? < logq < ilog T.
Now we choose
(log g)*
c1(log7)?
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and we find that the first two inequalities above are replaced by
r .,
—Re f(a + 27”}/7X ) < cCa log(L
/

L 1
—Ref(0+2’y,x) < CQIqu— m,

in the case when y is complex and with the same adjustment as before
when x? = xo. O

Theorem 24.20. Let x be a non-principal character modulo q, let C' be
the constant of Theorem|[24.19, and suppose that

1
>1-
7= 2C (log q + (log 7)2/3(log log 7)1/3).

If L(s,x) has no exceptional zero, or if 51 is an exceptional zero of
L(s,x) but |s — B1] > 1/1oggq, then
/

L
f(s7x) < (log q) + (log 7)%/3(log log 7) '/, (24.18)

|log L(s, x)| < log (logq + (log 7)%/3(log log 7)1/3) +0(1) (24.19)
and

1
—— < (logq) + (log 7)%/?(log log 7)'/3. 24.20
TG (log q) + (log 7)*/*(log log ) ( )

We do not have anything new to add when there is an exceptional
zero By with |s — 81| < 1/logq

24.4 Improvements in the Distribution of Prime
Numbers

We now apply the new zero-free regions to the distribution of primes.

Theorem 24.21. There is a constant ¢ > 0 such that

Y(z)=x+0 (ac exp (C(logm)) , (24.21)

(log log x)1/5

Hz) =z+0 (xexp <—(C(logz)3/s)> , (24.22)

log log x)1/5



24.4 Improvements in the Distribution of Prime Numbers 73

and

n(z) = li(z) + O <sc exp (W)) . (24.23)

Proof The proof follows that of Theorem 6.9, but using Theorem [24.18
in place of Theorems 6.6 ad 6.7 and with T taken to be

¢ (log z)3/5
~ (loglog z)1/5
with an suitable positive constant c;. O

For primes in arithmetic progressions there is, as usual, a trade-off
between the error term, the range for ¢, and any possible exceptional
ZErO.

Theorem 24.22. There is a constant ¢ such that if x is a character
modulo q and

log x
g<exp| ———>— |,
c1 loglog x
then
25

1

log x
5 - 24.24
+ (:c exp ( cl(logq + (log 7)2/5(log log x)1/5)>> ( )

where Ey(x) = 0 unless x is principal in which case it is 1 and Eq1(x) =0
unless L(s,x) has an exceptional zero B1 in which case it is 1.

Y(x,x) = Eo(x) — E1(x)

Proof Here one can follow the proof of Theorem 11.16 but with

T o log
=ex
P c2(log g + (log 2)%/5(loglog z)1/5)
for some constant cs. O

In applying this to ¥(z,q,a) there is some limitation on the size of
q imposed by the requirement to have an error that is small compared
with
x

o(q)’
Corollary 24.23. There is a constant ¢1 such that if

q < exp (c11/logz)
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and (g,a) =1, then

x1(a)z

— B ¢(q)p1

w(x,q,a) = Wq)
log x
+0 <1‘ exp (‘ o ( log ¢ + (log z)2/5(log log x)1/5) )) . (24.25)

When one further applies the consequence, Corollary 11.15, of Siegel’s
theorem, Theorem 11.14, one has

Corollary 24.24. Let ¢y be the same constant as in Corollary [2].23
For any positive A there is an xo(A) such that if ¢ < (logz)?, then

)) e

Corollary 24.25. Let ¢; be the same constant as in Corollary [24.22
For any positive A there is an xo(A) such that if ¢ < (logz)? and

(log z)*/®

U(x,x) 22120(X)17+-() (a:exp <__c1(knghxgaﬂl/5)

(g,a) =1, then
=T o mexp [——lo8DY®
Y(x,q,a) = o) +0 < P ( cl(loglogx)l/5)>> (24.27)
and
) G (g (o0
m(z,q,a) = a0 " 0 ( p ( cl(loglogm>1/5)>> (24.28)

Note that ¢; is effective. However, in the current state of knowledge,
2o(A) is not. Alternatively one can make the implicit constant in the
O-notation ineffective so that the theorem holds for all x > 2.

Further improvements are dependent on the distribution and density
of zeros near the 1-line and are dependent on the main results of Chapter

24.5 Notes

TV35, TV36
The Vinogradov mean value theorem first appeared in [Vinogradov

(1935}, |1936). The main motivation at that stage was additive number
theory, and especially with the aim of improving the known results in
Waring’s Problem, at least for larger exponents,W%_ggl this it did spectac-
ularly. There is some indication that Mordell’s Mordell| (1932) work on

E:I11.31a
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complete sums was suggestive. The first application to the Riemann zeta
function was not made by Vinogradov, but by |[Chudakov! (1936). The-
orem [24.7)is already in the form given in ??7?. It is crucial in estimating
the kind of sums useful for application to the Riemann zeta-function
that the growth of the number D(k,r) should not be too rapid in terms
of k and r.

Lemma [4.4]is in l%#m_ld (1943).

conjectured that

Je(X,b) ~ Cppmin (X20-FEFD/2 xb)

and a weaker form of this,

Jp(X,b) <ppe X min (X2-REFD/2 x0)

was established by |‘[|13Ro171irgain, Demeter& Guth|(2016). Not quite so strong
bounds had been established earlier byﬂ@l (2012)). However none of
these more recent methods give estimates for D(k,r) which are suitable
for application here.
CAR ITTR0
§24.2| There is a long succession of papers, I%ng\%é{m (1946), [Tatuzawa)

oo

(1950, first edition (1951) of[Titchmarsh]| (1986]), Turéan| (1953)), Schoenfeld|
(1957)), each with small improvements on what went before. The best

methods we have currently for deducing bounds from the Vinogradov
mean value theorem %0.;% the sums that arewtv}%% subject of Theorem [24.13
were developed by l%ﬁoboxd (1958) and [Vinogradov| (1958)) independ-
ently. However in both these papers claims are made about the error in

the prime number theorem, namely that
U(z) — z < zexp(—c(logz)*/?)

which have never been substantiated. There is a very scathing comment

by (1964)) in a review “it is highly desirable that the claim to the

stronger and neater result should be substantiated or withdrawn without
further delay”. It never has been, although in 1980 Vinogradov does
simply write “my method gives” (24.21]), tacitly admitting by neglect

that this is the best that can he can do. There are full accounts of
KK ITVRR A

the NKorobov (1958) and [Vinogradovl ((1958) methods in (1963)

to the Hurwitz zeta function.
The kernel K(8) defined in the proof of Lemma is an example
of a de la Vallée Poussin kernel. The upper bound (??) suffices for our

purposes, but (2015)) determined the exact value of this quantity.
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The application of these methods to primes in arithmetic pro-
gressions is not often done, but once one has the bound for the Hurwitz
zeta function it is routine and potentially use;%l;. There is an excellent
account of the state of play prior to 1958 in %,_Chapter VIII, including
earlier versions of the results of this section.
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Appoximate Functional Equations

We recall that Theorem 10.2 asserts that if s is a complex number, s # 0,
s # 1, and z is a complex number with Re z > 0, then

C(s)D(s/2)n%/% = x=5/2 Z n~°T(s/2,mn?z)

n=1

+ a2 T I(L - 8)/2,m)  (25.0)

n=1

Z(sfl)/Z Zs/2

_|_

s—1 s

Here I'(s, a) is the incomplete gamma function,

o0
I'(s,a) = / e 2tz (25.2) | E:DefIncGamFcn
a

The integrand is regular at z = 0 only when s is a positive integer. To
avoid issues of the singularity at 0 we insist that a, and the path joining
a to oo should lie in the slit complex plane C\ (—o0, 0]. For any fixed
such a, I'(s,a) is an entire function of s. When we discussed this formula
in Chapter 10, we simply took z = 1 (which is essentially what Riemann
did). However, the formula is not useful when |¢| is large and z is
real, since then the factors I'(s/2,7n?z) are much larger than I'(s/2).
For example, |T'(1 4 it,1)| < 1/|¢| while T'(1 + it) is exponentially small.
More precisely, in Appendix C we used Stirling’s formula to show that

ID(s)| = 77 1/2em7/2 (25.3)

when |¢t| > 1 and |o| is uniformly bounded. Fortunately, I'(s, z) < |T'(s)]
for such s when z is of the form z = ae’® where a > 0 and

¢ = arctant. (25.4)

78
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Throughout our discussion, the second argument of the incomplete gamma
function will have this argument. We note that from this definition it
follows that

1 t

cos ¢ = NCESE sin ¢ = Norsh (25.5)

We note some useful estimates concerning ¢. It is clear from the above
that
1

1
— < < = 25.6) |E: hiEst1
I cos ¢ i (25.6) cosphiEs

uniformly for all ¢ # 0. Since 7 = |t| + 4, we also see that

1 1
— <cosp <K — (25.7) |E:cosphiEst1.5 |
T T

uniformly for all ¢. From this latter estimate we deduce that

|(cos ) ~%| = (cos ) ™7 =< 77 (25.8)

uniformly for —A < o < A, with the implicit constant depending on A.
Suppose that ¢ > 0. Then

bodu ™ > du 0 Cdu w 1
¢ = arctant = [ ——0 = = — —_— > = — — == —=.
o u2+1 2 J, w2417 2 f, w2 2 ot
Thus 5t —1 < ¢t < Zt. The function ¢t = tarctant is an even function
of t, so it follows that Z|t| — 1 < ¢t < F|t|, so

o1 = 3 +00) @59

uniformly for all real ¢. Hence

o] =t 510

uniformly for all s.
To estimate

I’(s,aew) = / ez dz
a

ei®

we integrate along the ray z = ue’® for a < u < co. Thus the above is

oo
— oo [Cew (cut s
a
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By the further change of variable v = u cos ¢ we see that the above is

= (e“i‘;/oo e—yva—leit(logv—v) dv
cos ¢)® acos ¢
eid:s o] »
pCT ARG 2512)
where
—v,,0—1

r(v) =e %07,

@519
O(v) = t(logv —v) .

On combining (25.3)), (25.8)), (25.10), and (25.12), we find that

/ r(v)e?®™ du) .

cos ¢

‘F(s, aem) ’ = |F(s)|7’1/2

@511
Lemma 25.1. Suppose that ¢ is given by (25.4)), and that A is a positive

constant. Then

1/2

D(s.06) = (3 (g, 0) + 0 e/ (2) min (1. 7))
(35,19

uniformly fora > 0,0 <o < A, |t| > 1.

When [t| < 1 we have available the trivial estimates

}F(s, aew)‘ < I'(o,acos¢) <T'(0o). (25.16) |E:IncGamTrivEst

Proof First suppose that a > 74 7'/2. Let r(v) and 0(v) be defined as

in (25.13)). We note that

If V > 1, then the maximum modulus of the above on the interval [V, c0),
and the its total variation on the same interval are both
e Ve

<<m.

By Theorem 77

oo . —a cos ¢ o
/ r(v)e’e(”) dv < ¢ (acos¢)

cos ¢ T(acos¢p — 1)
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since acos ¢ > a/7 > 1. From (25.7)) and ([25.8) it follows that the above
is

o 71/2
< |r(s)|e-a/T(9) T, (25.17)

T/ a—T

which is the desired bound in this case.
Now suppose that 7 — 71/2 < g < a+ 712 = b. We write the integral

in (25.14) as
b &S]
/ r(v)e?™®) dv 4 / r(v)e?®™ dv .

cos ¢ b

From we know that the second integral above is < 7-/2. From
the information that 7 — 7/2 < a < 7 + 7'1/2, by means of a little
calculation we deduce that 1 — 7~ %/2 < acosp < 1+ 177742, Now
r(v) < 1 when v < 1, so the first integral above is

b 1417771/2 1417771/2
< / r(v)dv < / r(v)dv < / ldv < 7712,
a 1

cos ¢ —r—1/2 1—7-1/2
By (25.14) it follows that I'(s,ae’®) < |T'(s)| in this case.
Finally, we suppose that 0 < a < 7 —7'/2. By taking a = 0 in ([25.12)
we obtain a formula for I'(s). On subtracting, we find that

( ¢) ( ) ei¢s acos ¢ ( ) 0 )d

I'(s,ae’ :Fs—i/ r(v)e”\"Y dv.
(cos@)® Jo

We treat this last integral as we did in the first case, and thus find that

I'(s,ae®) = T(s) (1 +0(ee (9)0 ' ))

T/ T—a

so we have the stated result. O

We now combine the functional equation as expressed by the iden-
tity identity (25.1) with Lemma to obtain a useful approzimate
functional equation. In what follows, we put

F(lgs) s—3 s _s—1 . TS
A(s) = w72 =2°7°7 (1 — s) sin — . 25.18
©=10 (1 5)sin (25.18)
Thus the functional equation for the zeta function in its asymmetric
form (as in Corollary 10.4) asserts that ((s) = A(s)((1—s). From
it follows that

|A(s)] < 7/%77 (25.19)

when [t| > 1 and o is uniformly bounded.

E:CaselEst

E:DefDelta

E:DeltaEst
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Theorem 25.2. Suppose that 0 < § < 1/2 is fized, that 6 <o <1—,
and that 2mxy = 7 where x > 1, y > 1. Then

= Z n=% 4+ A(s) Z ns1

+ O((m_" + 7'1/2_‘73/"_1) log T) .

Note that the last term in the first sum above is of size £~7, and that
the last term in the second sum is of size 71/2-9y?~1. Thus the error
term is larger than these quantities by only one logarithm.

Proof We divide both sides of (25.1)) by I'(s/2)7 /2 to see that

oo

B ['(s/2,m™n?%z) - (1 —s)/2 n?/z)
() =D n [(s/2) Zl 1 T((1—5)/2)

(s—1)/2
vo ms/'g* 1), (25.21) [Erzevabreo]

We take z = re’® where r = 7/(2r2?) and ¢ = arctan(t/2). The error
term above is

< (1,70' + 7_1/270y071)7_71/2’

which is inconsequential in (25.20). By Lemma the first sum above
is Y, <, n~° plus an error term that is

|7mn2r — /2|

© 2.\ 0/2 9)1/2
<<Zn_a(¥> min (1, (7/2) ezt
n=1

2 2
1 e /e
—o,.—1/2 —o —o,.—1/2
<z °T Z 1— n¥/a2 Tt +roT Z n¥z? — 1
n<lz—1 n>xz+1
1 1/2 1 1 1/2 e/
Lx T 77 4T
>, v >
n<lzx—1 n>x+1

< 7_1/270—y071 logz 4+ z7°.

This is admissible in (25.20)). Similarly, the second sum in (25.21) is
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any y*~! plus an amount that is

< i o1 <n2 )(170)/2 i (1 ﬂ)e_zmz/(m
n=1

rT

"|T/2 — Tn?/r|
< o112 Z 1 Lyl o112 Z e v’
v R R
n<y—1 n>y+1
1 e_nz/y2

< ya,r—l/2 Z + ya—l + ya,r—l/2 Z

y—n n—y

n<y—1 n>y+1

< yaT—1/2 lOgy + ya—l.

We multiply by A(s), and appeal to (25.19) to see that the error term
here is

< (y/7)% logy + 3" 7Y « 2% logy + yo trl/2O,
This is admissible in (25.20]), so the proof is complete. O]

Despite its elegance, the approximate functional equation is not im-
mediately useful for estimating mean values, since the number of terms
in the sums depends on t, while our basic tools concern one fixed sum.
To overcome this difficulty we average over the parameters. Set

T =V2rT T y=V2n7/r

in the approximate functional equation (25.20)), divide both sides by r,
integrate both sides from 1/2 to 2, and finally divide both sides by log 4.
The result is that

C(s) =D _w(n/VT)n™ + Als) Y w(n/vrn !
n n (25.22)

+ O(T*"/2 log 7)

where
1 (0 <u</7/2),
wlu) = % (V72 < u < VBr), (25.23)
0 (V8T < w).
Let

Ao = S 2

n<x
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denote a partial sum of the Dirichlet series that defines ((s). Then

S utn/van = [ wte/ v daes o).

n

which by integration by parts is

- [wle/vPAG.)

jo - [ A dutarve).

Now A(s,x) = 0 for z < 1, and w(x/\/7) = 0 for z > /877, so the
contributions of the endpoints vanishes. The function w(u) is continuous
and piecewise differentiable, so the above is

NZa

Asw'(u) = —1/(ulog4) for \/7/2 < u < +/8m, and w’(u) = 0 otherwise,
the above is

A(s,z)w'(z//7) dx .

1 V8T dx
= / A(s,z) — = /A(va) dpr(z),
10g4 \/7TT/2 T

say. Here u, is a probability measure (i.e., a nonnegative measure with
total mass 1), so the identity above expresses the left hand side as a
weighted average of the partial sums A(s, z). The support of ., depends
on t, but by integrating over a longer interval we can obtain an upper
bound that holds uniformly for ¢ in an interval. Suppose that k is a
positive integer. Then by Holder’s Inequality (with exponents 2k and
2k/(2k — 1), whose reciprocals sum to 1) we find that

T (1ot anw)( [ 1dur($)>2k_l

- / |A(s, 2)|2* dper ().

‘Zw(n/ﬁ)n_s

(25.25)
Hence the upper bound

2% 8T/? d
< / |As, 2)[2 42 (25.26)
T1/2 X

> win/vmn

holds uniformly for 7" < ¢t < 27". We do not obtain sharp constants by
arguing in this way, but sometimes we can obtain useful bounds.

E:Sumubl
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We now turn to L functions. If x is a primitive character modulo ¢
with ¢ > 1, then (by Theorem 10.7) we know that

L(s, X)D((s + 5)/2)(q/m)5+)/2

= (q/m)5+9)/2 ZX T'((s + k)/2,m™%2/q) (25.27)

n=1
0o

= e(x)(g/m)! T/ Z n* 0 ((1 = s+ k) /2,707 (¢2))

for z with Re z > 0. As usual,

— - 0 if X(—l) = 1, . T(X) - -
K= r(x) = {1 (oD — 1 =g (%)

In general, the incomplete gamma function I'(s, a) undergoes a change
of behaviour when |a| passes |s|; evidence of this can be seen in Lemma

The crude estimate (25.15) sufficed to give Theorem because

the numbers n? pass 7 so quickly. However, in the formula above n? is

replaced by n?/q, which passes 7 comparatively slowly if ¢ is large. This
would not be a problem if the weight wo(u) = wo(s,u) = I'(s, ue?) /T'(s)
were to move rather smoothly from near 1 to near 0. To estimate a
weighted sum Zﬁf:l w(n)ay, in terms of its partial sums A(z) = > . an
we integrate by parts, as we did in treating the zeta function. This works
especially well if w(z) is monotonic, or at least has bounded variation.
Unfortunately, this avenue is not immediately available, because w(u)
has large variation (see Exercise . This is illustrated in Figure
where wg(u) is first depicted as a curve in the complex plane, and then

its real part is graphed, along with its asymptotic shape.

Fortunately, we can avoid this disaster by introducing a simple aver-
aging. Since we are working in the multiplicative group of positive real
numbers, instead of the usual arithmetic mean, ﬁ f: f(z) dz, we use

its multiplicative analogue, m fab f(z) % We put

1 2 iy AT
UJ1(5,CL) = 1_‘(S)log4/1 F(s,ame ¢) ? (2529)

/2

where ¢ is defined by (25.4]). In Figure we see that the situation ap-
pears to be considerably improved. We now establish that this is indeed
the case.

Lemma 25.3. Suppose that 0 < o < A, that ¢ is given by (25.4), and
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1.2
1 -

0.8

0.6

0.44

|
|
I
AN
50 \/ Vl\({O

(a) (b)

Figure 25.1 Graphs of (a) wo(3 + 504,a) and (b) Rewo(3 + 50i,a), for
0<a<150.

that wy is defined as above. For a > 0,

0
%wl(s,a) < e /@) gm0

where the implicit constant may depend on A.

It follows immediately from the above that

0 a\’ da
il d —a/(21) (2
Var, o) w1 (s, a) /0 laawl(S,a)’ a < /0 e ( )

:/OO *(22)° Cf ()27,
0

which is not only finite, but also uniformly bounded for 0 < § < o < A.

Proof By Leibniz’s rule we know that

0 1 20 dx
- - = i)
6aw1(8’a) I'(s)log4 /1/2 da F(s,aze™) x

By the parameterization (25.11]), this is

7’¢S dzr
s—1
xp (— du —=
log4/1/z 3@/ ¢ ue'?)u T
6

— i s—1
- exp axe'?)(ax dx
- T'(s)log4 /1/2 ( )( )
761'(;55 2a )
- - o ip\,,s—1 d
aT(s)log 4 /a/2 exp( ue )u .
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0.84
0.6

0.007 — —
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0.2

0 56 160

(a) (b)

Figure 25.2 Graphs of (a) w1(3 + 50i,a) and (b) Rew: (% +504,a) and its

asymptotic shape, for 0 < a < 150.
By (25.11) again, this is

F(s, 2a6i¢) — F(s7 %aew)
al'(s)log4

The right hand side of (25.15) is
< |F(s)|e’“/7<g> .

T

We apply this twice to obtain the stated bound. O

Theorem 25.4. Put
A(s,x;x) = Z x(n)n=*°. (25.30)
n<z
Suppose that x is a primitive character modulo q with ¢ > 1, and that
0<d<1/2. Then
u? >5/2 du

L0 < [ (Als )] + A1 = s wwl)e /)
0 qaT

u
uniformly for 6§ <o <1-4.
By the change of variable v = u?/(g7) we find that

/OO exp (_qf) (Zj)é/z % = 2/OO e 0?27 du = 2T°(9) .
0 0

Thus our bound for |L(s, x)| is comparable to a weighted average of the
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quantity |A(s,x;u)| + |A(1 — s,X;u)|. The bulk of the weight in this
average is placed on sums of length u < /q7.

To prepare for the proof of the above, we make some preliminary
remarks. The functional equation of L(s, x) in its symmetric form asserts
that

L(s, )T ((s + 5)/2)(q/7)5+)/2
= (0L = 5,0T((1 = s+ 5)/2)(g/m) 5+,

(See Corollary 10.8.) Let A(s, x) denote the quotient of the cofactors,

eOOT((1 = s + K)/2)(g/7)1—5)/2

A(s,x) =

I((s + k)/2)(g/m)(=+R)/2 (25.31) |E:DefDelta(s,chi)

= e(x)2°7° ¢ /27T (1 — s) sin g(s +K).

Thus the asymmetric form of the functional equation (as in Corollary
10.9) asserts that L(s, x) = A(s, x)L(1—s,%X). Since |e(x)| = 1 it follows

from (25.3)) that

|A(s,x)| < (gT)Y/*° (25.32) |E:Delta(s,chi)Est

uniformly for —A < o < A, [t| > 1. On dividing both sides of (25.27) by
T((s+ x)/2)(q/m)5+%)/2 we find that

B > x(n) F((s+/1)/2,7m22/q)
L(&X)*; ns T((s+x)/2)

(
= xn) T((1 =5+ 5)/2,70%/(42))
+A(sX) Y = N((1-s+r)/2)

(25,59

n=1

If we take z = re’® with ¢ given by (25.4)), then the above reads

Ls0) = 32 MWy ((s 4 w)/2), 70/
n=1

(25349

#8060 Y X (1 s 4+ w)/2, 0% (ra)).

n=1

Here the factor e~*¢ that arises in the second sum is appropriate, since
the imaginary part of 1 — s is the negative of that of s. We divide both
sides of this by 7, integrate from 1/2 to 2, and divide by log4 to find
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that

(s +K)/2), ™2/q)

0=X
+A(s, )Y Zl(ib

In calculating the second term we have used the fact that

2
f(c/r) T e ™

1/2 r

Proof The first sum on the right hand side of m is

/000 wi ((s + k) /2, Tu?/q) dA(s, x;u) . (25.36)

When we integrate this by parts we must consider the size of

wi((s + r)/2,mu?/q) A(s, x; u)
for w near 0 and as u — oco. The lower endpoint is easy to treat, since

A(s,x,u) = 0 when u < 1. As u — oo we have A(s,x;u) < u? for

some A. From (25.15) we see that wi((s + k)/2,mu?/q) < exp(—cu?)
for some ¢ > 0. Here A and ¢ may depend on various parameters, but

are independent of u. Thus the product of the two bounds tends to 0 as
u — 00. Hence by integration by parts the expression ([25.36) is

_/OOO A(s,x,u) dwy ((s + k) /2, Tu?/q)

(25,39

wy((1— s+ rK)/2,m3/q) .

=_ /000 A(s, x, u)c,%wl((s + k) /2, mu?/q) du

du .

a=mnu?/q

_27r/ A(s, X, u )u%wl((s—l—ﬁ)/? a)

By Lemma this is
o) _ 2
< (gr)~ (ot / |A(s, x; u)| exp (*m )U"*"‘l du.
0 2q1

By considering separately the ranges 0 < u < /g7 and /g7 < u < 00 we

find that exp(—mu®/(2¢7))(u?/(q7)) " /2 < exp(=u?/(q7))(u*/(q7))°/?
uniformly for « > 0. Thus the above is

o] 2 5/2 du
Als. v u)le—w /) (L) o
< [l sle o ()

u
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O

Suppose that k is a fixed positive integer. Then by Holder’s Inequality,

2
[ e (12 2
0

qT u

o0 2.6/2
< ([ Mt cupren (YA

0 qT u

2 2k—1
X </OO e—uz/(rzr)(ﬂ)g/2 du)
0 qT u

S Als. ve ) [2p—u?/(ar) (W22 du 25.37) [E:B

< | A Pt () TSR (25.37) [EiBadgian]

If Q/2 <q<Qand T/2 < |t| < T, then the above is

2k

o 2\8/2 du
V(2K —uz/(ZQT)(L au :
< /O s, w)[2re o) e (23)

This latter form will be useful in forming moment estimates.

?77.1 Exercises

Exer:VarIncGam| 1. Suppose that o > & > 0 and that ¢ > 0.

(a) Suppose that 0 < ¢ < 7/2. Show that the variation of I'(s, ue’?)
as u runs from 0 to oo is

et

s )7 ¢)0F(U) .

(b) Show that the above is minimized by taking ¢ = arctant/c.
(¢) Conclude that

Varg o) I'(s, ue'?) > T2|0(s)|

uniformly in all choices of ¢.

2. Suppose that ¢ > 0. Show that (25.35)) is a special case of the more
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general identity

V-2

(s + £)/2), 7%/ (cq))

sxzx Zwr (( (1 =5+ k)/2,emn?/q).

3. If [;° | f(2)]x" ! do < oo, then we call the function

s) = /OOO f(z)z*tdx

the Mellin transform of f, and usually one can recover f from F by
means of the inverse Mellin transform,

c+ioco
flz) = i/ F(s)x™%ds

2mi c—100

for suitable values of c¢. In Chapter 5 we several useful pairs f, F
of this kind. Suppose now that [~ [f(z)[z° "t dx < oo, and that
157 lg(@)|z"~t do < oo and set

s) = / f(x)z*~t da, G(s) = / g(x)z* " d.
0 0
Define h by the convolution formula
be) = (Fea)e) = [ Fwhatar) %

(a) Show that

/OOO |h(2)|z" tdx < /000 |f(2)|27  da /OOO lg(z)|2 " da .
(b) Put
1) = [ by o,

Show that H(s) = F(s)G(s).

4. (a) By integrating by parts, or otherwise, show that if Rez > 0 and
Res > 0, then

/ I'(z,a)a* ' da = [s+2) .
0 S
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(b) Suppose that Rez > 0 and that Res > 0. For ¢ > 0 let

f(z,a) ! /CHOO Dlst2) s gs.

2T J oo s

(i) By using Theorem C.4, or otherwise, show that a%f(z, a) =
—e %
Show that %F(z,a) = —e %a*.

Show that when z is fixed, lim, o f(2,a) = 0.
Show that when z is fixed, limg_ o, I'(2,a) = 0.
(Mellin) Deduce that

z

1 [T (s+2)

= “Sds =T
57 a”%ds (z,a)

c—100 S

for Rez > 0, Rea > 0.

5. For Rez > 0 and w in the slit complex plane |argw| < m, let
v(z,w) =T(2) = T'(z,w) = / e “ur du
0

be the complementary incomplete gamma function, and set g(z, w) =
wEy(z,w) = fol e~ L du.
(a) Show that

—w

€ w
== 4+= 1w).
gz w) = — + Zg(z + Lw)

(b) Show that

- k whk gz + K +1,w)

g(z’w)ze_wkzz()z(z+1)-'~(z+k) z2(z+ 1) (2 4+ K)

(c) Deduce that

k

g(z,w):e_wkgoz(z+1)...(z+k)'

(d) Note that
k

g(zw) w
rz) ¢ kz:%l“(erkJrl)

is an entire function of z, and of w.
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25.1 Notes

Section 21.1. Concerning majorant inequalities, antecedents of Theorem
are found in the work of Wiener (unpubished — see Theorem
12.6.12 of Boas (1954), Erdés and Fuchs (1956), Wiener and Wintner
(1956), and Haldsz (1968). Logan (1988) showed that the constant 3 is
best possible. For a general discussion of majorant principles, see Shapiro
(1975). .

Section 21.2.[Temmel (1979) gave a detauilem(111 account of the asymptotics
of the incomplete gamma function I'(s, «). [Rubinstein| (2005) developed
a variety of tools for the computation of various sorts of L-functions.

Section 21.3. Should mention the mean value theorem of Nigel Watt
(NW95), which depends on Kloosterman sums. See Heath-Brown’s re-
view. Section 21.4. For an account, gQ)fA the Phragmn—Lindel6f Theoem
see, for example, Theorem 5.1.9 in [Simon| (2015)).
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| C:MeanLargeVals |

26.1 Mean value estimates

Suppose that Ay < Ay < -+ < Ay. Then

/‘Zan )\t‘dt TZ|an|2

n=1
_e((Am—=A\)T) -1
) am 21 — An)
1<mn<N
m#n

261)

Here the last term is a bounded function of T'; so that

%E“J/ \Z“" ()]t = ZW

This gives us a sort of asymptotic Parseval identity, but we want some-
thing more quantitative for a given finite 7. We note that if A,, is very
close to Ap41, then the terms ane(A,t) and ap1e(Ap41t) will reinforce
each other over certain long stretches of ¢, and then subtract from each
other over in other long stretches of ¢t. Thus any bound that is to depend
on the numbers |a,|? must also involve some information concerning the
spacing of the numbers A,,.

Theorem 26.1. Suppose that A1, Aa, ..., An are distinct real numbers,
and that 6 > 0 has the property that |\, — An| > 0 for m # n. For any
real T > 0, any positive integer N, and any real or compler numbers a,
there is a real number 8, —1 < 0 <1, such that

T, 6 N 2 N
/ ‘ S ane(/\nt)‘ dt = (T+6/5)3 lanl.
0 n=1 n=1
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By replacing a,, by ane(A\,Tp), we find that

To+T N 2 N
/ ‘Zane()\nt)‘ dt = (T +0/5)3 |

To n=1

for some 0. Thus our estimate depends on the length of the interval of
integration, but not on its position.

First Proof Let S; and S_ be functions with the properties described
in Theorem ??, with I = [0,7]. Then

T N ) N ,
/0 ’;ane()\nt)’ dtﬁ/ﬁ{‘;ane()\nt)’ S, (t)dt

by Theorem ??(b). On expanding the right hand side and integrating
term by term, we see that the above is

N
= am@n S (A — Am) < (T +1/6) > |ay|?

n=1

by Theorem ?7?(c),(d). Similarly,

T N ) N ,
/0 ’nzlane()\nt)’ dtZ/R‘T;ane(/\nt)‘ S_(t) dt

N
= am@nS—(An — Am) = (T =1/6) > |an .
m,n n=1

O

Second Proof We estimate the contribution of the non-diagonal terms
on the right hand side of via two applications of Hilbert’s inequal-
ity in the form of Theorem ??. Specifically, by taking v, = ame(AnT)
and z,, = a,e(—\,T) we deduce that

N
76(()\771 - /\n)T) 1 2
_ < — .
D, and 27 (A — An) | = 20 D lan|
1<m,n<N
m¥#n

Similarly,

P
TN 27i(Am — An)
m#n

so the desired estimate now follows by the triangle inequality. O
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Corollary 26.2. For any positive real T, any positive integer N, and
any real or complex numbers a1, as,...,aN,

T N 2
/ ’ E annfzt
0 n=1

Proof We note that

dt = (T + O(N Z|an|2 (26.2)

n+1 1
1 1) —1 = ~du > .
og(n+1) —logn /n e
Thus we can appeal to Theorem with § = 1/(27N). O

Example 1. Put D(s) = Zi:;l n~%. By integrating by parts we find

that
Ni=s —1 N {u}
D(s):li_gqtl—s/1 uS_Hdu.

Hence in particular,

1—it

D(it) = T =% + O(1log 2N)

where T = |t|4+4. Thus |D(it)] < N for0 <t <1, and so fol |D(it)|? dt <
N? = Nzgzl lan|? since a, =1 for all n in the present case. Thus the

error term O(N) 25:1 lan|? in (26.2)) is best-possible.

The proofs of Theorem [26.1] are short and elegant, due to the substan-
tial material found in Appendices 7?7 and ?7?. In some cases of interest,
the A, are irregularly spaced, so that one A, might be closer to its
nearest neighbor than another one. In such a situation, we have a more
delicate weighted estimate, although with a slightly inferior constant.

Theorem 26.3. Let A1, Ao, ... be distinct real numbers, and put

Op = mniln [Am — Anl -

m#n

For any real T > 0 and any real or complex numbers a,, with Zzozl |an]
< oo there is a real number 6, —1 < 0 < 1, such that

/ ’Zan )\t‘dt TZ\,,\2+ 02|a"|

Proof We proceed as in the second proof of Theorem [26.1] but now
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appeal to Theorem 77 in place of Theorem 7?7 to see that for any positive
N there is a Oy such that

"Iy TIPS WREONE: PR W 1
ane)\nt’dt:T an|” + =0 LA
i [ et =1t 5o 3

The stated result then follows by allowing N to tend to infinity. O

Corollary 26.4. For any positive real T and any real or complex num-
bers ay, as, ... with Y > |an| < oo,

T 00
/ ‘ E annfzt
0 n=1

Proof This follows from Theorem with §, = 1/(27(n + 1)). O

oo

2dt = Ti |lan|® + O(Zn|an|2>.
n=1 1

n=

The following extension of the above is occasionally useful.

Corollary 26.5. Suppose that T > 0, and that a1, as,... and by, ba, ...
are sequences with >~ |an| < 0o and >, |by| < 00, and a1by = 0.
Then

T 0 . .
/0 ‘ Z (amf” + bnn”)
n=1

Proof This follows from Theorem[26.3]in the same way as Corollary [26.4]
but now some of the frequencies are of the form % log n while others
are of the form — i log n. O

“dt =3 (Janl? + bl?) (T + O().

n=1

In Corollary it would typically be the case that the a,, are nonzero
for most n. However, when the a,, are nonzero only for n in a sparse set,
we can obtain a slightly better estimate, as follows.

Corollary 26.6. Suppose that ay,as,... are real or compler numbers
such that > o7 |an| < oo. and let d,, be an integer such that d,, < n/2
and with the property that a,, = 0 whenever 0 < |m —n| < d,,. Then for
any T > 0,

T 0
/ ‘ § annfzt
0

n=1

2 oo %) n|an|2
=TS a2 +0( S Minl ),
nz::l “ (nz::l d, )

This extension of Corollary can be applied to either or both of
the sums in Corollary

Proof Tt suffices to apply Theorem with 6, = d,/(4mn). O
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Primes and primepowers are somewhat sparse, but only irregularly
so. When considering a sum over primepowers whose coefficients (on the
primepowers) are slowly varying, the following estimate is useful.

Theorem 26.7. Let Q, denote the set of primepowers. For n € Q, let
d,, be the minimum of |m — n| form € Q, m #n. Then for U > 4,

1 <« UloglogU
— 2
= dn, (logU)
U<n<2U

Since d,, > 1 for all n, it is trivial that the above sum is < U/logU.
If it were the case that d,, > logn for all n € Q, then the sum would
be =< U/(logU)2. If twin primes occur with the conjectured frequency,
then the above estimate is best possible.

Proof For the purposes of this proof, let P denote the set of primes,
and Q* the set of proper primepowers, which is to say the set of numbers
of the form p* with & > 1. Thus Q is a disjoint union of ? and Q*. For
primes p set do(p) be the minimum of |p — p’| for p’ € P, p’ # p. We
show first that

1 UloglogU
3 < Jloglog U

o) < (log0)2 (26.3)

U<p<2U

The number of summands in the above sum is < U/ log U, so the contri-
bution made by those primes for which do(p) > logU is < U/(logU)?.
The contributions to the above sum made by primes for which dg(p) <
logU is

1
— U,2U]| : Pl
<<T<%Ur#{pe[ ,2U) : p+r € P}

By the sieve estimate of Corollary 3.14 the above is

c(r)U
< Z (logU)?

r<logU

where ¢(r) =[], 52 (%)' From (2.32) it follows that ) _pc(r) <
R, so follows by partial summation.

For all primepowers n € Q we define dj(n) as follows. If n € Q*, then
set di(n) = 1; let p; denote the largest prime < n, and ps denote the
least prime > n, and set dy(p1) = di(p2) = 1. The number of n € Q*

such that U < n < 2U is < UY?/logU. It p is a prime such that the

E:d0(p) sum
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greatest primepower < p is a prime, and the least primepower > p is
also a prime, then we set dy(p) = do(p). Thus

1
di(n) >

U<peaU o(p)

<U1/2> UloglogU
logU (log U)?

neq
U<n<2U

Since di(n) < d,, for all primepowers n, the desired bound follows. [

In Chapter 7?7 we found that it is fruitful to estimate the mean square
of a trigonometric polynomial at well-spaced points in terms of the con-
tinuous mean square. Similarly, it is useful to estimate the mean square
of a Dirichlet polynomial at well-spaced points.

Theorem 26.8. Let
N
D(s) =Y ann™". (26.4)
n=1

Suppose that 0 < § < 1, T > 1, and that t1,ta,...,tg are real numbers
such that A < t; < to < -+ <tp < A4+T and t,y1 —t, > 6 for
r=1,2,...,R—1. If D(s) is defined as in (26.4), then

R N

> ID(ity)]> < (log N +1/8)(T + N) Y |an|®

r=1 n=1

uniformly for any complex numbers a, and any real number A.
Proof Let M, = [t, —/2,t, + /2] for r = 1,2,..., R. By Lemma 77
it follows that

1

ID(it,)2 < f/ D(it) 2 dt +/ \D(it) D' (it)] dt .

o Jon, M,
The intervals 9, are disjoint and all lie in the interval [A — 0, A+T+ 4],
SO

A+T+5

R 1 A+T+6
> ID(it,)]? < 5 |D(z‘t)\2dt+/ |D(it)D'(it)| dt .
r=1 -4

By the Cauchy-Schwarz inequality the above is

A=

1 A4+T+o

< =
0 A—-§

A+T+S 1/2 A+T+S 1/2
+ </ |D(it)|2dt) </ D’(z’t)|2dt) .
A-¢ A-§

|D(it)|* dt
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By Corollary it follows that this is

T+NN N 1/2 , N 1/2
2 2 2
< nz:l|an|+(T—|—N)<Z|an|) (;|anlogn|> |

n=1

This gives the stated result. O

We now extend the above to allow points s, = o, +it,, whose abscissae
are not all equal.

Theorem 26.9. Let D(s) be defined as in (26.4)), let A be a real number,

and suppose that T > 2. Let s1,82,...,sr be distinct complex numbers
in the half-strip . > 0, A < t,. < A+ T, and suppose that § < 1 has
been chosen so that |t,, — t.,| > 0 whenever r1 # ry. Then

R

N
log 2N
2 2
;\D(sm < (1ogN+1/5)(T+N);|an| (1+1og 1og2n)'
Proof Let

so that if o > 0, then
N
D(s)=a1(1—N"7)+D(it) N7 + 0/ S(it;u)u= " du.
2

Hence

2

N
|D(s)|? < |ai]® + |D(it)|* + (O’/ |S (it; u)|u=o du) .
2
By the Cauchy—Schwarz inequality the last term above is

N N g 2

log u |S(it, u)]
< |o? ——du .
< (U /2 2041 du> (/2 ulogu du

By integrating by parts twice we find that

N

logu 1 1 o 1
2 _ - _ _ —

7 /1 et =3~ gae ~ g el s

Thus
NS (it u)|?

ID(s)2 < |an ]2 + [D(it)2 + / Pl (205)
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uniformly for ¢ > 0. When we take s = s, and sum over 7, the contri-
bution of |a1|? is < |a1]|?R < |a1|*T /6. The contribution of |D(it,)|? is
exactly as it was in Theorem and

Z/ [5Gt w)” d < (log N+1/9) T+N/ Z lan|? (ulog u) ™ du.

ulo
gu 2<n<u

Here the integral on the right is

N N
log N
e S e M
o n ulogu logn

This gives the result. O

When N > T we do not obtain good bounds for the mean square
in terms of Z _, |an|?, but we now show that quite reasonable upper
bounds can be obtained in terms of short sums of the coefficients.

Theorem 26.10 (Gallagher). Let L be a countable set of real numbers
and for X € L let a(\) be complex numbers such that Y., |a(N)| < oo.
For realt and 6 > 0 let

St)=> aNe(xt),  Asz)=45" Y a()).

AEL AeL
[A—z|<d/2
Then
o o (SIn Tt \2 _/°° 9
| s@r(SEE) b= [ jaswra.
Proof Let
0~! when |z| < §/2,
Fy(e) el <5/
0 when |x| > §/2.
Then

As(z) = a(\)Fs(z—\).

A

We note that As € L}(R), since by the triangle inequality

[ Asll 2 vy < Z la(X) Fs(x = M)l @) = Zla )| < oo
Let As(t) denote the Fourier transform of As(x), i.e.,

As(t) = / " Asa)e(—at) da.

—00
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Then
As(t) =" a(n) / Fs(z — Ne(—at)dx
=" a(Ne(=At)Es(t) = S(—t)F(t).

AEL

Next we show that As € I?(R). To see why this is so, we first note
that

As@)PP = DY a()a(da) < D a(h)l la(r)]-
N EL NEL
lz—Ai|<d/2 |[z—Xi[<é/2

If |A1 — A2| > J, then there is no x for which both inequalities |z — A\;| <
0/2, |x — A2 < /2 are satisfied. If |A; — Aa| < 0, then the set of x
for which |z — A1| < §/2 and |x — A2 < 6/2 is an interval of length
0 — ‘)\1 — )\2‘ Thus

[ aswpars Y max(0.6 - = dabla(u)l ()

A1,A\2€L

2

< 6(2 a(A))
AEL

By Plancherel’s identity for functions in I}(R) N I?(R), it follows that

/jo |As(x)|? do = /jo |As(t)|? dt = /jo |S(—t)Fs(t)|? dt .

Since

~ sin ot
Fs(t) = —

we have the stated result. O

When the above is applied to ordinary Dirichlet series, this gives

Corollary 26.11 (Gallagher). Suppose that Y ., |an| < oo, that § >
0, and that k = €>™°. Then

Z sm 71'525) dt 1 /°° i

= — an
nit ot 2162 J, —
y<n7<f€y

2
W (96.6)

Proof Take Ap = 10% in Theorem [26.10, and set y = €27~ Thus
dr = O

2ﬂdy

E:GallEst2
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Cor:gallagher3| Corollary 26.12 (Gallagher). Suppose that >~ |a,| < oo, and let

K = exp (T‘l) where T' > 1. Then

T o0 a 2 0o 2dy
ol acr [T 5 al® e [Eoms
“Tlin=1 y<n<ky

The sum on the right hand side above is empty when y < 1/k, so in
effect the range of integration is [1/k, 00).

Proof We take § = 1/(2aT) in Corollary [26.11} Put g(u) = 2% for
u # 0, and g(0) = 1. Then |g(u)| > 1 uniformly for 0 < u < 1/2, so the
left hand side of (26.7)) is majorized by the left hand side of (26.6). O

In addition to the mean value estimates we have already considered,
the following majorant principle is sometimes useful.

Theorem 26.13. Suppose that A1, Ag,... are real numbers, and that

real or complex numbers a; and A; have the property that |a;| < A; for
all j. Suppose also that Z;’;l Aj < oo. Then for any T > 0,

T 2 T
/ dt§3/
T =T

Proof For T > 0 let
Kr(t) = max(0,1 — [t|/T). (26.9)

2

i @

aje()\jt)
Jj=1

Aj@()\jt)
j=1

We show first that
T oo
/ KT(t) Zaje()\jt)
T =

To see why this is so, and observe that by integration by parts it is
immediate that

2
dt. (26.10) |E:wtdmajorant1|

2 T
dt < / Kr(t)
=T

> Aje(Mt)
j=1

Ro(a) = /_O; Ko(t)e(—ta) dt — %(

sin w1 \2
) >0.
T

By multiplying out the modulus-squared we see that the left hand side

of ([E5.10) is
_ Za@/ Kr®e((hy — M)t dt = 3 a;aekr (v — Ay).
J.k >

Jik
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Since IA(T(a) > 0 for all «, the above is

o) 2
< ZAjAkKTO‘k —Aj) = / Kr(t) dt.
—0o0

Jik

> Aje(Mit)
j=1

Thus we have (26.10). We note that if we apply (26.10)) with a; replaced
by aje(A;U), then we have

> aje(At)
j=1

2
dt

/_O;KT@—U)

5 (26.11) |E:wtdmajorant2

dt

S /OO KT(t) iAj@()\jt)
— 0o =1

for any real number U. We note that the function
w(t)=Kr({t+T)+ Kp(t)+ Kr(t—T)

majorizes the characteristic function of the interval [T, T]. Thus by
three applications of (26.11)), with U = —T, U =0, and U = T, we find
that

T o0 2 T o0 2
/ aje(\jt) dt§3/ Kr(t)| Y Aje(M\t)| dt,
T j—l -T j:1
and (26.8)) follows from this. O

To see how we might use Theorem suppose that we have two
Dirichlet series,

als) = am™,  A(s) =) Aun* (26.12)
n=1 n=1

—0

with |a,| < A, for all n and suppose that o is chosen so that > > | A,n
< o0o. Then

T T
/ la(o +it)|? dt < 3/ |A(o +it)|* dt .
-T -T

Specializing this still further, we see in particular that if |a,| < 1 for all
n, and 1 < o < 2, then

1 1
1
. 2 - 2 — . 3
/ (o + it))| dt§3/ Clo+it) Pt = —. (26.13) [E:SpecMaj

-1 -1

26.1l1 Exercises
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. (Goldston 1981) Let S(t) = >_ ,cas c()e(ut) where M is a countable
set of real numbers and 4/ |c(p)| < oo. Suppose that T > 0,
d > 0, and take I = [0,7] in Theorem E.2.

(a) Explain why
/T |S(t)[* dt < /OO S, (8)]S(t)[? dt.
0 -0

(b) Deduce that

/0 s di < (T+5) 3 lewl?

HEM
+ (max[Sp (1)) Do le(we(v)]:
wVEM
|p—v|<é

(¢) Show similarly that

/0 s dr > (T+5) 3 lewl?

HEM
—(max|S_(O)]) > le(wew)].
|5’—Vu€\m<{6

(d) Write St (z) = x, () + (S<(x) — x,(z)), and deduce that

~ 1
1S @)] < 19<llp® < lIx; low + 15 — X, lpw =T + 5

(e) Conclude that there is a number 6, |0] < 1, such that

/OT S = (1+9) (g[|c<u>|2 +

. Let Q and d,, be defined as in Theorem [26.7]
(a) Show that

Z d, < U.
cQ

U<n<aU
(b) By Cauchy’s inequality, or otherwise, deduce that
1 U
Z d, > (logU)?"

U<n<2U
neqQ,
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3. Suppose that f is analytic in a domain that contains the closed disc
|z| <R.

(a) Show that if 0 < r < R, then

27
f(0) = % /0 f(re') as.

(b) Deduce that

1 1 R p2m 0
§R2f(0):%/0/0 f(re) rdrdo.

(c) Deduce that

f(0) = #//D flo+it)do dt

where D = {s:= 0?2 + 12 < R?}.
(d) Deduce that

|f(0)] < %m//gms)\dadt.

(e) Suppose that D(s) is defined as in (26.4)), that the complex num-
bers s1, 82, ...,sg lie in the rectangle 0 < o, < 1/log N, A <
t, < A+ T, and that |s,, — s.,| > 1/log N whenever r; # ra.
Show that
R N
> ID(sp)]? < (T + N)(log N) Y |an .
r=1 n=1
(f) Suppose that D(s) and the s, are defined as above, except that
now the s, lie in the rectangle 0 < o, <1, A <t,. < A+T. Show
that
R

N o2
7; D(s,)[2 < (T + N)(log N)? ; log|(n|—|—1)'

JRCA3
4. k( onreyl, |1983)

(a) Suppose that f is a bounded function of bounded variation on
the interval [a, b]. Show that

b
Z—/ Y™ df(t)

for any real number y. (Material in Appendix A may be useful
here.)

b
i(logy) / f)y™tdt = {f(t)y”
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With f as above, show that

b
(mw/fﬁﬁﬁ<meMmeﬂf

a<t<b

Suppose that functions f and g are bounded and of bounded
variation on an interval [a,b]. Show that

varpp fg < sup |f(t)| vary g+ vare fosup |g(t)].
a<t<b a<t<b

Show that if m and n are positive integers with m < n < 2m,
then log

n o~ n-—m
m m

Show that if m and n and positive integers with n > 2m, then
log = > 1.

Deduce that if m and n are positive integers with m < n, then
log & >> min(1, #™).

m

Show that if N is a positive integer and 1 < m < N, then

1
S L < NN,
[logn/ml

1<n<N
n#m

By means of Theorem 77, or otherwise, show that

N
Ama
E __m=7n N(loe N E 2
1<m,n<N n=1
m#n

uniformly for arbitrary real or complex numbers a,.

Let f1, fa,..., fn be functions defined on an interval I = [A, A+
T, and suppose that C' is a number such that sup; |f,| < C and
vary fp, < C for all n. Note that

3 t *”th— 3 2 )% dt
[ annnton =3 ol [ 100

+ Y a0

1<m,n<N
m#n

For given m and n with m # n, put f(t) = f.(t) fn(¢). Show that
sup; |f(t)| < C? and that vary f < C2.
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(j) Show that in the above situation,

3 o[t = o t)|? dt
J I anston=[ =S jonl? [ 15200

n=1

N
+O(NlogN) > |an|*.

n=1

This has many uses. For example, if N(¢) is an increasing function
with N(T) = N, then the integral

A+T 2
/ ‘ Z apn” | dt
A n<N(t)

can be estimated, with an error term that is only one logarithm
larger than in Corollary

5. Suppose that A1, Ao, ..., Ay are distinct real numbers and that § > 0
has the property that |\, — \,| > 6 whenever m # n. Put

N N
A(t) =) ane(Ant), B(t) = bue(Ant).
n=1 n=1

(a) Show that for any 7" > 0 there is a number § with |#] < 1 such
that

/2 1/2

/OTA<t>B<t>dt=Tianm +§(ﬁ|) (ﬁjlb>

(b) Suppose that §,, is defined as in Theorem Show that for any
T > 0 there is a § with |#] < 1 such that
>1 /2

/OT A(t)B(t) dt = Tﬁj anbn +20(§: ‘Z:f)m ( g:

n=1 n=1

[bn ]
On

6. We consider the situation of Theorem 26.1]

(a) Show that if A\, 41 — A, = 0 for all n, and 6T = 1, then

1 T X 5 N
T /0 ’ Z ane()\nt)‘ dt = Z lan|?.
n=1 n=1
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(b) Show that if A,,y1 — A, > d for all n, e > 0, and §T > 1 +¢, then

1 T, N 2 N
f/ ‘Zane()\nt)‘ dt> ()Y lanl? (26.14)
0 n=1 n=1

where C(e) =¢/(1+¢).

Ing36
. %(lngham7 1936) The object of this exercise is to show that if A\, —
Ap >0 for all n and 0T = 1, then the inequality (26.14)) is false when
C(e) is replaced by any constant C' > 0. For |z| < 1and 0 < @ < 1/2,
write

(14+2)~ mez

For 0 <r <1and A >0, put
fr@) = e(At/2)(1 +re(t)) ™ + e(=At/2)(1 + re(—t))~*.
(a) Show that

mer ((m+X/2)t) + e(—(m + \/2)t)) .

(Note that the frequencies in the above are spaced by at least 1
itA>1)
(b) Show that

1/2
/ |(1 + re(t)|?> dt = Z|b 2p2m

(c) Note that (14 2)~® = 2=%/2(21/2 + 27Y/2) 7" and deduce that

lim (14 re(t))™® = e(—at/2)(2cosmt) ™

r—1-

for —1/2 <t < 1/2.

(d) Show that |g(re(t))]* < (cosmt)™2* when —1/2 < t < 1/2 and
0<r<il.

(e) Explain how you know that

1/2 1/2
lim |g(7"e(t))|2dt:/ lim |g(re(t))|? dt
r—1- —1/2 71/27'%1*

1/2
= / (2cosmt) "2 dt.
—1/2
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(f) Show that the right hand side above is

2(2m) 2
1 -2«
as a — (1/2)".
(g) Show that
1/2
lim |f(£)|% dt
r—1- 71/2
1/2 1 1 9
_ / [(e(= (A — a)t) + e(= (@ — A1) (2cos mt) 2| dt
—1/2 2 2

1/2
= / (2cos (A — a)t)*(2cos wt) "2 dt .
—1/2

(h) Take A = ac+ 1. Then the above integral is

1/2
/ (2cost)? 72> dt .
—-1/2
Explain why this is bounded, and show that it tends to 4/7 as
o — (1/2)". Note that the frequencies are the numbers +(m +
‘%1) for m =0,1,2,... .. Thus the gaps between the frequencies
are all 1, except for the gap between —(av+1)/2 and (a + 1)/2,
which is nearly 3/2.
(i) Explain why the asymptotic mean square of f is

1/2

o0
2 Z b2, = 21_20‘/ (cosmt) ™2 dt .
m=0 —-1/2
(j) Theorem relates to finite sums, but our construction thus
far has involved infinite sums. Explain why

3 (1 - %)bm (e((m + A/2)t) + e(—(m + A/2)t))

m=0

behaves similarly to the infinite sum, when M is large.

. In the situation of Theorem [26.8] apart from the ordering of the t,,
the hypothesis as to spacing is equivalent to asserting that no interval
[t,t + §) contains more than 1 of the t,. Suppose we weaken this
hypothesis by asserting only that no interval [kd, (k + 1)) contains
more than 1 of the ¢,.. Show that the same conclusion still follows
(with a larger implicit constant).
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Exer:Sobolev2d| 9. Suppose that f(z1,z2) has continuous partial derivatives through the

_9f
8ZE2 and f12 aIlan :

a) Let U = . ow that if (a1, as then
(a) Let U = [0,1]. Show that if (a1,as) € U2, th

fara)| < [ 1fG@ra)]+1iar,a)

+ [ fo(@1, 22)| + | fra(w1, 22)| day dao .

second order, and let f1 = 6951’ fo=

(b) Show that
#0722 < [ 1w + 5l i)
U2

1 1
+ §|f2($1a$2)| + 1\f12(5€17$2)| dzy dzs .

(¢) Suppose that 6; > 0 and that d; > 0. Show that
TR 0 | f (g m)| a2

flar,a §/ / — + :

( 1 2)| ali%él " 6162 262

| f2(z1, 2)] n Ji2(x1, x2)]
201 4

2— 502

+ dzro dxy .

10. Show that
T N 2
/ ‘ Re Z apn~
0 n=1

nolh
11. [(Mgham), (1936) Suppose that {\,} is a sequence of real numbers with
An+t1 > A, for all n, and put

al 1
=Y laa* (57 +0(m))

n=

= Z ane(Ant)

where )~ |ay| < co.
(a) Show that if A\, = n for all n, then

1/2
max |an| g/ 1S(8)] dt

—-1/2
Our object, in what follows, is to explore what might be said in
this direction for more general well-spaced A,,.
(b) Set K(t) =coszt for —1/2 <t <1/2 and K(t) =0 for |t| > 1/2.
Show that
~ 2cosma

M= i —aen)
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(¢) Show that

oo

/OO K@e()S@dt= 3 ank(c+An)

n=—oo

for any real number c.
(d) Explain why

S 1/2
‘ / K (t)e(ct)S(t) dt’ < / |S(t)| dt.
oo —1/2
(e) Let k be an integer such that |ag| = max,, |a,|. Show that
‘ S anK (A — )\k)‘ > || (f((o) ~ ST IR - )\k)).
" ngk

(f) Suppose that € > 0 and that A,41 — A, > 1 4 ¢ for all n. Show
that the expression in large parentheses above is

(oo}

= i(l_;z((l—i—a):)?—lﬂl)'

r=1

(g) Show that the expression in large parentheses above is

1 > 1
>1-— .
- 2(1+s)2;r271/4

(h) Show that the sum over r above is = 2.

(i) By choosing a suitable value of ¢, show that

1/2
/ |S(t)| dt > C(e) max |ay|
—1/2 n
where

_ 2e(2+¢)

C(e) (s

(j) Show that C(e) > eif 0 < e < 1/6.
(k) Suppose that T' > 0, that A\,41 — A, > 6 > 0 for all n, and that
0T > 1+ e. Show that

1 [T/2
—/ [S(t)| dt > C(e) max|ay|.
T -T/2 n
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(1) Let 6 and T be as above, and let A be an arbitrary real number.
Show that

A+T
/ 1S(8)] dt > C(e) max |an]
A n

The argument above fails to give a positive lower bound when §7 = 1.
On might wonder whether a better result could be obtained by the above
method, if the kernel K were replaced by a different kernel. Note that
by the Poisson summation formula,

STKn+1/2) =Y (-1)FK(k).

k

We need K to be absolutely integrable, so it is necessary that K be
continuous. Since K (t) = 0 for |t| > 1/2, it follows that K(£1/2) = 0.
Thus all terms in the sum on the left above are 0. But the right hand
side is
> K(0) =) [K(n)|.
n#0

However, we need this last expression to be positive in order to obtain a
positive lower bound, so it seems that this method cannot succeed when
6T = 1. However, see Exercise [13| below.

12. For 0 < e <1/2 let K.(z) = max(0,1/e — ||z])).

(a) Show that K.(0) = 1.
(b) By integrating by parts, show that

IA(& (n) = (sin TNE )2

™ne

for n # 0.

(c) In the notation of the preceding exercise, take a,, = (—1)"K.(n).
Deduce that S(t) = K.(t + 1/2).

(d) Set T =1 — 2¢. Note that S(t) = 0 for —7/2 <t < T/2, and
that max, |a,| = ap = 1. Here 6 = 1, so dT = 1 — 2¢, but

fipﬁw |S(t)| dt is not bounded below by cag with ¢ > 0.

~

ng!

ng50
13. Elngham7 1950) The object of this exercise is to show that if
N
ft) = Z ane(Ant)
n=1
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where A\py1 — A, > 1 for 1 <n < N, then
1/2
max |a,| < 2/ |f(®)|dt.
n _1/2

(a) Explain why the following reformulation is equivalent to the above.
Let m and n be nonnegative integers, and put
f@t) = Z are(Art)
where A\.y1 — A > 1 for —m < r < n. Suppose also that Ay = 0.
1/2
Then |ao| < 2 [*/7, |£(t)] dt.
(b) The sum f(t) has m+n+1 terms. Let M be any set of m+n-+1
integers with 0 € mathscrM, and put

g(t) =Y clwe(pt)
peM
where the coefficients ¢(u) are to be determined so e(\t) is or-
thogonal on the interval [—1/2,1/2] to g(t) for all r # 0. This is
a system of m 4 n homogeneous equations in m +n + 1 variables.
To solve this system, put

1/2
G(u) = /_1/Zg(t)e(—ut) dt

for real u.
(c) Show that

sin mu (=DHe(u)  sinmu
Gl = = S = ),
say.
(d) Show that G(u) is an entire function.
(e) We want the rational function F'(u) to have poles at the p and

to be zero at the A, so we set F'(u) = P(u)/Q(u) where

Pl = I (u= 7). Q) = [T (w—n).

r#0 pneM

(f) It is clear that F'(A,) = 0. Explain why it follows that G(A,) = 0.
(g) Show that the partial fraction expansion of F' is

Pp)
Z“: Q' (W) (u—p)
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(h) Show that
Q=[] m-u)

(i) Show that

(j) Show that

/1/2 ZG ) = aoc(0) .

—-1/2

(k) Show that

1/2 12
‘/1/2 dt‘ /1/2f(t)|dtz“:|c(u)

(1) Assign indices to the p, so that pg =0, g, = [A] for r < 0, and
tr = | Ar] for 7 > 0. Show that

0):Hr¢0%21.

(m) Show that (—1)*r¢(p,) < 0 for all r # 0.
(n) Show that

uP(u)
1= lim o0 %:(_1)%(”).

(o) Conclude that |ag| < 2 —1/¢(0).

(p) Let Ak(t) be the Fejér kernel, and set f(t) = Ag(At) where A
is slightly less than 2 and K is large. Here the largest coefficient
is 1. Show that f 12 | f(t)| dt is approximately 1/A. Deduce that
the constant 2 in (a ) is best possible.

14. Let Kp(t) be defined as in (26.9). By some form of the inversion
theorem for Fourier transforms, it follows that

/O; 1 (SH”TTO‘) da = max(0, 1 — [t|/T).

T TQ

Give a direct computational proof of the above identity.
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15. Suppose that A, > 0 for all n, and that ) A, < oco. Also, let A,, be
arbitrary real numbers, and let Kr(t) be defined as in (26.9).

/_O; Kr(t)

(b) Deduce that

(a) Show that

2 o]
dtzTZA§.
j=1

2 e’}
dt>TY A3

/OO )
—oo |55

|Exer:Jutila|l6. (a) Let numbers );, a;, and A; be as described in Theorem [26.13

Show that
ZZan Aj = k) gz ZAe/\—)\k
J,k ' n=1 ik 'n=1

(b) Let the Dirichlet series a(s), A(s) be defined as in (26.12)), with
lan| < A, for all n, and suppose that o is chosen so that >~ A,n~=7
< 00. Let tq,ts,...,tr be real numbers. Show that

Z la(o +i(t; —t))]* < Z | Ao +ilt; — )7

1<j,k<R 1<j,k<R

(c¢) Suppose that C is a positive real number such that |a,, | < C A, for
all n. Show that if Dirichlet characters x; and complex numbers
s; are chosen, then

N 2
| a, ()=

1<j,k<R n=1
N
D7 Aux () ()
1<j,k<R n=1

2

17. (a) Let C' = [cn;] be an arbitrary N x J matrix, and suppose that
lan| < A, for all n. Show that

>yly

j=1k=1'n= j=1k=1
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(b) Let uy,...,up and vy, ..., vy be arbitrary members of an inner
product space. Show that

M N M M 1/2
S5 [t v < ( Yy |<um,uﬂ>|2)

m=1n=1 m=1pu=1

x (ii <vn,vy>|2)1/2

n=1v=1

18. Let numbers aj, A; and A; be as described in Theorem [26.13] Show

that
T o) 2k T
/ > aje(Nt)| dt < 3/
-7 155 -T

for any positive integer k.

2k
dt

> Aje(Mt)
j=1

19. Let aj, Aj, and the A; be as in Theorem [26.13] and consider the
possibility of a more general inequality of the form

cT 00
/ > Aje(Mt)
—cT =1

where ¢ > 0 and K(c) depends on c.

(a) Show that the above is valid when K(c) =1+ [2¢].
(b) Show that if the above is valid, then it must be the case that
K(c) > [2¢c].

oo

T 2
dt
-T

2dt§K(c)/

aje(A;t)
1

Jj=

26.2 Character sums and hybrids

From the basic orthogonality properties of Dirichlet characters (cf Co-
rollary 4.5) we know that

q 2 q
S Y anxm| =@ Y laal (26.15)
x mod g n=1 (nnq:)1:1

for arbitrary complex numbers a,,. Sometimes we want to sum over all
x modulo g, but evaluate our character sum not at x but rather at the
primitive character x* that induces x. For this situation we do not have
an identity, but at least we have an upper bound.

E:chiorthog
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Lemma 26.14. Let x* denote the primitive character that induces x.
Then

q q
S ’Zanx*(n)’2§q2|an|2 (26.16)
x mod ¢ n=1 n=1

for arbitrary complex numbers a,, .

The bound here is sharp, since equality is attained when all the a,,
are equal. (Consider the contribution on the left hand side made by the
character x'.)

Proof Each character y modulo ¢ is induced by a unique primitive
character x*. Let d denote the conductor of x*. Then d|q. This is a
one-to-one correspondence, So

> iianx%n)(lz > \ianxm)

x mod g n=1 dlqg xmodd n=1

‘2
By Lemma ?? with ¢ replaced by d, we know that

Z* Zq:anx(n) < zd: ‘zq:ane(bn/d)r.
b=1 n=1

x mod d n=1 =
(b,d)=1

‘ 2

On summing this over d|q we deduce that

Z ’ ianx*(n)‘Z < zq: ‘ Eq:ane(an/q)

x mod g n=1 a=1 n=1

‘ 2

By the Parseval identity for the Discrete Fourier Transform (which is
equation (4.4) in Chapter 4), the right hand side above is

q
=4q Z Ian|2>
n=1
which is the desired estimate. ]

For similar sums over intervals of arbitrary length we argue less pre-
cisely, as follows.

Theorem 26.15. Let

M+N

S0 =Y anx(n)

M+1
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where the a, are complex numbers. Then

N_1 M+N

|S<X)|2 < — | +1)e(q an2 26.17) |E:chimodg

mzd (=—1+1) ) 2 o (
(n,q)=1

and
N_1 M+N
S pss (1N e 3w e

X mod g 4 n=M+1

where x* is the primitive character that induces .

Proof Let
M+N

Z(Qa h) = Z Qn,

n=M+1
n=h mod q

as in (??). Then

S S0P = Y| Zamxm)| = e Y 126 n)P
mod

x mod g X h=1
(h,q)=1

by (26.15)). The sum that defines Z(q, h) has at most [%J + 1 terms,
so by Cauchy’s inequality it follows that

N-1
Z@nP < (=] +1) 3 el
q n=M+1
n=h mod q
so we have (26.17)). The estimate (26.18]) is proved in the same way, using
Lemma 26.141 O]

We now establish a series of fundamental estimates concerning

N
S(s:x) = Y anx(n)n* (26.19)
n=1

where the a,, are arbitrary complex numbers, y is a Dirichlet character.

T:smoothhybrid| Theorem 26.16. Let S(s;x) be given by (26.19), and let A be a real

number and T be a positive real number. Then

A+T N
|S(it;x)|2dt<<% > Janl*(@T +n),  (26.20)

A —
x mod g n=1
(n,g)=1
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A+T N
/ |S(it; x*) [Pt <Y |an|*(qT + n) (26.21)

x mod ¢q n=1

where x* denotes the primitive character that induces x, and
> / S(it0Pd < 3 QT+ (262)
q<Q X mod ¢ n=1

where Z indicates that the sum is restricted to primitive characters.

Proof 1t suffices to prove the theorem with A = 0 for then the more
general conclusion follows on replacing a, by a,n"*4. When T < 1
the conclusions follow at once from Theorem 2615 for the first two
inequalities and the large sieve inequality (Theorem ??) for the third.
Thus we may suppose that 7' > 1. By Corollary we know that

T 0o N
/ |S(it; x)|?dt < T2/
0 —00

Z anX(n)
n=1

where 7 = exp (4 ). Thus 7 — 1 < 1/T. We sum the above over y (mod

q). By (26.17)) we see that

Y| X e « 2 2gri-nn Y Jal

X y<n<ty y<n<ty

2
dy
Yy

Thus

n T2
Z / S(it; x)|? dt < E]q)zn:|an|2/n/r (q?—i-T)dy

x mod g

_ ‘PE]‘I) S Janl?(qT + Tr(1 — 1/7)),

which gives (26.20).
To obtain (26.21)) we apply (26.18)), from which we see that

Z‘ anX™( )‘ <(g+(t=1)y) Z |an|?.

y<n<ty y<n<ty

It then suffices to argue as in the first case.
Finally, to obtain (26.22) we apply the large sieve (Theorem ??), from
which we see that

4N
2 (Q)ZX:

0 > anx(m‘z <@+ =Dy Y laal,
9<Q

y<n<ty y<n<ty
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and then the rest of the argument is the same as before. O

The method of proof of Theorem [26.8|combines well with the estimates
of Theorem [26.16] to yield a variant with discrete values of ¢.

Theorem 26.17. Let S(s;x) be given by , let A, T > 2 and
0 < <1 be a real numbers. Further, for r = 1,2,... R let (t,,x,)
be a pair in which x, is a character (mod q), A < t, < A+ T, and
|t,, —tn,| >0 if x,, = X,,. Then

R N
SIS Gt ) < 2L 10g N +1/8) Y fanqT +m),  (26.23)
! (m=1
and
R N
S 18 (itrix3)1? < (log N +1/6) Y~ |an|*(qT + n) (26.24)

where x* denotes the primitive character that induces y. Finally, let
(tr, Xr, qr) be a triple with x, a primitive character (mod ¢,) for some
@ <Q, A<t, <A+T,and |t,, —t,,|>0dif x,, =Xx,,- Then

R N

3 E’q ) 1S (it X )|* < (log N +1/6) 3 |an[*(Q*T +n).  (26.25)
r=1 r

Proof As in the proof of Theorem [26.16] we may assume that A = 0.
We consider first (26.26). Let R(x) = {r : x,, = x}. Let M, = [t, —
0/2,t. +0/2] for r =1,2,..., R. By Lemma ?? it follows that

1
St )P < 5 [ ISt P [ 18(6)8 it de

T

n=1

For any x (mod g), the intervals 9, with r € R(x) are disjoint and lie
in the interval [—4, T + ¢], so
T+

] 1 T+6 ' ) '
> ISP <5 [ IS0l + [ It s ol dr

reR(x) -0

We sum this over y to see that
R 1 T+5
318Gt x)P < 3 / S(it; )| dt
r=1

T+6
/ S(it; x)S' (it, x)| dt.
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By the Cauchy—Schwarz inequality, the last term above is
T+6 1/2 T+6 1/2
< (Z/ S(it;x)l2dt) (Z/ |S’(it;x)|2dt> _
-6 —6
X X

From ([26.20)) it follows that

= ola) (1
S Istit v < E0 (35 oo PlaT 4 )
n=1

r=1

(S a4 ) (3 (e + mtogny?)” )
n=1 n=1

which gives the stated estimate. The estimates (26.27) and (26.28) are
derived similarly from (26.21]) and (26.22)), respectively. O

For points s, with nonnegative real part we have the following further
estimates.

Theorem 26.18. Let S(s;x) be given by (26.19), let A, T > 2 and
0 < d <1 be a real numbers. Further, forr =1,2,..., R let (s,,x,) be
a pair in which x, is a character (mod q), 0. >0, A <t,. < A+ T, and
|t,, —tr,| >0 if x,, = X,,. Then

R

D IS(srxn)” < #(logj\wr 1/6)
r=1
2626 E:chi
x i la |2( T+n)(1+10 10g2N) ( )
n=1 nl \q g log2n /)’
(n,q)=1
and
R
Z |S(Sr§X:)|2 < (log N + 1/5)
r=1 N . (26.27)
2 og
" nZ::l o T )1+ log 10g2n)

where x* denotes the primitive character that induces x. Finally, let
($r, Xr, qr) be a triple with x, a primitive character (mod ¢,.) for some
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@ <Q,0.>0,A<t, <A+T,and |t, —t,,|>0if x, =x,,. Then

u q
" |S(sri xr) P
;w(qr)

(209)

log 2N)
log2n /-

N
< (log N +1/8) 3 [an*(Q°T + ) (1 +log

n=1
Proof We argue in the same way that we did in deriving Theorem [26.9
from Theorem In particular, we again use the inequality (26.5)). We

have R < (q)T/§ in the case of (26.26) and (26.27)), and R < Q*T/5
for (26.28)). Thus the proof is entirely parallel to the former one. O

26.1l1 Exercises

1. As in Lemma [26.14] let x* denote the primitive character that in-
duces x.
(a) Let x denote a Dirichlet character modulo ¢. Explain why the

assertion that
q

2 q
S an ()| <a> fanl?
n=1

n=1

>

X

for all choices of the a, is equivalent to the assertion that

q 2
SIS0 m)] <a Y b

for all choices of the b(x).
(b) Note that the left hand side above is

= > blx;)b(x,) Y X ()X (n).

X1 X

(c) Show that the sum over n above is = qp(d)/d if x, = x, and
their conductor is d, and is = 0 otherwise.
(d) Deduce that

q
n=1

(e) Explain why this gives a second proof of Lemma [26.14]

=03 P S .

dlq x mod d

> b(x)x*(n)
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26.3 Notes

Section 21.1. Concerning majorant inequalities, antecedents of Theorem
are found in the work of Wiener (unpubished — see Theorem
12.6.12 of Boas (1954), Erdés and Fuchs (1956), Wiener and Wintner
(1956), and Haldsz (1968). Logan (1988) showed that the constant 3 is
best possible. For a general discussion of majorant principles, see Shapiro
(1975).
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Suppose that ¢ > 1. Then the Dirichlet series for ((s) is absolutely
convergent, and hence the Dirichlet series for ((s)* is also absolutely
convergent:

o SR T 2 T (S ()

p p r=0

Here dj,(n) is known as the k' divisor function. It is the unique multiplic-
ative function with the property that dy (pr) = (k+:_1). Thus (ignoring
for the moment the sharp estimates we derived in §21.1),

! . M) |
| et mpran= [7) 30 A,

n=1
_ Z di(m)dy(n) /T(m)it dt

o (mn)° 0 \n
are asymptotically orthogonal to the extent

1 (T mnit 1 (m =n),
T/o (%) dt:{Omyn(l/T) (m #n).

The double sum of the coefficients,

dt

The functions m =% and n=%

that

)

3 di(m)dy(n)
o (mn)e
is absolutely convergent (With value ¢ (O')Qk), so by the principle of dom-
inated convergence it follows that

T e’}
lim %/0 IC(o 4 it)|** dt = Zd’“(”y (26.29)

T—o0 n20’

n=1

for any fixed o > 1. The question before us is to try to determine what
combination of values of k and o < 1 (if any) the above relation continues
to be valid. In this connection, the following principle is often useful.

Theorem 26.19. Let k be a positive integer, and suppose that o > 1/2
is a number such that

T
/ IC(a+it)|?* dt <. T (26.30)
0

for every € > 0. Then the relation (26.29)) holds for all o > .

E:zeta2kthmv

E:zetamvEst
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Proof We may suppose that o < 1. We suppose also that 2 < z < T4
for some constant A. Then by the formula (5.25) for the inverse Mellin
transform with abelian weights we know that

0o c+ico
Z dk(sn) e T = L / C(s+ w)kl"(w)xw dw
— n 2m% Joioo

for ¢ > 1 — 0. Write w = u + iv. When we move the contour to the
abscissa u = a — 0, we pass two poles: One at w = 0 with residue C(s)k,
and the other at w = 1 — s. To estimate the residue at this second
pole, let C be a circle of radius 1/logx centered at 1 — s. For w on this
circle, [¢(s + w)¥| < (logz)*, |z*| < '~ and |T(w)| x e~ "7/271/2=¢
by . Hence the residue at 1 — s is < e~ ™7/271/2=0 1= (Jlog )+ 1.
Thus the above is

i 1 > 4
= C(S)k + — / C(Oz + it + iv)kf(a —o+ iv)xa—a-i-w dv
21 J_ o

+ O(e_WT/QTl/Q_le_UOOg.’If)k_l),

and consequently

00 2
/ (e + it +iv)" T (a — o +iv)|dv| dt+e T,

— 00

By the Cauchy—Schwarz inequality we see that the square of the modulus
of the above integral over v is

[oe] (oo}
</ |F(a—a+w)\du/ IC(a + it +iv)[*F|D(a — 0 + iv)| dv .

— 00 — 00

The first integral above is bounded, so
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To estimate the double integral we consider two ranges of v. First, if
—4T < v < 4T, then the integral over t is < T2, so the contribution
of such v is also < T'*¢. Secondly, if |[v| > 4T, then by the trivial bound
Cla+it) <« 71/4 we see that the integral over ¢ is < Tv*/2, but by
the resulting contribution is < e~7. We conclude that the above is

By Corollary we see that
2T ©© e’} 2
d 2 d
T n=1 n n=1 n=e

Since e~?"/* = 1 + O(n/z) for n < x, we find that the right hand side
above is

672n/z (T + O(n)) )

2

+O(TZ d’;f;>2>

o di(n)
=T Z 7’L2‘7
n=1 n>x

oL o S )

n<z

From Corollary 2.15 we deduce that
37 di(n)? < Ulog2U) 1,
U<n<2U

and from this it follows that

2 2
Z di(n) < xQ—QU(log ac)k

n20—1
n<x

uniformly for 1/2 < o < 1. Consequently,

2T, o
/ ‘ Z dk(n) efn/z
T n=1 n’

We take x = T and combine this with (26.31) to obtain the stated
result. O

2 o~ di(n)? 20 2
dt:TZ:l oz + O((T+z)z' 2 (log z)* ).

We argued qualitatively above. If we wanted a quantitative estim-
ate, we would need to employ the triangle inequality for I? norms; see
Exercise 26.511 21

We recall that the Lindelof Hypothesis (LH) asserts that

(/2 +it) < 7° (26.32)
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for every € > 0. As we discussed already in §§10.1,13.2, RH implies LH.

Corollary 26.20. Assume the Lindeldf Hypothesis. Then the relation
(26.29) holds for all positive integers k, and all fized o > 1/2.

We have some nontrivial bounds for the zeta function, but they fall
short of LH, and so it is to be expected that our results concerning mean
values are a bit fragmentary and unsatisfactory. We now establish a first
mean value theorem for the zeta function on the 1/2-line.

Theorem 26.21. ForT > 2,
T
/ |C(1/2 +it)|*dt = Tlog T + O(T).
0

Proof It suffices to show that
2T
/ IC(1/2 4 it)|*dt = TlogT + O(T),
T

since we can replace T by T/2F in the above, and then sum over k to
obtain the stated result. We write the formula (??) as

((s) =) n~* + R(s),

and take x = 4T. Thus for s = 1/2 4+ it with T" < ¢ < 2T we have
R(s) < T~'/2. By Corollary we find that

2T 2
/ Z n-1/2=it| gp — Z 1+O< Z 1) =TlogT+ O(T).
T " n<aT

n<4T n<dAT

Hence, as in Exercise 12{(b), we have

/2T C(1/2 +it)|? dt = (Tlog T + O(T)) (1 i O((TlogT)—l/Q))
T
=TlogT + O(T).
O

By combining the above with Theorem [26.19] we obtain the following
further result.

Corollary 26.22. Let 0 > 1/2 be fized. Then

T
/O |C(o +it)]* dt ~ ((20)T

as T — 0.
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By using our averaged form of the approximate functional equation
for the zeta function, we obtain the following useful estimate.

Theorem 26.23. Suppose that T > 60. Then
T
/ (o + it)]* dt < T(log T)*
0
uniformly for o —1/2| < 2/logT.
Proof From ([25.22)) we see that
()l < \Z (n/ VT~ +]Z (n/ v 4+ g )

for |o — 1/2| < 2/logT. Here w(u) is defined as in (25.23)). By taking
k=2 in (25.26)) we find that

’ Z w(n//T)n™*° !

uniformly for T < ¢ < 2T'. Here A(s,x) is defined as in (25.24]). Note
that

8T1/2
dx
< A(s,z)[* = 26.33) [E:MainSt
<[ e (26.33) [E:Mainstep

T

where ¢,, = ¢, , counts only some of the divisors of n, so that 0 < ¢, <
d(n) for all z. Hence when we integrate both sides of (26.33)) with respect
to t and apply Corollary we find that

/:T\Zwm/ﬁ)n-s 4dt<</8T1/2 > L0E g0y

Tz n<z?
From Corollary 2.15 we know that >_ _;; d(n)? < U(logU)3, and hence
that >, . d(n)?/n < (logU)*. Thus the above is < T(logT)*. The
same bound applies with s replaced by 1 — s, so we have the desired

result. O
Corollary 26.24. Suppose that o > 1/2. Then
I ((20)*
lim — it)|* dt =
5% T/O ¢(o+it)] ¢(40)

Here we have used the identity

Zd 2/n® = ((s)*/¢(2s), (26.34)
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which is a special case of the identity discussed in Exercise 4.3.1.4.
Of the many consequences of Theorem [26.23] we note one particularly
useful example.

Corollary 26.25. Suppose that T > 60. Then
T
/ (o + )¢ (o + it)|? dt < T(log T)°
0

uniformly for |o —1/2| < 1/logT.

Proof 1If f(z) is analytic in a neighborhood of z = 0, then by Cauchy’s
formula we know that

1 (2)
/
= — dz.
FO=5mfp o &
We take f(2) = ((s + 2)? and set z = re?® where r = 1/log T. By the
Cauchy—Schwarz inequality we find that

27
i 4
1C(5)(s)]* < (logT)Q/ |C(s+re 9)} .
0
We integrate this over 0 <t < T to obtain the stated result. O

Corollary 26.26. Suppose that T > 60, that 6 > 0, and that §/2 <
b <ty < - <tpr<T—06/2 wheretyi1—t, >0 forr=1,2,...,R—1.
Then

R
> 1C(1/2+it,)[* < (1/6 +log T)T(log T)* .
r=1
Proof By the Sobolev inequality (?7) of Lemma 7?7 we see that

tr+30

il <a [T a2 i)t
t 1

T‘_§5
t+16
+2/ 1C(1/2 +it)3¢"(1/2 + it)| dt .
tr—%6
The intervals of integration are disjoint, so on summing over r we find
that

R T T
> l¢r/2+it,)|* < 5*1/ |§(1/2+it)|4dt+/ |C(1/2+it)¢'(1/24it)| dt .
0 0

r=1
By the Cauchy—Schwarz inequality the second integral above is

< (/OT |§(1/2+it)|4dt)1/2(/0T |§(1/2+it)C’(1/2+it)|2dt)

1/2
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The desired result now follows from the Theorem and the preceding
Corollary. O

When we form a weighted average a Dirichlet series a(s) = > a,n~*
over a vertical line, its coefficients are diminished. For example, in Ex-

ercise 5.1.1.5 we saw that if 0. < 0, then

1 o rsinitlog N2 B logn
ZﬂngX/ a@oc—————g ﬁ12%m(1ng).@&%)

oo %tlogN

We also know that averaging a function causes its norm to decrease.
For example, suppose that w(z) is a weight function such that w(z) > 0
for all z and ffooo w(z)dr = 1. If f € IP(R) for some real number p > 1,
and we define F' to be the convolution

Fz)=(wx f)(z) = /_00 w(u) f(w — u) du,

then not only is F' € IP(R), but also ||F||, < || f]/,. (See Exercise[5}) We
use these ideas to derive the following useful complement to our upper
bounds.

Theorem 26.27. Suppose that the real number o and a positive integer
k are fized, with 1/2 < o < 1. Then

NS 2k
hTIglo%ff/o [C(o +at)|" dt > Z nz‘f . (26.36)
Proof Since o and k are fixed, implicit constants in this proof may
depend on these quantities. For our present purposes we need a formula
similar to (26.35]), but in which the kernel decay more quickly. To this
end we start by putting

sinh 1% \4k ew/(4k) _ o—w/(4k) | 4k
KWOZQ( w“) :%( 5 ) (26.37)

where w = u + v is a complex variable, and ¢, is chosen so that
1 o0
— K(iv)dv=1. (26.38)
27

We note that K (w) is an entire function. Since |sinhw| < el*l, it follows
that

(26.39)

The implicit constant in the above may depend on k, but we suppress

E:zetakmvlb



134 Mean Values of Dirichlet Polynomials

this, here and elsewhere, since k is considered to be fixed. We note that
K(—w) = K(w) for all complex w, and that

sin - \4k
K(iv) = (=) =0
v

for all real v. To create a kernel that yields a weighted partial sum of a
Dirichlet series, we rescale K (w) and put

Ky (w) = K(wlog N)log N

Nw/(4k) _ N—w/(4k) \ 4k (26.40)
= cx(log V) ( )
ek (log V) 2wlog N
For real « let
1 akieo aw 1 > . Qv
W(a) = — K(w)e™ dw = — K(iv)e'*dv. (26.41)
271 Jg—ioo 27 J_ o

Thus W is the inverse Laplace transform of K. We note that the value
of the above integrals are independent of the value of the real number
a. Suppose that a > 0. From (26.39) it follows that

ea(1+a) 00 dv ea(1+a)
- < .
27 /Oo la + fv|** a*k—1

(W(a)| <

If « < —1, then this upper bound tends to 0 as a — co. Hence W(a) =0
if @ < —1. Since K is even it follows that W is also even, and hence that
W(a) =0if « > 1. We now take a = 0 to see that

W(a) = %/ K (iv)e' dv.

From this it follows that W (0) = 1, that |W(a)| < 1 for all «, and that
W is continuous. We now set

_ log x
log N

) ! /GHOOKN(s)des. (26.42)

210 Jq—ioo

Wy (z) = W(

Thus Wy is the inverse Mellin transform of Kp. On expanding the
binomial on the right hand side of we see that Wy is a linear
combination of Riesz typical means of order 4k — 1 with truncations at
NI/ZF) for j=1,2,...,2k.

If a(s) = > a,n~* is a Dirichlet series with abscissa of convergence
o¢, then

a-+i00

Z Z—ZWN(n) = %/ a(s + w)Ky(w) dw

n<N —100
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for a > o.. In particular, if a(s) = ¢(s)¥ and 1/2 < ¢ < 1, then

n 14200
> O = o [ o Howw)

ns 211 ;
n<N —100

On moving the contour to a = 0 we see that this is

1 o9}
= 2—/ C(s + i) Ky (iv) dv
T J - (26.43) |E:MainId

+ Res [¢(s + w)kKN(w)|

w=1—s"

Here the first term above is a weighted average of the numbers ¢ (s+iv)*,
with the bulk of the weight attached to points for which v < 1/log N.

Let A > 1 and N > 1 be parameters that will eventually be chosen
to be functions of T, with A = o(T') and N = o(T'). Then by Corollary
6.2 we see that

/ ‘ Z B W) at = (1~ 24+ 0) 3 H w2

n<N

Since W is continuous at 0 and W(0) = 1, it follows that for any € > 0
there is a § > 0 such that [Wy(n) — 1| < € for all n < N°. Thus if
N = T2, then

/- \an v a3 S

To assess the residue in (26.43) let C be a circle of radius 1/log N
centered at 1 — s. Thus the residue is

2m/<s+w) Ky(w)dw < (log N)*~ 1max|KN( )|
= (log N)* max |W (wlog N)|
lea
< T log N

The mean square of this for A < ¢t < T — Ais « N?27204-8k+1 « N
= o(T). Thus

T—A o ) N

n2o’

n=1
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By the Cauchy—Schwarz inequality,

<—/ Kn(iv)d

: Iqo+z(+v»P@Kwuwd

1 o0
‘27‘_/ C(s +iv)* Ky (iv) dv

271'

Here the first integral on the right hand side is equal to 1. We integrate
the above with respect to t to see that

1 T—A 0o ‘ ok .
TZ n% /_Oo IC(o +i(t+v)|** Ky (iv) dvdt .

With the change of variable y = t 4+ v we see that the right hand side

above is
oo 1 y—A
—[ico iP5 [ Ktiv)ao) ay
—o0 2m y—T+A

0 T (e’
:/ @+/ @+/ dy =1+ I+ I,
—00 0 T

say. Since Ky (iv) > 0 for all v, it follows from (26.38)) that

I
2—/ (w)dv<—/ K (iv) / K(iv)dv=1
T Jy—T+A

for all y. Thus
T
I, < / |C(o +it)|** dt .
0

From Corollary 1.17 we know that (o + it) < 7'/2. Hence

0 y—A
I <</ (|y|+4)k/ |v|~** dv dy(log N)~4*+1

— 00 o0

0
< [ ol + 0¥l + ) dy < AT < AT = o).
—00
Similarly,

I; < / y" / v~ du dy(log N)~4k+1
T T+A

< / YRy — T+ A dy < TF A2k

T
We take A = T''/2, with the result that the above is < T'~* « 1 = o(T).
Thus we have the result. O
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For many purposes the upper bound of Theorem [26.23| for the fourth
moment of the zeta function suffices. By taking more care, we now show
that on the 1/2-line we can derive a more precise estimate.

Theorem 26.28. For T > 2,

/0 IC(1/2 +it)|[* dt = (i + O((logm)_1/2)>T(logT)4.

272
Proof We first derive a useful formula for (1/2 + it)2. Put
My(t) = dn)n='/>7" (26.44)
n<x

where z is a parameter whose value will be chosen later. Weighted partial
sums are more easily manipulated than unweighted ones, so we set

. n\2

Sty =Y d(n)n*/?ﬂt(l - f)

T
n<z

with the result that M (t) = S1(t) + R1(t) where

Ry(t) =Y d(nyn /" (1 —~ (1 - ’;)2) (26.45)

Let K(z,w) = 22" /(w(w + 1)(w + 2)) By the formulee (5.17), (5.19)
concerning the Mellin and inverse Mellin transforms relating to Cesaro
partial sums, we see that

1 1+i00
Si(t) = —— / ¢(1/2 + it + w)* K (2, w) dw.
1

T omi e
From Corollary 10.5 we know that if « is fixed, & < 0, then ((s) <
r1/2= uniformly for o > «, |t| > 1. Let ¢ be fixed, —1 < ¢ < —1/2,

and write w = u 4 iv. If u > ¢, then
CA/2+ it +u+iv)?  ([t+v|+4)72¢
w(w + 1)(w +2) (Jv] +4)3
Thus in the integral above we may move the path of integration from

the 1-line to the abscissa ¢. In doing so, we pass poles at w = 0 and at
w=1/2 —it. Hence S1(t) = ((1/2 + it)* + Sa(t) + Ra2(t) where

¢+ioco
Sa(t) = 2%” - C(1/2 +it + w)? K (z,w) dw + ¢(1/2 + it)?

Ro(t) = Res [g(1/2 +it + w)2K (2, w) (26.46)

w=1/2—it
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We write the functional equation of the zeta function in the asymmetric
form as ((s) = A(s)¢(1 — s) where A(s) = 25771I'(1 — s)sinms/2 by
Corollary 10.4. Hence

C(1/24 ¢ +it +iv)” = A(1/2+ ¢+ it +iv)*¢(1/2 — ¢ — it — iv)*.
We write

C(1/2—¢—it—iv)> =Y d(n)n~/FHOTIF LN ()~ /2EoRHY)

n<y n>y

Thus Sy (t) =53 (t) + R3 (t) where

S3(t) = ! /¢+iooA(1/2+it+w)2(Zd(n)n1/2+“+w>K(x,w) dw
¢

T 2mi
(2647

—100 ngy

Rs(t) = ! /¢>+i°0 A(1/2+it +w)? ( Z d(n)n*1/2”t+w>K(x, w) dw .
¢

T 2mi
(26,49

Let 6 be fixed with 0 < 6 < 1/2. We move the contour in (26.47)) from
the abscissa ¢ to the abscissa 6. In doing so we pass a pole at w = 0.
Thus S5(t) = Ra(t) — Ma(t) where

—100 n>y

0+ioco
Ra(t) i/ﬂ A /24 i+ w) (3 dnn= ) K (o w) du

~ omi
(26.49)
My(t) = A(1/2+ i)Y d(n)n /> (26.50)

n<y

—100 n<y

Thus we have shown that
C(1/2 4 it)* = My (t) + Ma(t) — Ry(t) — Ro(t) — R3(t) — Ra(t).

It suffices to show that

2T
1
/ 1C(1/2 +it)|[* dt = (ﬁ + O((log T)’l/z))T(logT)‘l, (26.51) [E:zeta4meanEst2
T ™
so we consider the mean square size of the M; and R; over the interval
[T,2T).
Since 1 — (1 —n/z)? < n/x for 1 < n < x, it follows by Corollary
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that

2T
/ R0 < 3 d(n)na2(T+2) ( 1) Y dn)* < (2+2)(log 2)’
T n<zx n<z
(26,52
since ), ., d(n)? < z(log )3 by (2.31).
Let € be a circle centered at 1/2 — it and radius 1/logz. Then

1 2(1)2 4 it + w)e
() = 27m'/@ w(w + 1w+ 2)

For w € @, we see that |((1/2 + it + w)| < (logz)?, |z*| < x'/2|, and
lw(w 4 1)(w + 2)| < 73. Hence Ry(t) < 2277 3(logz)3, and so

2T 6
1
/ |R2(t)\2dt<<7x( ;?f) . (26.53) [E:R2Est

T

dw

Let Wy(z;t,v) = |A(1/24+ ¢+i(t+v))>K (z, p+iv)|. By the Cauchy—
Schwarz inequality,

|R3 |2 l/ W%:Etv

/ p~1/2Hoti(t+y) 2W¢(m;t, v)dv.

X T n>y

From Corollary 10.5 we deduce that A(1/2+ ¢ +i(t +v))? < (|t +v| +
4)729_ Tt is also clear that K (z;¢ + iv) < z?(|v| + 4)~3. Suppose that
T <t < 2T. Then the first integral above is < z?T~2?. By Corollary
[26.4] we see that

A+T _
/ ‘Zd _1/2+¢+u Zd )22 (T + O(n))

n>y n>y
< Ty**(logy)® +y'*? (log y)*.

uniformly for any real number A. Hence

2T
[ irsopa
T

2T
< T~ 2¢/ /

2\-2

T2\ ~26
< (T+y)(;y) (logy)* . (26.54)

Zd _1/2+¢+z(t+v) dt Wy (x;t,v) dv

n>y
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Similarly, by the Cauchy—Schwarz inequality,
oo
|R4(t)> < / Wo(z;t,v) dv

/ Z d(n)n—L/20+i(t+0) W9($ Lv)do.
n<y
The estimates for A(1/2 4+ ¢ + i(t + v)) and for K(x;¢ + iv) derived
above are still valid when ¢ is replaced by 0, so Wy (z;t,v) < 29 (|t +
v| +4)7%(Jv| +4)73, and hence the first integaral above is < x/7—2¢
uniformly for 7' < ¢ < 2T. By Corollary 26.2] we see that

A+T
/ Zd —1/2+9+zt T+O Zd 2, — 14260

n<y n<y
< (T +y)y* (logy)®

uniformly in A. Hence

27
/ [Ra(t)[? dt
Zd 71/2+0+z(t+v) dt Wy(x;t,v) dv

T
2T
< 29T~ 29/ /
n<y

<@ +9)( )" ogy)”. (26.55)

To treat the main terms we first observe that

|My(t) + Mo (t))? = | My (t)> = 2Re My (£)Ma(t) + | Ma(t)]? .

By Corollary we see that

2T n 2 n 2
/T M)t =Y d(n) T+0m) =73 U | 0(e(loga)?).

n<lx n<lx

We now show that

2
3 dn)” _ 4%(10gx)4 +0((logz)?) . (26.56)
™

n

n<z

To see why this is so, we first observe that by computing Euler products
it is clear that

. 2 s C(5)4
7Z:ld(n) n=°® = 29)
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for 0 > 1. Hence by Perron’s formula (Theorem 5.1) we see that

Z d(n)2 _ i e+ioco C(5+ 1)4$s J
n o 2m Jo_ i C(25+2)s o

n<x

From the trivial estimate of Corollary 1.17 we know that ¢(s) < 71/4
for o > 3/4, |t| > 1. Hence by moving the contour to the rectilinear path
with vertices € — ioo, € — T, 3/4 —iT, 3/4 + it, e +iT, € + ioco with
T = x'/® we see that

3 A [l

—1/842¢
2mi¢(2s + 2)s +O( )

s=0

n<x

This gives ([26.56[), and so we see that

2T
1
/T |M, ()] dt = 12T (log 2)' + O((T +x)(logx)®) . (26.57)

Since |A(1/2 +it)| = 1, it follows similarly that

2T
[ 1a(e)? de = 5T (0g)! + O(T + )1ogn)?). (2059
T

In (26.54) we see that we want zy < T2, while in we see that
we want xy >> T?2. Also, in our estimates we see that it would be useful
to have z <« T and y < T. Hence we now take x = y = I where c is a
positive constant. To complete the final estimate, below, it is convenient
to take ¢ to be rather small, say ¢ = 1/8. With our parameters chosen
in this way, we now show that

2T

M, () My(t) dt < T(log T)?. (26.59)
T

To this end we first note that My(t) = My (t)A(1/2 4+ it)2. As for the
second factor, we recall that the functional equation for the zeta function
in the symmetric form asserts that

C(1/2 4 it)T(1/4 +it/2)m~ 2 = ((1/2 — it)[(1/4 — it /2)m"t/2 .
We divide both sides by |T'(1/4 +it/2)| = |T'(1/4 —it/2)|, and let Z(t)
denote the result:
_ D T(1/44it/2)m—t/? _
Z(t) = ((1/2 + it) (/4 it)2) (26.60)
[(1/4 — it/2)7"/?
ID(1/4 —it/2)|

—¢(1/2 - it)
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This is Hardy’s Z-function, as we defined it in §14.2. Since the second
formula above is the complex conjugate of the first, it is clear that Z(t)
is a real-valued function of the real variable t. Define 6(t) so that the
cofactor of ¢(1/2 + it) above is €?(Y). Thus 6(t) is a smooth function of
t and ((1/2 4 it) = e~ 29M¢(1/2 — it). Hence A(1/2 + it) = e~ 2901
and so A(1/2 4 it)2 = e*®). From our discussion of Stirling’s formula
in Appendix C we see that

1 1
logT'(s) = slogs — s — 3 log s + 3 log(2m) + O(1/|s])

uniformly for |s| > 1 and |args| < m — §. With a little calculation, we
deduce from this that
t t t
0(t) = 5 log 5 - — 5 — ¢ +O(1/7). (26.61)
T
Let F'(t) denote the main term above. Then the left hand side of (26.59)

18

2T
= My () (e*F® - 0(1/1)) dt
T
2T 4 9
_ [ et dt+0(( 5 d(n)n—w)). (26.62)
T

n<T/8
Here the error term is < T'(log T)2. The integral above is
Z Z d(m)d(n) /2T (AF (1) ~tlogmn) gy
m<T/Sn<T/s Y mn-Jr
For a given pair m,n let f(t) = 4F(t) — tlogmn. Then

t2
Am2mn

f'(t) = log

This is an increasing function, and on the interval [T, 2T it is bounded

below by
2

T 16
f(T) =log e — > log = >1.

By Corollary ?7 it follows that the integrals above are uniformly bounded,
and hence that the integral in (26.62) is

< ( Z %)Q < T(logT)?.
n<T/8

This completes the proof of (26.59)). To obtain the Theorem, it remains
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only to combine this with the estimates (26.52]), (26.53), (26.54)), (26.55)),
(29.14), and (29.15). O

We now establish g-analogues of Theorem [26.23

Theorem 26.29. Let x denote a character modulo q, ¢ > 2, and x* the

primitive character that induces x. If T > 2 and |o—1/2| < 1/(4logqT),
then

T
Z/ |L(o + it, x*)|* dt < qT(logqT)*.
< /o
Proof We apply Theorem with § = 1/4. Let
W(u,r) = / exp (—u?/r) (u?/r) /8t
0
From Theorem via Holder’s inequality, we see that

L(s, X" < / (1A, x50 + AL = 5, X% 0) ) W (u, g7) du
0

X (/000 W (u,qT) du)B.

We have already remarked that [;* W (u,r)du < 1 uniformly in r. We
note further that if 0 < r1 < 7o < 47y, then W(ry,u) < Wirs,u)
uniformly for w > 0. Since 7 = |t| + 4, it follows that if 2 < T < ¢ < 2T,
then 7 < 4T, so the above is

< / (IAGs, x5 ) + 1AL — s, X5 W))W (u, 4qT) dur.
0

Hence

2T
Z/ |L(o +it, x*)|* dt
/T

0 2T o
<</0 %:A (JAGs, x)|* 4+ A1 — 5, XF)[*) dt W (u, 4qT) du .

(2663

We note that

N x*(k x*(k)d(k,u
O S D 1) DR PR
k<u? m,ngg k<u?
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say. Thus by Theorem [26.16| we see that the expression (26.63)) is

00 1 1
<</0 3 d(lﬁu)z(ﬁ + W)(qT—&—u?)W(quT) du .

k<u?

Put k =1/loggT" Since 0 < d(k,u) < d(k) for all k, and >, _, d(k)?/k
< (log 2y)* for y > 1, the above is

oo
< / (log 2u)*u* (¢T + u*)W (u, 44T du .
1

By means of the change of variable v = u?/r we see that if » > 1 and
a > 0, then

o0 oo d
/ (log 2u)*u™W (u, ) du < / (log 2rv)* (rv)®/2vt/8ev av
0 0 v

dv

oo d oo
< (log 2r)*re/? / p®/2H1 /8=y %) + ra/Z/ (log v) v/ 2+1/8—v -
0 0

= (log 2r)* /D (/2 + 1/8) + r*/?T™W (a/2 + 1/8) < /2 (log 2r)*

for bounded values of a. We apply this with o = 4x and with a = 2+4k,
and conclude that

2T
Z/ |L(o +it, x*)|* dt < qT(log2qT)*
T
X

for T > 2. We take T'=2,4,8, ... and sum to deduce that
T
/ > Lo+ it,x*)|* dt < qT(log2¢T)* .
2
X

It remains to treat the interval 0 < ¢ < 2. Our method applies to any
interval in which 7 changes by at most a bounded factor. When ¢t = 0
we have 7 = 4, and when ¢t = 2 we have 7 = 6. Thus our method, when
applied to the interval [0, 2] yields the estimate

2
/ > |L(o +it, x*)|* dt < q(log2q)* .
0
X

This completes the proof. O

Corollary 26.30. Let x denote a character modulo q, ¢ > 2, and x*
the primitive character that induces x. If T > 2, then

T
/ S IL(1/2 + it, x )L/ (1/2 + it, x*)* < qT(log qT)° .
0
X
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Proof This follows from Theorem [26.29| by the same method that we

used to derive Corollary [26.25| from Theorem [26.23 O
Corollary 26.31. Suppose that 6 > 0, that T > 2, and that for each
character x modulo q we have numbers t;, j = 1,2,...,J, in the in-
terval [6/2,T — §/2] such that |tj —ti | > 0 when j # k. Then
JX
SOD IL(1/2 + ity x)* < (1/6 +log T)gT (log qT)* .
x j=1

Proof This follows from Theorem [26.29] and Corollary [26.31] by the
same method that we used to derive Corollary[26.26]from Theorem [26.23
and Corollary [26.25 O

Theorem 26.32. Suppose that Q > 2, T > 2, and that |0 — 1/2| <
1/(4log QT). Then

ZZ/ L(o +it, x)|* < Q*T(log QT)* .

q<Q X

Proof We show first that

% T
> ¥ Mo+ i)l < QT (g Q)"

Q/2<q<Q X

and then sum over diadic blocks. The above is proved by the same
method used to prove Theorem [26.29] but with an appeal to (26.22]

instead of (26.21]). O

Corollary 26.33. Suppose that Q > 2 and that T > 2. Then

Sy / L(1/2 + it )L/ (1)2 4 it )2 < Q2T (log QT)".

a<Q X

Corollary 26.34. Suppose that § > 0, that Q > 2, T > 2, and that for
each primitive character x modulo ¢ with ¢ < @ we have numbers t; ,
J=1,2,...,Jy in the interval [6/2,T — §/2] such that |tj\ —ty | >0
when j # k. Then

']X
SO STUSTIL(/2 + ity 01t < (1/8 + log QT) QT (log QT)*.

q<Q x j=1

26.5l1 Exercises
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1. By arguing in the same style that we used to derive ([26.29)), show

that if & > 1, 8 > 1, and p and v are nonnegative integers, then

T
im 2 [ ¢ (a4 i)W (B — it) = (B (a+ ).

T—oo T 0

2. Let p be a real number, 1 < p < oo, and let

=/ b |f<x>pdx)1/p

denote the IP norm of a function f on the interval [a,b]. We recall
that such norms have a triangle inequality: || f + gll, < ||f]l, + llgllp-

(a) Suppose that f = f1 + fo, and that || f2]|, < || fillp. Show that

el 121l
1= ) <ty < il (14 20

(b) Deduce in particular that

[t [ o)

(¢) In the context of Theorem [26.19, by choosing the parameter x
appropriately, show that if 1/2 < o < ¢ <1, then

/OT I¢(o +it)|*F = T(i dl;(;zy) (1 n O(T—%ﬁ)).

n=1

3. Suppose that —1/logT < « < 1/logT, that —1/logT < g <

1/logT, and that —1 <4 < 1.
(a) Show that

T
/ C(1/24+ a+it)((1/2+ S +id +it)dt
0

T
= T/ w1 Gy O(T) .
1

(b) Show that

T
/ C'(1/24+ a+it)(1/2 + B +1id +it) dt
0

T
= —T/ u 1T PR ogudu + O(Tlog T) .
1
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. (a) By mimicking the proof of Theorem [26.23] show that if k£ > 2 is

an integer and 1/2 < ¢ < 1, then

T
/ (o + it)[2* dt < T 4 T+,
0

(b) Deduce that the relation (26.29) holds for o > 1 — 1/k.
(¢) Show that

. I -\ (2K = dk(”)2
lim T/o IC(1 +it)| dt:nz::l .

for all positive integers k.

Let p be a real number, 1 < p < oco.

(a) Suppose that w € [}(R), and that f € IP(R). Put F(x) = (w *
N) = [7 ww)f(z — u) du. Show that || F[l, < [wll1]|f]l,.

(b) Let T = R/Z denote the circle group. Suppose that w € LNT),
and that f € IP(T). Put F(z) = (wx* f)(z fo flz—u)du.
Show that ||F[l, < {lwll[[f[]p-

. (Balasubramanian & Ramachandra 1990) Show that if k is a positive

integer, then
’ 2k k2
/0 C(1/2 +it)|** dt >, T(log T)

for T > 2.

. Suppose that k is a positive integer, that 1/2 < o < 1, and that

§ > 0. Show that if H > T°, then

T+H o0
/ |C(o +it)[*k dt > (1+ o(1 Z

T

l\')

. Show that

/T |C(1/2 +it)¢'(1/2 4 it)|* dt > T'(log T)®
0

for T > 2.
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Let m(V) = meas{z € [a,b] : |f(x)] > V} where f is a measurable
function defined on [a,b] and V' > 0. Then

b
)= [, vrde< [ if@pde =71,

|f(@)|=V

Hence

m(V)

e
= Vp .

For a general function this is all that we can say about the measure of
the set on which it is large, based on its I’ norm. If we have bounds for

[[£1lp and for || f][¢, then

m(V) < min (

1£15 Hfll%)
Ve Ve )

and there is still not much more that we can say, even if f is analytic.
However, if f is a Dirichlet polynomial, then there is much more that
we can say about its large values beyond what follows from mean value

estimates.
Suppose that

N
D(s) = Z ann”?,
n=1

that ¢, € [0,7T] for r = 1,2,..., R, that |t,,

A have the property that

9]

r=1 n=1

N

ann

—it,

9 N
<A?) lanf?
n=1

148

or1)

—trz‘ > 1 for r; # ro. Let

@r2)
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for all choices of the a,. This is a bilinear form inequality, so by the
duality theorem (Theorem ??), A has the equivalent property that

N R
Z ‘ Zyrn_“”'

n=1 r=1

R
2
<23y, P (27.3)
r=1

for all choices of the y,.. We expand the square on the left hand side
above and take the sum over n inside, to see that it is

N
— Z yﬁ% Z ni(tm —try) . (274)
n=1

1<r1,r2<R

Now |yT1%| < %|yr1 ‘2 + %’ym ’2 by the geometric-arithmetic mean in-

equality, so the above is

R R N
IS MPILEE

ri=1 ro=1 n=1

. (27.5)

Thus

R N
A? < max E ‘E nitra=tr)|
1<ri1<R

ro=1 n=1

Our argument here is reminiscent of one of our approaches to the large
sieve, where we found that it was fruitful to introduce weights. We can
introduce weights here, also. Suppose that w,, > 0 for all n, that w,, > 1
for 1 < n < N, and that 220:1 w, < 00. Then the left hand side of
s

R 2

ity

(o]
< Z W,
n=1

On continuing as above, we find that

Yrno
1

r=

R
A*< max. Zl (W (i(tr, —tr))| (27.6)

where W(s) = Y07, w,n™* for ¢ > 0. Suppose that we take w, =
2—n/N for 1 <n < 2N, and w, = 0 for n > 2N. Then by the formula
(5.19) for the inverse Mellin transform with Cesaro weights we see that

N 1 24100 ) (QN)Z
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On moving the path of integration to the abscissa Rez = 1/2, we see
that the above is

1 [> ) (2N)1/2+i
= — 1/2 +i(t + - —d
o ) i ey
2(2N)17it
(1—at)(2—it)
If the Lindelof Hypothesis (LH) is true, then the above is
N
< C(e)N'V278 4 — -
T
Hence
R
> W (i(te, —try))| < N+ C(e)N'?T°R,
7‘2:1
for all r1, so
R
> ID(it,)]* < (N + Ci(e)N'/*T°R) Z lan|?. (27.7)
r=1

Suppose that V is a number such that |D(it,.)| > V for all r. Then

N N
VPRE N lan* + Ci(e)N'PT°RD Jan|*. (27.8)

n=1 n=1

Hence there is a constant Cs(¢) with the property that if

N
V2> Coy(e) NPT an |, (27.9)

n=1
then the second term on the right hand side of ([27.§] - ) does not majorize

the left hand side, and hence V2R < N En 1 lan|?, which is to say that
we have proved

Theorem 27.1. Assume the Lindeldf Hypothesis. Let D(s) be a Di-
richlet polynomial as in (27.1), and T be a set of R real numbers in the

interval [0,T] such that |t —t'| > 1 whenever t,t' € T and t #t'. There
is a constant Ca(e) such that if V satisfies (27.9), then

NG

R< 7 (27.10)

where

N
G=> lanl*. (27.11)
n=1
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Suppose that |a,| =< 1 for all n. Then sup |D(it)| < N, the asymptotic
root-mean-value of |D(it)| is < N'/2, and from the above we see that if
V is a little larger than T N3/, then

2

N
R< Ve (27.12)

From Theorem 26.9 we also know that
(T + N)NlogN
V2 '

If N is small compared with T, say of the size of a small fractional
power of T', then the first upper bound above is enormously better than
the second. Of course the first depends on LH and applies only to large
values of V', while the second is unconditional and is valid for all V' > 0.

In passing from to we used the triangle inequality, and we
would expect that in doing so a great deal of cancellation has been lost.
This would suggest that something substantially stronger than
should hold. But this is false! The surprise here is that is within
a factor T of being best possible. We see this from the following

Example 2. (Bourgain) Suppose that 6 > 0 is a small positive absolute

constant, that H < §N/2, that
D(s) = Z n-?,
N—H<n<N

and that T = Ts{a + 27Nb : a,b € Z,—A < A,—B < b < B} where
A=6N/H, B=06N/H? If N— H <n <N, then

R

, : , N —
n~" = N_”exp(—z'tlog%) = N_Ztexp(—itlog (1 - n))

For 0 < wu < 1/2 let r be defined by the equation —log(l —u) = u +r.
Then r is real and r < u?, so that if u = (N —n)/N we see that the
above is

—-n

o . N
— N-iteitugitr — N=it oy (it ) (1 +O(Jt(N - n)2/N2)>.
Ift = a+ 27 Nb € 15, then the above is

= N~ " exp(ia(N — n)/N) exp(2mib(N — n))(1 + O((A + NB)H?/N?))
= N""(1+O(AH/N))(1+O((A+ NB)H?/N?)) .

In view of the definitions of A and of B, the above is

=N""*(14+0()).
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We sum over n to see that if t € T, then D(it) = HN~"(1+ O(9)). If
we apply to the points T, then R = card T, the left hand side is of
the order RH?, while the right hand side is comparable to N'/?T¢RH.
If H ~ SN2, then the right hand side is larger than the left by T¢.
To prove Theorem we introduced weights, but the two sides of the
resulting relation are essentially unchanged.

Before Bourgain invented his Example, it was conjectured that A? <«
N + RT*®, but this is false because it is much stronger than , which
we now recognize is essentially best possible.

The Dirichlet polynomial in Bourgain’s Example is just a short sum,
and is therefore not typical of the Dirichlet polynomials that we most
often encounter. We avoid Bourgain’s Example by proposing a bound in
terms of the maximum of the coefficients instead of their mean square
size.

Conj:Halaszlinfty | Conjecture 27.2. Let D(s) be a Dirichlet polynomial as in (27.1)), and

suppose that |a,| <1 for all n. Let T be a set of R real numbers in the
interval [0,T] such that |t —t'| > 1 whenever t,t' € T and t #t'. Then

> ID(it)]* < (N + R)N'F=,
teT
If |D(it)| > V for all t € T, and V > N'/2*¢_ then it follows from the

above that
N2+5

R<e =5 (27.13)

To obtain unconditional results using our new ideas, we could simply
replace the appeal to LH by one to a known bound for |¢(1/2+74t)]|, such
as the one found in Theorem ??. One could also proceed along these
lines using a different abscissa instead of 1/2, as discussed in Exercise
For larger values of N, say T'/2 < N < T, a further approach works
well: From Theorem 7?7 we see that

) pl-it
Z n~% = — + 0(71/2 logT) .
1—qt
n<lz
We integrate this over 0 < z < N, and then divide by N to see that
N leit

D (1= n/Npn™ = (g =gy + O log)

n=1
N
YV2og T + — - (27.14) |E:whtedn-it
T

LT
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By replacing NV by 2N we obtain the same weights that we already used,
and we see that if the numbers ¢, are well-spaced in the interval [0, T,
then

R
> W (iltr, = tr,))| < N+ RTY?10gT .

ro=1

In view of (27.6)), this gives

Theorem 27.3. Let D(s) be a Dirichlet polynomial as in (27.1), let T
be a set of R real numbers in the interval [0,T) such that [t —¢'| > 1
whenever t,t' € T and t # t', and let G be defined as in (27.11)). Then

> ID(it]* < (N + RT'?1og T)G . (27.15)
teT
From the above we see that there is an absolute constant C' such that
it |D(it)] >V for all t € T and

V2> CTY?(logT)G, (27.16)

then we have (27.10)). At first sight it would seem that for smaller V' we
have no bound, but by exercising a little care we obtain the following
comprehensive result.

Theorem 27.4. Let D(s) be a Dirichlet polynomial as in , let
t1,ta,...,tr be real numbers in the interval [0, T] such that ’trl —trz‘ >1
whenever 11 # 13, and let G be defined by (27.11)). If |D(it,)| >V >0
for all r, then
NG  NTG3*(logT)?

R< T + % .
Proof 1If the condition holds, then there is nothing to prove.
Thus we may assume that fails. Let T} be the number for which
V2= CTf/Q(log T1)G where C is the constant in (27.16). Thus 7} < T.
We divide the interval [0,7] into -FTHQ%H intervals, each one of length
T/|T/Ty] < Ty. Thus Theorem Wplies to each subinterval. Since
[T/T1] < T/Ty, it follows that the total number of poiints ¢, summed
over all subintervals, is

(27.17)

R (14 4) 0 =M TG

T/ V? V2 T,V?
Since Ty (log Ty)? < V4 /G?, it follows that the second term on the right
above is

TNG(logTy)?> _ TNG?(logTy)? < TNG3(log T)?

Ti(log Th)2V2 — Ve - Ve
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since Ty < T'. This gives the result. O

The bound R < T is trivial, and we expect that |D(it)| < G'/? a
positive proportion of t. Thus we expect to have a nontrivial bound for
R only when V? is somewhat larger than G. On combining the estimates
derived from Theorems [26.8] and [27.4] we find the following:

T
TG log N
e

(V2 < GlogN),
R (Glog N < V2 < N'/2G(log T)'/?),
< TNGB’(IGOgT)2 (N1/2G(10gT)1/2 < V2 < T1/2 logT),
(

\4
e V2> TY2GogT).

vz
We now extend our discussion in two directions. First, we replace n =%
by x(n), or by x(n)n~%. Secondly, in applications it frequently happens
that we want to sample not just at points ¢t on the imaginary axis, but
at points s = ¢ + it with well-spaced ¢ and ¢ > 0. These extensions are
easily obtained from the following useful

L:weightedhybridPV| Lemma 27.5. Suppose that s = o + it with o > 0, and that x is a

character modulo q. Then

N
N
Z (1 _ %)X(n)n—s < (qgr)Y?logqr + Eo(x)= (27.18) |E:weightedhybridPV
T

n=1

where Eo(x) = 1 if x = x,, and Eo(x) = 0 otherwise.

Proof We recall that Theorem ?7? asserts that

1—it

Z x(n)n™" = EO(X)@ . iu_ g + O((qT)l/2 loggr) .

n<u

We integrate both sides of this over the interval 0 < v < z, and then
divide both sides by x to see that

n i plg)z
> (1 N E)X(”)” =B Te

< Ey(x)~ + (qr)"/?log g7 (27.19)
T

By restricting the real parameter = to the integer value N, we obtain
the desired result when o = 0. To extend the above to allow o > 0, we
express the weight max(0,1—n/N)n~7 as a nonnegative linear combin-
ation of the weights max(0,1 — n/x) with 0 < z < N. Specifically, we

1—it
+ 0 ((qT)l/2 log q7')

n<z
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show that if a1, a9, ... is a sequence of real or complex numbers and
Az) = Z Qn,s B(z) = Z (z —n)an,
1<n<z 1<n<z
then

B T
Z (r —n)a,n= 7 = (f) + 20/ Bw)v " ldv
1<n<z z 0

(2720

+o(oc+1) /Ox B(v)(z —v)v™ "2 dv

for o > 0. To this end we first note that
x
3 (@ - n)ann = / S anTdu.  (27.21)
1<n<z 0 1<n<u

By Riemann—Stieltjes integration by parts (as in the proof of Theorem
1.3) we see that the integrand above is

A v
= () + O’/ Ao .
u? 1

Hence the right hand side of (27.21) is

_ /1 " Aw)u du+ o /1 " A (@ — ) do.

From (27.21) with o = 0 we see that B(z) = [’ A(u) du. We integrate
the two integrals above by parts (integrating A and differentiating the

rest) to obtain (27.20). We now take a,, = x(n)n~% in (27.20)). From
(27.19) we deduce that

> (= n)x(n)n=* = Wi(z)(gr)/*logqr + Wa(z)Eo(x)7 >
where

T T
Wi(z) =277 + 20/ v dy +o(o + 1) / (x —v)v! ™2 dv.
1 1

We need to show that W;(z) < 27 for j = 1,2. The bound (27.18) is
trivial if o > 2, so we may suppose that 0 < o < 2. For j = 1 we see
that

Wl(m)<<:c+/ 1dv+0/ (x—v)v 7 tdv.
1 1
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It is necessary to estimate the last term above only when ¢ > 0, and for
such ¢ we that it is

< o*x/ v M dv=2(1-277) <.
1
Finally,

Wg(x)<<x2+/ vdv+x/ ldv < 2°.
1 1

O

In the same way that we derived theorem from (27.14)), the fol-
lowing more general results are immediate.

Theorem 27.6. Suppose that forr =1,2,... R we have a character x,
modulo ¢ and a point s, = o, + it, with 0. > 0, 0 < t,. < T, and with
the further property that |t,,1 - tr2| >1ifx,., =x,,- Let

T2

N
D) = 3 anx(n™, (27.2)
n=1

and let G be defined as in (27.11). Then
R
> ID(sr, x,)1* < (N + R(qT)'/? log qT) G .

r=1

If t, = 0 for all r, then we find that

R N
DY anxrm)r < (N + Rg'?logq)G,

r=1 n=1

which is an exact g-analogue of (27.15)).

Theorem 27.7. Suppose that for r = 1,2,... R we have a primitive
character x, modulo g, with 1 < g, < Q and a point s, = o, + it, with

or>0,0<t. <T, and with the further property that ’t,«l - tr2| >1f
Xr, = Xr,- Let D(s,x) be defined as in (27.22)), and let G be defined as
in (27.11)). Then

R
> ID(sr.x,) P < (N + RQT?1og QT)G..
r=1
The device by which we derived Theorem [27.4] from Theorem 27.3| was
invented by M. N. Huxley, and is known as ‘Huxley’s Trick’. It seems
that there is no way to similarly partition characters into useful subsets,
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so we lack a ¢ analogue of Theorem However, to address this issue,
Huxley introduced further ideas, now known as the Huxley Reflection
Method, which we now pursue. Roughly speaking, the idea is to start a
sum of length N, and then use the functional equations of L-functions to
create a corresponding sum of length Q?T/N. The product of these two
sums will be of length Q?T, and hence the mean square can be efficiently
estimated by means of Theorem

Suppose that x is a primitive character modulo ¢. The functional
equation of L(s,x) (cf Corollary 10.8) asserts that

1—s

e () () - o () ()

s m

where £ = (1 — x(—1))/2 and e(x) = 7(x)/(i"\/q). Hence

1_ 7 (l=str
L(s, x) = s(x)(%f FF((SE;K))LG —5,%)-

Now suppose that x is a character modulo ¢, but not necessarily primit-
ive. Then y is induced by a primitive character x* where x* is a character
modulo d for some d|q, and

L(s,x) = L(s,x) [ | (1 B x*(p)).

pS
plq
Thus
L(s, x) = () L(1 = 5,X)7(s, X)P(s,X) (27.23)
where
r 1—s+k
v(s,x) = Ws_l/2% = (27)°T'(1 — s) sin E(s +k), (27.24)
(=) 2
) 1_ X(@®)
=gz s —2_
P(s,x)=d> ][] Tra (27.25)
p‘q plfs

If kK = 0, then (s, x) has simple zeros at 0, —2, —4, ... and simple poles
at 1,3,5,.... If kK = 1, then 7(s, x) has simple zeros at —1,—3,—5,...
and simple poles at 2,4,6,.... Thus in either case v(s, x) is analytic for
o < 1. In the product that defines P(s, x) we may restrict p to those p|q
such that p 1 d, for if p|d then x*(p) = 0. Suppose that p|g and p 1 d.

E:asymFE
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Then x*(p) is a root of unity. Choose 6 so that x*(p) = €*. Then

LX)
. (27.26) [E:
— . :pfactor
0
pl—s
has simple zeros on the imaginary axis and simple poles on the 1-line at
the points
i(60 + 2k (0 4 2k
U0 +2km) | HOA 2km) (k € Z)

logp

respectively. Thus P(s, ) is analytic for o < 1. We are especially inter-
ested in the size of (s, x) and of P(s, x) when o < 1/2. In Chapter 10
we observed that |y(s, x,)| = 71/277 uniformly for [t| > 1, —A < 0 < A.
We now refine this.

Lemma 27.8. Let (s, x) be defined as in (27.24)). Then |y(1/2+it, x)| =
1 for all real t,
|1 . S| 1/2—0c
s < (M) (27.27)

uniformly for all s in the halfplane o < 1/2, and

1000 <7 )

when —72/3 < g < 1/2.

Proof The first assertion follows from the first formula for (s, x) in
(27.24), since the denominator of the fraction is the complex conjugate
of the numerator, when o = 1/2. For the two estimates we may assume

that ¢ > 0, since ¥(5,x) = ~(s,x). We now argue from the second
formula for (s, x) in (27.24). We note that
ei%(ern) o efi%(ern)

|sing(s+/<a)‘: 5

_ %eﬂt/Q + O(e—ﬂ't/2).

Stirling’s formula, as stated in Theorem C.1, applies to I'(1—s) uniformly
for 0 < 1/2. In the logarithmic form it asserts that

1 1 1
logT(1 —s) = (5 —s) log(1—s)+s—1+ §log2ﬂ+0(m>.

Hence

1
log |v(s, x)| = olog 2w+ (5—0) log|1—s|+a+targ(1—s)+gt+0(1).
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Now
t T —0 ™ 1—o0
arg(lfs):farctanl :f§+arctan ; §f§+ :
-0
Thus
1 1—s|
log |v(s, x)| < (5 — 0) log | om + O(1),

which gives (27.27).
We note that

1
log|l —s| = §log (1—0)>+1¢%)

—logt+ 1o <1+(£)2)<10 t+1(170)2
Tt 508 ¢ soetTolTy )

Hence

1 t (1-0)3
<(=- R S/ .
log (s, x)| < (2 0) log o+ 55— +0(1)

This gives when o > —t%/3 and t > 1. Finally, v(s, x) < 1 when
—4<0<1/2and 0<¢t< 1.

With further analysis, outlined in Exercise one finds that
fails when (1 — o)/t%/% is unbounded as t — 0. O

Lemma 27.9. For P(s,x) defined by (27.25) we have |P(1/2 + it, x)|
=1 for all real t, and |P(s,x)| < q2~° for o < 1/2.

Proof The first assertion is clear, since the denominator in (27.26)) is
the complex conjugate of the numerator, when o = 1/2. Set

s—1/2 L+p7°
L+ps=t

Since the fraction (27.26) is periodic with period 27/ log p, the fraction
above is the same apart from a translation. We note that

f(s)=fo(s)=p

pol% 4 p=o/? cosh § logp

flo) = p(-0)/2 L ple—D72 —

cosh 1*7" logp

Now cosh z is an even function and is strictly increasing for z > 0. Since
lo/2] < (1 —0)/2 for o < 1/2, it follows that 0 < f(o) < 1 for o < 1/2.
We also note that

1 pJ —1/2 1 pg —1/2
< <
1 pafl - ‘f(S)‘ -1 poflp
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when ¢ < 0. The two fractions tend to 1 as ¢ — —oo so |f(s)| is uni-

—1/2

formly close to p when ¢ is large and negative. By applying the max-

imum modulus principle to f on a rectangle with vertices —C,1/2,1/2+
27i/logp, —C + 2mi/logp we deduce that |f(s)] < 1 throughout this
rectangle, and by periodicity for all s with o < 1/2. Let r denote the
product of those primes that divide ¢ but do not divide d. We have
shown that |P(s, x)| < (dr)"/?=% when ¢ < 1/2. Since dr|q, we have the
stated bound. O

L:Lfcnbnds | Lemma 27.10. Let x be a character mod q. Then
1
L(s,x) — E(x)zp((])l) < min (7 log q7'> (27.29) |E:Lbnd1
- o

uniformly for o > 1,

L) - BOOLDE o (o loggr  (27.30)

uniformly for 0 <o <1, and

1_ -1
L(s,x) < (|1 —s|)? " min (—,log QT) (27.31) |E:Lbnd3
o
for o <0.

Proof Let
S(-T;X) = Z X(’I”L)7 R(x;x) — S($;X) _ E(X)?«T

Thus R(z;x) < ¢ uniformly for > 0. By integrating by parts (as in
the proof of Theorem 1.12) we see that if 2 > 0 and o > 1, then

L(s,x) = LT(LZ) +/ u" dS(ux)
n<lx r
1-s
; X 4 g 22 j_ - (27.32)

> R(u
s+l U.

This formula provides an analytic continuation to the halfplane o > 0.
For the present we assume that ¢ > 1. In this case,

1 *d
Lisiy) — BoE9 . L [fdu ar
qg s-—1 TR
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We take z = ¢7. For the integral we have two bounds:

Tdu 1—glTC 1 T du T du
— = < , — < — =logux.
1 ue oc—1 oc—1 1 u® U
This gives the bound (|27.29)).
To obtain (27.31) we appeal to (27.23), from which we see that if

o <0, then

Lisx) = 200 (201 = 5,70 + B L Y5 0P (5.0

- E(x)ws(?v(svx)P(s,x)-

From (27.29)), (27.27), and Lemma we see that the first term on the

right above is < (g|1 — s|)1/270 min(-,log ¢7). The second term on
the right above occurs only when x = x,,. Since x,, is an even character,
it follows that v(0, x,,) = 0. Thus (s, x,)/s < |1 —s[*/277 /(1 + |s]) for
o < 0. Thus we have .

To obtain the bound we appeal to the bounds , ,
and argue ‘by convexity’, which is to say by using the Phragmén—Lindel6f
Theorem, which states that if f(s) is analytic in the strip S = {s:0 <
o < 1}, if f is continuous on S, if | f(s)| < 1 for s € 95, and if there are
constants A > 0 and «, 0 < a < 7 such that

|£(s)] < exp (Aexp(alt])), (27.33)

then | f(s)| is bounded and sup,cg |f(s)| = sup,csg | f(s)]. We take

S ) q%F(S + 1) cos 77
(2—s)logq(3—s)
From (27.29)) and (27.31)) it follows that f(1 +it) < 1 and f(it) < 1,

in view of the orders of magnitude indicated of the following functions,
each of which is analytic in the strip —1/2 < o < 3/2:

f(s) = (L(s,x) - E(x)wgq) 3T

(D2 < g, [D(g )| = AR e (- ),

s

|cos T |xexp(%), |2 —s| <, |log ¢(3 — s)| =< log g7.

Thus (27.30) follows from the Phragmén—Lindel6f Theorem, provided
that we can show a weak upper bound of the form

Lis,x) - B0 2D . 5 (gr)n. (27.34)

q s—1
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To this end, we take = 17 in (27.32) and note that R(17;x) =
—E(X)¢(q)/q- Thus

e(q)

L(s,x) — E(X)T s—1

oo
< qT/ w o du < qT
1

uniformly for 1/2 < ¢ < 1. For 0 < ¢ < 1/2 we again appeal to (27.23),
from which with Lemmas 27.8 and 27.9] we see that

s —
L(s,x) — E(X)T EPEE |L(1 — s, chi)y(s,x)P(s,x)| + 1
1-—s

< (@) + B —

‘W 5,X)P(s,x)|.

As we already noted, (s, x,)/s is bounded for s near 0. Thus we have
(27.34) with A = 3/2, so the proof is complete. O

We also prepare a handy kernel:

Lemma 27.11. Foru > 0 let

K(w)= Y (-1) <4> (j+1—2u)? (27.35)
0<j<4 J
2i—1<j
and set
- PR
821 P(5) 5
K6 == et o6Ts (27.36)
Then K (s) is an entire function, and if a(s) = > oo ~% has abscissa

of convergence o. and x > 0, then

c+ioo

ZG"K< ) 27”/‘ a(s)K(s)x® ds (27.37)

C—100
for ¢ > max(0,0.).

To prepare for the proof of this lemma, we construct notation to ex-
press forward differences. If f(z) is defined on the real line, then A f(z)
= f(x+1)— f(z). If a forward difference with a step size h > 0 is desired,
we write Ay f(x) = f(z + h) — f(x). These operations can be iterated;
for example, (A?f)(z) = A(Af(z) = (f(@+2) — f(z+1)) — (f(= +
1)— f(z)) = f(z) —2f(xz+ 1)+ f(z +2). In general, A*f = A(AF~1f).

E:k(u)<->K(s)
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We refer to this as a k' order forward difference. By an easy induction

we see that
k

ik .
@@ =0 () v in),
i=0 J
We note that if f is a polynomial of degree d, then Af is a polynomial
of degree d — 1, and hence that (AFf)(z) = 0 identically if k > d.

Proof In §5.1 we remarked that the Cesaro partial sums of order k of
a Dirichlet series «(s) are given by the formulee

1 c+io00 strk

1
Ck(I):HZan(xfn)k:% o a(s)s(s—i—l)---(s-i-k‘)ds

200

n<z

for ¢ > max(0,0.). We take k = 3 and form the 4'"-order forward
difference of both sides of the above, starting at %x and taking steps of
size %x The left hand side then becomes

]z_:o(—l)j (j) C3(L(j +1)2)
1 - J 4 1. 3
SO (j) (max(0, 1(j + 1)z — )
: . fES
X T ()0 e = k)
(j+T)]xS>42n n

The sum that defines K(u) is empty when
uw > 5/2. When u < 1/2, j runs over
the full range 0 < 5 < 4, and then the
expression represents a fourth order for-
ward difference of u®. Thus K(u) = 0 for
u < 1/2. The weight K(u) is piecewise
polynomial, and is equal to a single poly-

(3,11, 11,21, 2, 2], [2. 31, [3,00). At cach of

the transition points, the summand that is - : —
0 0.5 1 1.5 2 25

nomial in each of the intervals (—oo, 1], 1 /

introduced or removed vanishes to the third .
. e . Figure 22.3 Graphs of
order at that point. Hence K () is continu-
'at poitt. K(w) and x;, 5 (u).
ous and piecewise linear. '
> LIIL . .
Thomas Blmpson (1757) showed that if X;,Xs,..., X, are inde-
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pendent random variables, each one uniformly distributed on [0, 1], and
X=X1+Xo+ -+ X,, then X is distributed with the density

fal®) = (n_l o 2 (U <’;> (j — )"

z<j<n

for n > 1. Thus K( ) = 6f4(2u—1). With this interpretation, we see that
K(u) = K(3 — u), that f5/2 u) du = 3, and that K (u) is increasing for
1/2 <u < 3/2. These same observatlons can also be derived by means
of elementary calculations, without recourse to the results of Simpson.
When we apply the same fourth order forward difference to the integral
representation of C3(x), we find that the integrand becomes

- j s 3 g
s(s+1)(3+2 )(s + 3) Z ( )(]—;1@ +3:478a(s)K(s)x‘.

]=0
Thus we have ([27.37)).
Let S(s) denote the sum over j in the definition (27.36) of K(s).

To show that K(s) is entire, it suffices to show that S(—r) = 0 for
r =0,1,2,3. But this is obvious, since S(—r) is a forward difference of
order 4 of 37", which is a polynomial of degree 3 — r < 4. O

Lemma 27.12. Suppose that

M N MN
= Z amm™~°, B(s) = Z bpyn~?%, C(s) = A(s)B(s) = Z cpk™?.
m=1 n=1 k=1

Then
MN

M N
> lerl? < (D2 dlm)lanm ) (Y d(m)lbal?).
k=1 m=1 n=1

Proof The sequence {cj} is the Dirichlet convolution a * b of the se-
quences {an,} and {b,}:
Cr = Z Ambn.

m,n
mn=k

By Cauchy’s inequality,

(X )( S fan b 2) = X dmmlan P

m,n m,n
mn=~k mn k mn=k

Write m = [[,p* and n = [, p”. Since p+v +1 < (u+1)(v + 1) for
nonnegative p, v, it follows that d(mn) < d(m)d(n). We substitute this
inequality in the above, and sum over k to obtain the stated result. [
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Theorem 27.13. Let q be a positive integer, and T > 2 be real. Suppose
that for r = 1,2,... R we have a character x, modulo q and a point

Sp = op+it, with o, > 0,0 <t,. <T, and with the further property that
’tn —trz‘ >1ifx,, =X, Let D(s,x) be defined as in (27.22)), and set

N N
G=YluP, =D diwlaf.  (2139)
n=1 n=1
If N < (T, then

R
D DG X
r=1

< NG+R2/3N1/3q1/3T1/3G2/3Gé/3 log ¢T.

(27.39)

When N > ¢T we already know that the sum is < NGlog N by the

estimate (26.26) found in Theorem

Proof We first establish the desired bound under the assumptions that
o, = 0 for all » and that the sum runs not from 1 to N but rather from
N + 1 to 2N. Thus our first object is to show that

R 2N 9
—it,
2l 3 et (2740

< NG+ R¥3NYBABTV3G23GY 3 log ¢T.

In this context,

2N 2N
G= Y |, Ga= Y dn)anl’. (27.41)
n=N-+1 n=N+1

Let b, be determined by the equation

2N
b= Y anx, (. (27.42)
n=N-+1

Thus the left hand side of (27.40)) is

R 2N 2N R
—itrp —itr
= E g anX, (n)n="rb, = g an g brx, (m)n="r.
r=1n=N+1 n=N+1 r=1

Since the left hand side of (27.40|) is equal to the right hand side of the
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above, their squares are also equal. That is,

(i\ S (b ):( > anibrmn)n—itrf.

r=1 n=N+1 n=N+1 r=1

We apply Cauchy’s inequality to the right hand side above, to see that

it is

2N R
<G Z ’ Z brxr(n)nfm

n=N+1 r=1

() (i)

Let K(u) be defined as in Lemma [27.11] Then K(u) > 0 for all u > 0,
and K(u) > 1 for 1 < u < 2, so the sum over n in (27.43) is

<3 (3"(5)] ibrxr ('

We expand the modulus-squared and take the sum over n inside to
see that the above is

R R o)
T n — _1_y _
= @N)"2 37 D7 e Y K () X, e )
T1:1T2:1 n=1
< N2 Z by | Z by, | Z&( )X, (= 3=t
ro=1 ri=1

oron (£
From ([27.37) we deduce that

Z K(3)X0, X, (npn™ 3100 =0)

1 1+ic0

=5 L(g +i(te, —tr,) +w,x,, X, ) K (w)NY dw.

(27.45)

1—i00

Write w = u+iv. The above integrand has a pole at w = 5 —i(t,, —ty,)

if x,, = X,.,- By moving the contour to the abscissa u = —1 we find that
the above is

1 —14ic0 , B
= 5= o L(5 +i(tr, — try) +w, X, xw)K(w)Nw dw
+E(an2)(pgq)K(§ —i(tr, = tp,) )N =ta)  (27.46)
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where E(x) = 1if x = x,, and E(x) = 0 otherwise. Concerning the
convergence of this integral as |t| — oo, we note that
L(g +i(tr —tr) +w,x,,X,,) < a(T +[v])

for u > —1, by Lemma [27.10, This suffices, since K (w) < v~*. By the
functional equation in the form (27.23)), we see that the integral above

1S

E(Xﬁyr ) —14+ic0 . ' B
_ Tf/,l,m L(3 = i(tr, —tr,) =W, X, Xy,)
x (5 +ilty, —try) +w, X, X,,) (27.47)

X P(% +i(tr, —tr,) +w,x,, X, ) K (w)N" dw.

T2
For ¢ > 1 we write
o0
L(s,X,, X)) = D X, Xpp (m)m™* = >~ 4+ >
m=1 m<M m>M
= Sl(s,yr1 Xry) + SQ(S,YH Xy )s (27.48)
say, where M is an integer such that M N =< ¢T. When we replace L by
S; in (27.47)) we obtain an integral I;(rq,r2) for ¢ = 1,2. To complete
the estimation of (27.44]) we estimate the contributions made by the I;
and the residue in (27.46)).

To estimate I; we move the contour from the abscissa © = —1 to
u = 0. This is justified by our bounds for v(s), P(s), and K(s). Since
[v(s)| = |P(s)| = 1 on the new contour, we deduce that

11(7’1,7'2) < / |Sl(% - i(trl - tT2) - Z‘v?yTIXrg)HK(iU”dv'

After replacing b,, and S; by their complex conjugates, we see that

|bT1|’51(% - i(tﬁ - trz) - ’L"U,X” Xr2)|

2N . M 1 . .
Z Xy, (n)n—ztrl) ( Z m*gﬂ(trft,,.z)fwxn (m)x,, (m))’
m=1

n=N+1
2MN
— —itry | :
=| D e, (RkT1 ] =[O (it X, )|
k=N
say, where
1. )
Ch = Chirgo = Z anm7§+ztr2 —iv sz (m)
1<m<M
N<n<2N

mn=Fk

E:DefS1S2
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Hence

ler] < D0 Janm™1?

1<m<M
N<n<2N
mn=Fk

for all 5 and v. By Cauchy’s inequality,

R
Z ‘brlel(% - i(trl - t?‘z) - Z”U>X7-1Xm)’

T1:1
R R 1/2
SIS i CR I

r1=1 ri=1

From the estimate (26.26)) of Theorem we see that the above is

2M N 12
< RY2(qT(logqT) > lel?) "
k=1
By Lemma we deduce that
2MN 2N M d(m)
"< )X =) -

Do lel* < (D0 dmlan?) (D2 =) < GallogaT)
k=N n=N+1 m=1

Thus

R
Z |b7’1 | |S1 (% - i(tTl - t"'2) - il}, Yﬁ Xr2 ) | << (RqTGQ)1/2(10g qT)3/2

ri=1

uniformly for all o and v, so the contribution of I7 to (27.44) is

R oo
< N2 (3 by ]) (RaTGo) 2 (tog g1) / K (iv)] do.

ro=1 —o00

From the definition (27.36) of K(s) we see that K(iv) < (Ju| +1)74
and hence that the integral above is bounded. By a further application
of Cauchy’s inequality we see that the above is

R 1/2
< (NqT)?RGY?(log qT>3/2(Z |br|2) . (27.49)

r=1

Apart from the need to partition Sa(s,x) into subsums, we treat Io



Large Values of Dirichlet Polynomials 169

in the same way that we treated I;. By our bounds from Lemmas [27.8

27.11) we see that
(i) < — /Ooq<T+|v|><|v|+1>-4lsz(é—zu ) =0, X, Xpa) |
P N - 2 1 T2 ) Ky A .

Our main task is to show that

R
by |82 (2 —i(tr, —try) —iv,X. X,
71221’ 1|| 2(2 (0 2 " 2)’ (27.50) |E:sum|br||32|est

< REM~EN#GE log2MN
uniformly for all o and v. Since M N < ¢T, it then follows that
R 1

Z ’br1||I2(r1,r2)| < (RqTG2)2 log qT,

7“1:1
which implies that

LB R R )
N2> 7 b, | D [br || (1, m2)| < ( > |b,«2|)<RNqTG2)§ log qT,
ro=1 ri=1 ro=1

and by a further application of Cauchy’s inequality we see that this is

PR 1/2
< R(NqTG2)5( Z ’brz‘) log qT.

T2:1

This quantity is slightly smaller than our estimate (27.49)) for the con-

tribution of I in (27.44).
To prove (27.50) we first put M; = 29M for j =0,1,2,..., and set

_ _ 3. _ .
o= S82,(r1,r2,0) = D X, Xy, (m)m 2 F )T
Mj;_1<m<M;

for j =1,2,.... By the triangle inequality,

}br1||52(% — ity —tr,) — ivvyrlxr2)| < Z |bT1||SQJ|'
j=1
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On replacing b,, and S> ; by their complex conjugates, we see that

2N
e |[S2i = | D anx,, ()~
n=N+1
JE s,
M;_1<m<M;
= |CJ'(7"1)| = ‘Cj(r1,7“2,11)|
where
CJ (rl) = Cj(’l’l, T2, ’U) = Z Cj7er1 (k)k*itrl
M;_1N<m<2M;N
and
_3, _
Cjk = Cjkrov = Z apm= 2 (m’(”‘*‘%)xrg (m))
Mj;_1<m<M;
N<n<2N
mn=k
Hence

el < D anlm™3

M;_1<m<M;
N<n<2N
mn=~k

for all ro and v. Thus by Cauchy’s inequality,

R oo 1/2 oo R ) 1/2
> S lnllsesl < (X07) (7 X laP)
ri=1j=1 71, j=1 mn=1

Since M;N > ¢T', we see by the estimate ([26.26]) of Theorem [26.17|that
the above is

00 1/2
< R1/2(2j2(logMjN)MjN > |cj,k|2> . (27.51)
j=1 M;_1 N<k<2M;N
By Lemma [27.12| we see that

S el (X dmm ) ( 5 d(n)lan|?)

Mj; 1 N<k<2M;N Mj;_1<m<M; n=N-+1
-2
< Mj (IOgMJ)GQ
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Thus the expression (27.51)) is

o ) 1/2
< RY/? ( 3" 52 + log MN)2 7 M~ N(j + log M)G2>
j=1

< RIM~ %N%GQ% log qT,
and hence we have (27.50)).

From the definition (27.36) of K(s) it is clear that K (3 +it) < 7%
Hence the contribution to (27.44]) made by the residue in (?7?) is

< N Z [brsbrs|

1<rme<r (1 [tr — trz|)4.
Xrqy =Xrg

By the arithmetic—geometric mean inequality we know that ‘brlbrz| <

%|br1 |2 + %}brz |2. Hence the above is

R
SN l” 30 (-t
ri=1 1<ro<R
Xrqy =Xry

For a given 71, the numbers t,, for which x,, = x,, are spaced apart
from each other by a distance of at least 1. Hence the sum over r5 above
is < 1, and so the quantity above is

R
<N b
r=1

Thus the quantity (27.44]) is bounded by the above plus the estimate
(27.49)) for the contribution of I, since our estimate for the contribution
of Iy is smaller. From the definition (27.42]) of b, we know that

Z|b P3| T am

r=1 n=N+1

Hence when we insert our bound for the expression (27.44) into the
inequality (27.43]) we find that

(Z Y < ROV 266 g3 )

=t (27.52)

R
+ NG ||
r=1
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If the second term on the right hand side is larger than the first, then it
majorizes the left hand side, so we have

R
> be* < NG.

r=1

If the first term on the right hand side of (27.52)) is at least as large as
the second one, then it majorizes the left hand side, with the result that

R 3/2
(S 1b?) < ROVGT) GGy (log T)* 2
r=1

and so

R
Z |br\2 < R2/3N1/3q1/3T1/3G2/3G§/3 log ¢T

r=1

in this case. Hence in either case we have (27.40))

We now drop the condition that o, = 0 for all r, and instead allow
o, > 0, while still restricting n to lie between N + 1 and 2N. Thus our
new goal is to show that

R 2N 2
Z‘ Z aan(n)n_aT_itT

r=1 n=N+1 (2753)
< NG+ R2/3N1/3q1/3T1/3G2/3G§/3(log 2qT)".

Here G and G4 are still defined as in . We employ the same
integration by parts method that we used to prove Theorems [26.9] and
This approach is more successful in the present setting because
the sum over n is shorter. For a given character x and real number ¢, let

S(u) = S(u;t,x) = Z anx(n)n=".

N+1<n<u

Then by integrating by parts we see that if ¢ > 0, then

2N 2N
i S(2N) / S(u)
o—1t
E anXx(n)n = +o du.
n=N+1 " (2N)e Noourt
Hence
2N A o 2N
—o—1t
apx(n)n <|S(2N +7/ S(uw)|du.
> an) SEN)I+ s 1S

n=N+1
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For ¢ > 0, the quantity o/N%¥™® achieves its maximum when o =
1/log N. Thus the above is

1 2N

By squaring both sides, and the applying the Cauchy—Schwarz inequality
we deduce that
2N

2 1 2N
—o—it 2 2
nZENH anx(n)n < |S2N)|*+ N(log N2 N)z_/N |S(u)|* du.

We now take x = x,., 0 = o, t = t,, and sum over 7. The contribution

of the |S(2N;s,,x,.)|? is the same as in (27.40). From (27.40) we see
that if N <u < 2N, then

R
Z 1S (u; by, x,))? < NG(u)+R¥ 33T 3NY3G(u)Y2Ga(u) /3 log 2¢T

r=1

where

G = Y <G Guw= Y dn)anl* <G,
N+1<n<u N+1<n<u

Thus we have the same bound as in (27.40) for all u, and hence we have

(127.53]).
Finally, let D(s, x) be defined as in (27.22)), and write

J

D(‘SaX) = ZDj(saX)
j=1

where J = |(log N)/log 2]
Disv= S anx(mn,
N/2i+1<n<N/2i

G(j) = > lan?,  Ga(j) = > dn)aal

N/2i+1 <pn<N/2i N/2i+1 <n<N/2i

Let § be fixed, 0 < § < 1. Then by Cauchy’s inequality,

Dlor ) = |3 Dm0 < (iaj) (iMDj(sr,x,.)Z)
Jj=0 j=0 j=0

J

< >67IDs (s,
j=0
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We sum over r and apply (27.53)) to see that

R
> 1D(sr, x,)IP < CLNG(j)

+C R2/3N1/3 1/3T1/3G( )2/3G ( )1/310qu

where

J J
Cr=2 (20)7, => (2"%)7.
j= §=0
We observe that G(j) < G and G2(j) < G2 for all j where G and Go
are defined as in (27.38). We set 6 = 9/10, and note that 2§ > 2'/35 =
1.1339... > 1, so that C; < 1 and Cy <« 1. Thus we have (27.39)), and
the proof is complete. O

Corollary 27.14. Suppose that q is a positive integer, and that T > 2

is real. Suppose that D(s,x) is defined as in (27.22), and that for r =

1,2,..., R we have pairs (s.,x,) with the property that s, = o, + it,,

o, >0,0<t. <T, that x,. is a character mod ¢, and that |t,, —t.,| > 1

if X,, = X,,,- Let G and G2 be defined as in (27.38). Then

NG  NqTG?*Gy(log qT)

R vz + 76

The bound here is strikingly similar to that obtained by a totally
different method for ¢ = 1 in Theorem [27.4]

Proof 1In (27.39), the left hand side is > RV?2. If NG is the larger of
the two terms on the right hand side, then it follows that R < NG/V?2.
If NG is the smaller of the two terms on the right hand side, then
RV? <« R2/3N1/3(]1/3T1/3’6’2/36';/3 log ¢T', which gives
N¢TG?*Go(logqT)3

Ve '
Thus (27.54)) holds in either case. O

(27.54)

R«

Theorem 27.15. Suppose that for r = 1,2,... R we have a primitive
character x, modulo g, with 1 < g, < Q and a point s, = o, + it, with
o >0,0<t. <T, and with the further property that |tr1 — tr2| >1
if Xp, = X, - Let D(s,x) be defined as in , and let G and Gy be
defined as in . Then

R

E:HMLVQT2

ST D(sr, X, )P < NG + R¥ENVBQPTV3G3GY/* log QT (27.55)

r=1
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Proof This theorem is proved in the same way as the preceding one,
with just a few obvious changes. For example, since x, and y,, are
primitive, if x,, X, = X, then x,, = X,,. The character x, X _ is a

2 T2

character modulo [g,,, ¢r,] < Gr, @r, < Q2. In places where we appealed

to ([26.26]) in Theorem[26.17] we instead appeal to (26.28]), which is found

in the same theorem. O

?7?7.1 Exercises

1. Suppose that f is a measurable function on [0,1], that V' > 0, and
that m (V') denotes the measure of the set of those x € [0, 1] for which
|f(z)| > V. Suppose further that we know that

1 1
/ f(2)[dz <1,  and that / f(2)Fde < 4.
0 0
(a) Show that
1
/ |f(x)?dx < 2.
0

(b) Show that m(V) < 1, that m(V) < 1/V, that m(V) < 4/V3, and
that m(V) <2/V2 for all V > 0.
(c) Show that m(V) < min(1,1/V,4/V3) <2/V? for all V > 0.

[HLMZ1

Exer:M(alpha,4T) | 2. [(Montgomery}, [1971) Let « be fixed, 0 < @ < 1, and set

M(a,T) = max |¢(s)]. (27.56) |E:DetM(alpha,T)

0<t<T
s—1]>1
(a) Let w, = max(0,2—n/N). With W(s) defined as in the proof of
Theorem show that if |t| < T, then W (it) < M (o, 4T)N*+
N/72.
(b) Let D(s) be a Dirichlet polynomial as in (27.1)), and let ¢, o,
..., tr be real numbers in the interval [0, T such that |t,, —t,,| >
1 whenever 1 # r5. Show that if G is defined as in (27.11]), then
R
> ID(it,)|* < (N + M(a, AT)N“R)G .
r=1
(c) Show that there is a constant C' = C(a) > 0 such that if V2 >
CM (o, AT)N® and |D(it,)| > V for all r, then (27.10] holds.
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3. (a) Show that when Bourgain’s Example is inserted into the bilinear
form inequality , the conclusion is that A? > RH. By
duality, this must hold also in . Our object now is to give
a direct proof of this latter inequality.

(b) Let 75 be defined as in Bourgain’s Example. Show that 75 — 75 =
Ts + T5 C Tz5. (By definition, A+ B={a+b:a € 4,b € B}.)
(¢) Note that the left hand side of is

R
> [

N—H<n<N r=1

1<r1,72<R N—-—H<n<N

2

v

(d) Explain why this last sum over n is = HN~*(tr1=t) (1 4+ O(6)).

(e) Take y, = N for all r. Explain why the lower expression dis-
played above is > HR?, while the right hand side of is
= A?R. Deduce that A? > HR.

4. We now develop a variant of Haldsz’s Method. Let D(s), 7, and G
be defined as in Theorem Let t1,to,...,tr denote the members
of 7T, and let y, be a unimodular number with the property that
|D(itr)| = yTD(itr)'

(a) Show that

(b) Deduce that

R 2 N R
(Sitie))) < 6( XL wn

n=1 r=1

)
(c) Suppose that wq, ws, ... are nonnegative numbers such that w,, >
Lfor1<n<N,and > >~ w, <oo. Put W(s) =37 w,n*

for 0 > 0. Explain why the second factor on the right hand side
above is

< D W (ilte, —t)]-

1<ry,re<R

(d) Conclude that

R
(D) <6 3 (Wit —t)].
r=1

1<r1,ra<R



Large Values of Dirichlet Polynomials 177

(e) Suppose that |D(it,.)| > V for all r. Deduce that

WG G .
R< =5+ 5 > Wity —tr)]
1§r;£§R

(f) Note that

1 _ .
- E |W (i(tr, —tr,))] < | Inax E |W (i(tr, —tr,))]
1<r;<R 1<ro<R

T17£T2 T2FT]
When combined with the bound from the preceding part, we ob-
tain the same bound that we achieved from our original method.
In the case that the numbers ¢,, —t,, are distinct and well-spaced,
we might be able to derive an upper bound for the left hand side
above than the one on the right hand side, and thus obtain a
better overall bound for, such t,.

5. Suppose that D(s) is defined as in (27.1)). Suppose that N'/2 < N <
T. From Corollary and Lemma [27.12| we know that

T N
/ ID(it)dt < T |an |,
0

n=1

/OT \D(it)|* dt < N? ( f: d(n)|an|2)2.

n=1
It would be helpful if we could derive similar estimates for fractional
exponents between 2 and 4. In particular, let v be determined by the
equation N¥ =T. Thus 1 < v < 2. It would be useful if it were the
case that

T N v
/ \D(it) 2 dt < T( 3 d(n)|an|2) .
0 n=1
Suppose that D(s) is taken as in Bourgain’s Example, with H < dN.
Take T'= N?/H?. Show that in the interval [0, T there are < N/H?
disjoint intervals, each of length =< N/H on which |D(it)| > H.
Deduce that the left hand side above is > N2 H?"~3 and that the right
hand side is < N2H"~2(log N)". Note the resulting contradiction.
One of course might conjecture that if |a,| < 1 for all n, then

T
/ \D(it) 2 dt <. T (27.57)
0



178 Large Values of Dirichlet Polynomials

6.

Exer:HMGLH | 8.

Let T be a finite set of real numbers. Show that the following two
statements about a number A(N,7T) are equivalent:
(i) If |an| < 1 for all n < N, then

Z‘Za n~% < A(N,T).
teT n=l1

(ii) If |y¢| <1 for all ¢ € T, then
Z‘Zytnz < A(N,T).

n=1 teT

To prove the identity (27.20)), it suffices to note that both sides are
linear forms in the a,, and then to note that for each n the coefficient
of a,, is the same on both sides.

(a) Show that if n > x, then a,, makes no contribution to either side
of .

(b) Show that if n < z, then the contribution of a,, to the right hand
side of is a,, multiplied by

x

+20/:(11n)v”1 +0(J+1)/n (v—n)(z—v)v " 2dv.

r—n

ZCO-
(¢) Show that the above expression is equal to (x — n)n=7.

The Generalized Lindeldf Hypothesis (GLI) asserts that if x is a char-
acter modulo ¢, then L(1/2 + it,x) <. (¢7)¢. If L(s,x) is an L-
function whose nontrivial zeros all lie on the 1/2-line, then it also
satisfies this estimate.

(a) Adopt the notation and hypotheses of Theorem Suppose, in
addition, that GLI is valid for all L-functions mod ¢. Show that

R
> ID(sr, X, )I? < (N + C(e) RNV (qT)%) G .

r=1

(b) Adopt the notation and hypotheses of Theorem Suppose, in
addtion, that GLI is valid for all L-functions. Show that

R
> ID(sr,x,)I> < (N 4 C(e)RNV*(QT)*)G
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RHB79a , . . . .
9. = ?; T'he g-analgue of Haldsz’s bound is a bilinear form inequality of

Exer:gam(s)est3 |10.

11.

the form

R N 9 N
Z ‘ Z an X, (n)’ < A? Z lan|?.
n=1 n=1

r=1

Our object is to establish an analogue of Bourgain’s Example for the
bilinear form above. Let p1,pa, ..., pr denote the first R odd primes.
Let ;- denote the quadratic character modulo p,.. Take a,, = 1 if n is
a square, and a,, = 0 otherwise.

(a) Show that the left hand side above is < NR.
(b) Show that the right hand side above is < AZN1/2,
(c) Deduce that A? > RN'/2. Compare this with the result of Ex-

ercise [§(a).

(a) Show that arctand = § — %63 + 0(65) for0<§<1.
Show that log(1+4d) = + 0(62) for 0 <6 < 1.
Deduce that there is a small positive constant ¢ such that

sl = (=)' exp (U2

2 8t2

—_
o o
NN

uniformly for 1213 < —g < ct.

(a) Show that if s = ¢ + it, then
sinws = (sinwo) cosh 7t + i(cosmo) sinh 7t.

(b) Let f(s) = exp(sinms). Show that |f(it)| = |f(1 +it)| =1 for all
t.

(c) Show that f(% + it) = exp(coshnt) > exp (3 exp(w|t]).

(d) One of the hypotheses in the Phragmén-Lindelof Theorem is that
0 < a < 7. Show that this constraint on « cannot be relaxed.

. (a) For a positive integer k, let f(z) = & max(0,(1 — z)*). Let

F(s) = [;° f(x)z*"tdx be the Mellin transform of f. By in-
duction on k, show that the integral that defines F' converges for
o > 0, and that in that halfplane

1

Fo) = s 6am
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(b) For a positive integer k let F'(s) be defined as above, and let f(z)
be the inverse Mellin transform of F',

c+ico
f(z) L/ F(s)x™*ds

2mi c—100

where ¢ > 0. Show that f(z) = 0 if x > 1, and that f(z) =
Hl-okifo<z <1

13. Let K(u) be defined as in (?7).
(a) Show that

o= 3 (F)eu-i-

0<j<4
2u—1>j

(b) By swapping j with 4 — j, show that

k= 3 (-1 (j) (2u+j 5"

0<j<4
5-2u<j
3—k) = k(u).
=Q2u—1)3for1/2<u<1.
=31 — 90u + 84u? — 24u3 for 1 < u < 3/2.
= —131 + 234u — 132u? + 24u3 for 3/2 < u < 2.
(g) Show that K(u) = (5 — 2u)? for 2 < u < 5/2.
(h) Show that k(1) = kK(2) = 1.
(i) Show that K/(u)6(3 — 2u)(6u —5) >0 for 1 < u < 3/2.

(¢) Deduce that K
(d) Show that K (u
(e) Show that K (u
(

)
)
)
f) Show that K (u
)
)
)

~— Y — — —

14. Suppose that D;(s) = ZkKL:1 a;(ki)k;® for ¢ = 1,2,3, and that
D(s) = Di(s)Da(s) Ds(s) = S p 20" e(n)n .
(a) Show that
cn) =Y ai(ky)as(ks)as(ks).
k1,k2,ks
klk‘gk‘gzn
(b) Show that
le()* <ds(n) > laa(k1)Plagks|*|as(ks) .

k1,k2,ks
klk‘zkg:n

(C) Show that if k1k2k3 =n, then dg(’rl) < d)3(k1)d3(k2)d3(k3)
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(d) Deduce that

K KyKs 3 K;

> kel < IT( 3 dklestr?)
n=1 =1 k=1
27.1 Notes

S:LargeVals Notes

For an account, qc%fA the Phragmn—Lindel6f Theoem see, for example, The-

orem 5.1.9 in Stmon| (2015).
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28

Zero Density Theorems

28.1 Zero counting functions

There are many situations where, in lieu of the Riemann Hypothesis,
an unconditional conclusion can be achieved via a bound for one of the

functions
N(o,T) = card{p =B +iy:((p) =0,8 > 0,|7| < T}, (28.1)
Nl (07 q, T) = Z N(Ua X T)u (282)
xmodgq
or
N2(07 QaT) = Z Z N(0—7X7T)7 (283)
g<Q Xmod ¢
where

N(o,x,T) =card{p =B +iv: L(p;x") =0,8>0,|y| < T}, (284)

x* denotes the primitive character inducing x and Z* denotes a sum
restricted to primitive characters. The underlying methods for dealing
with each are closely related, and we will mostly work out the details
for . Later we will see that in some aspects the theory for
can be pushed a bit further. It is also possible to cover all possible bases
by considering

.
N(0,q,Q,T)= > Y N(ox,1), (28.5)
k<Q Xmoaqk
(k,q)=1

where ZT indicates a sum over primitive characters with conductor dk
and d|q.
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In earlier chapters estimates for the number of zeros of an analytic
function of interest in a given region have depended upon standard the-
orems from classical complex analysis. To make progress here more soph-
isticated methods are required which depend on the special properties
of L-functions.

When o > 1 the lack of zeros is an immediate consequence of the
Euler product. It can also be seen through the observation that

L(s;x) "t = i W (28.6) [E:L-1
n=1

converges when o > 1 and so is analytic in that half-plane. In particular
L(s;x)L(s;x) ' = 1.

When ¢ < 1 we do not have the luxury of immediately knowing that
(28.6) converges. However if we write

M(s;x) = Y pln)x(n)n™*, (28.7)
n<K

then we can have some expectation that for a suitable parameter K the
expression

L(s;x)M(s;x) — 1 (28.8)

is small most of the time. Such a function M is often termed a mollifier.
On the other hand if L(s;x) = 0, then the expression is —1 and so the
expectation is that this happens at most infrequently.

In order to quantify this observation we will need to approximate
L(s; x) by a series of the kind

> x(mn~*w(n)

with a weight function w(n) which is close to 1 for smaller n. One such
example which we have used in the past is given by

1 c+100
P %/C 2T (w)dw

—100

where ¢ > 0, and its inverse transform

F(w):/ xw_le_xdx:/ e e Vo g,
0 0

Although this is simple and useful, it would be handier if we could move
part of our contour well to the left. However the gamma function has
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the disadvantage of possessing singularities at the negative integers. A
small modification removes this deficiency.

28.2 A Mellin transfom
THIS SECTION SHOULD BE IN AN APPENDIX.

Let
L A -1
- w —r— 2V 28.9
o) = o [ e ep(-a—a s (289)
where
w:/ r texp(—z — 2 dr. (28.10)
0

Then integral in (28.9) is an entire function, so that the function g is
analytic for w # 0 and has a simple pole at w = 0 with residue 1. For
x>0, let

1 o0
fla) = ;/ y~texp(—y —y~)dy. (28.11)
Then, by integration by parts and a change of variable,
o) = [ e e = [Ty Uy (2812)
A change of variable also shows that
1 [ _ _
$0/0) == [y exp(-y =y (28.13)
0
Thus
flz)+ f(1/x) =1 (28.14)
and so
flz)y<z™le ™, f(l/z)=1+0(z 'e™™) (28.15)

The function g(w) behaves in a similar way to the gamma function,
but with the added advantage that its only singularity is at 1. Thus we
have the following estimate, which is similar to bounds following from
Stirling’s formula. It is perhaps not the most precise bound that can be
established, but it will suffice for our purposes.

Lemma 28.1. Suppose that w € C, Rew = u and Imw = v. Then
there is a constant C' > 1 such that

wg(w) < (C' + C’|w|)ma"(1’|“|) exp(—7|v|/2).

E:gfn

: I
H
0]
0
03

E:ffn

E:gintf

E:floverx

E:f+f

E:f=1+o0
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Proof 1If necessary by considering the complex conjugate we may sup-
pose that v > 0. Let § = (1 + |u])/(2 + |w]), R > 0 and Cg denote the
contour consisting of the line segments joining

{~R,R,R+i(n/2—0),—R+i(r/2 —6),—R}.

Then, by Cauchy’s theorem, we have

/ exp (wz —ef — e_z)dz =0.
Cr

Moroever

+R+i(m/2—6)
/ exp (wz —ef — e_z)dz < exp ( + Ru — e®sin 6)
+R

—0as R — oo.

Thus

wwg(w) = /OOO ¥ exp(—y — 1/y)dy

= / exp (wa: —e¥ — efz)dx

— 00

= / exp (wz + w(i% — i6) — 2 cosh(z + iZ — id))da.

Hence
wlwg(w)] < / exp (uz — v /2 + v — €”sind — e~ “sinb)dx
—o0
Therefore

(o)
w|wg(w)| < 2exp(—vw/2 + vd) / exp(|u|z — e* sin §)dx.
0
The integral here is
/ i1 g—tsind gy (28.16)
1

When |u]| > 1 it is

[l
< (sin )M (Jul) < (|u|> |u|~1/2

esind

and

5 o
sin5:67/ / sinﬂdﬁd02571525m6
o Jo 2
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so that

. 26
sin 2 m

Also vé < 1+ |u|]. Hence
[u] 9 1 52\ U
evé ( |u| ) < <u|( +4 )) < (C—I—C‘leul

esind 1)
as desired.
When |u| <1 the integral (28.16) is
1
<
~ sind

and we have
e"(sind) 7t < 1+ |wl
which once more suffices. O
We also need to know more about the inverse Mellin transform of g.

Theorem 28.2. Suppose that X > 0 and v > 0. Then
1 v+ioo
T Xvg(w)dw = £(1/X)
Proof By (28.9) and the lemma, the integral above is
1 [e9) 1 v—+ioo X w
— / z texp(—z —z7h) / ﬂdwdm.
w Jo w

27i v—1i00

2mi

The inner integral is 27¢ when * < X and 0 when z > X. Thus the
above is

| - “1y . _
;/0 7 exp(—x —x” )dx = f(1/X)

by ([@28.13) O

28.3 A bound for L(s;y)

THIS SECTION SHOULD BE IN CHAPTER 22.

Let x be a primitive character modulo ¢ and suppose that % <oc<1
and Y > 0. We need an effective upper bound for L(s;x) in terms of
Dirichlet polynomials on the o-line. We start by imitating the process
used to establish approximate functional equations.
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When ¢ = Rew > o, by Theorem we have

ct+ioo

S X pm/ ) = g [ Het )Yt
m=1 ©

211 —i0o

We now move the path to the line Rew = —1, picking up the residue at
0, and another one at w = 1 — s when ¢ = 1 and apply the functional
equation for L(s;x) (Corollary 10.9). Thus the above is

L(s;x) + E(x)z'*g(1 — s)

1 —1+ioco
% Y(s+w;x)L(1—s—w;X)Y¥g(w)dw (28.17)
—1—io0
where
P(z;x) = e(x)2°7* 1270 (1 — 2) sin (n(2 + K)/2). (28.18)
and E(x) = 0 unless ¢ = 1 in which case E(x) = 1.

We apply Stirling’s formula, Theorem C.1, (C.18), to bound . When
Rew < —1land § <o <1 wehave [l—s—w| >1and |arg(1—s—w)| <
7/2 so that uniformly for such s + w we have

b(s + w; x) < (3¢ +gls +w|)z 7 (28.19)

where w = u + .

The third term in (28.17)) is

> X(m)m* T h(mY';s, x) (28.20)
m=1
where, for V' > 0,
1 —14ic0
MVis) =5 [ s+ wigVigtu)de.  (2821)
—1—ioc0

Let A > 3 be a parameter at our disposal. We move the contour to
the vertical line u = —\. Then, by Lemma for a suitable constant
c1 > 1 the integrand is

o]

< (4g+ qlt] + A + qu)) 2TV Mer + e A + el o)) e

We suppose henceforward that
it <T
where T' > 3. Then the integrand is

< PPV + o)) e mI0I/2

eq:E:Lapprox1l

E:fepsi

eq:E:psibound

E:sumhnY

E:hVschi
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where

P >CqT (28.22) |eq:E:psibound1

and C is a suitably large absolute constant. Hence
h(V;s,x) < PV AN,

Suppose that V' > (3e)®P. Then the function of a positive real variable

v,

F(v) = P'V "% = exp(5vlogv — vlog(V/P))
has a minimum when v = vy where
vo=e Y(V/P)/5 >3
and
F(vg) = exp(5ry) = exp ( — 56_1(V/P)1/5).
Let A = 9. Then
h(V;s,x) < exp (— 5e~1(V/P)/?). (28.23)
Suppose that Y < P/log P and Z > 2PY ~!(3elog P)®. The function
v(0) = 5e” " (0Y/P)"/> — 2log 0
is increasing for § > PY ~!(2¢)® and so if m > Z, then we have
v(m) > v(Z)
> 15.21%log P — 2log (2;3(36 log P)5)
> 3log P.
Recall that P > C is suitably large. Thus when m > Z we have
5e~1(mY/P)'/5 > 3log P + 2log m.
Hence, by ,
> xX(m)ym* Tt h(mYss,x) < Y exp (= 5e7H (mY/P)/?)

m>Z m>7Z
> mZexp(—v(m))
m>Z
so that
> X(m)m* T h(mY;s,x) < P70 (28.24)

m>Z
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We now rewrite the contribution from m < Z as

S X(m)n* " h(mY' s, x) =
m<Z
1 —1+ico
— X(m)m* (s + w; )YV g(w)dw.
2mi J 1 ico
m<Z
When o > 6 > % we then move the path to the line Rew = 0 + % — 20.

Thus
71<977<Re <*70<0
9 = ’U_)_2 ’

and to summarize so far, we have
i x(m)
m=1 m?
6—21+4ioco =
XU 11— 5wy Y271 — 20 + w)duw

: >
2mi Jo_ 1 oo ez ms—v
+0(P™%). (28.25)
Suppose that X > 3Y log(Y P). Then, by (28.15))
(25.20

> xm)ym V2T f(m)Y) < Y(YP)P < P70

fF(m/Y) = L(s;x) + E()Y'g(1 - s)+

m>X
Thus we obtain
L) = 3 X g v) - B0 - 5)-
m<X

1 6—1+ioco —
S X 415w )Y 21— 2 4 w)dw

2 9—%—1'00 m<Z
+0(P7).

If E(x) # 0, then ¢ = 1. Thus, by Lemma [28.1]
E(X)Y'g(1 —5) < Y77 L — 5|7 (1 + |s]) exp(—nlt]/2).
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Thus we have

L) =3 X vy

m<X m
L [ITEE  X(m)
27TZ /] 1 mgiw

—3—i0 <z
+0 (P24 BQ)Y! 71— 5| le ) (28.27)

When Rew = 6 — % we also have

P(1 =54+ w; ) Y27 g(1 — 20 + w)dw

(1 =5+ w; )Y 27 (1 — 20 + w)
—1

< ‘0 1 Y6'+%720'P670'67\v|.

2

Putting it all together we have the following.

Theorem 28.3. There is a constant C' > 3 such that whenever T > 2,
X 1s a primitive character modulo q, P > CqT,

Y > P/logP, X >3Ylog(YP) and Z > 2PY " '(3elog P)®

we have

x(m)
L . . = 7
(520 = 3 2 ponyv) <

m<X

. 17t e .
1-0/yv2p\0—0c |p__ = —s+0—1+iv| ,—|v|
Y27%Y~“P) 0 5 / E x(m)m 2 e ldv

- W<z
+ E(X)Y‘%%_Q"\l — 5| texp(—|t|) + P73

uniformly for [t| < T, % <0<o<1, E(x)s#1.

28.4 Zero density estimates

We can now apply the results in the previous sections to give non-trivial
bounds for the functions N, N1, Ny. The basic bounds we give here have
many applications.

Theorem 28.4. Suppose ¢ > 1 and T > 1. Then
Ni(6,q,T) < (qT) 5" (log(2qT))° (28.28)
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uniformly when % <0<l
Suppose further that n > 0. Then there is a positive number C(n) such
that

Ni(0,4.T) <, (log(24T)) "™ ((qT) M0~ 1 (qT)557)  (28.29)

uniformly when % <0<,
Corollary 28.5. There is a positive constant ¢ such that, whenever% <
0 <1,
Ni(6,4,T) < (¢T) = =" (log 24T)".

Theorem 28.6. Suppose ¢ > 1 and T > 1. Then

Na(6,Q,T) < (Q*T) 3 (log(2QT))° (28.30)
uniformly when % <0<l
Suppose further that n > 0. Then there is a positive number C(n) such
that
3(1—0

Na(0, Q. T) <, (log(2QT)) ™ ((QT)+ (=0 4 (Q2T) 55=) (28.31)

uniformly when % <0<l

Corollary 28.7. There is a positive constant ¢ such that whenever % <
<1

No(8,Q,T) < (Q*T) % 1=9 (log 2QT)°.

The conjecture that the above corollaries hold with 12/5 replaced by
& for any & > 2 is known at the density hypothesis. On inspection of the
Theorems one can see that this does indeed hold in the restricted range
6 > 5/6.

We concentrate on the proof of Theorem Theorem follows
in the same way using the concomitant mean value theorems.

By Corollary 14.7,

N(1/2,Q,T) < Q*T'log(2QT).

Also, by Corollary 11.10 we know that there is a positive constant ¢
such that there is at most one zero p = [ + iy to be counted with
B >1—c¢/log2QT. Thus in the proof of Theorem we may suppose
that

loglog(2QT) 1

—— <<l - —. 28.32) |E:ZDEalph
<0< clog 20T (28.32) __apa

1
2 10g(2QT)
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Similar considerations to the above pertain with regard to Theorem
28.4

We consider first as this has the simplest proof and yet illus-
trates the main ideas.

28.4.1 The Ingham Bound ([28.30))

For brevity write

H = CQ*T (28.33)
where C is a large constant, and for
C<K<H (28.34)

let M(s;x) be as in (28.7)), and define

a(n) =Y pu(l) (28.35)
2k
so that
la(n)| < d(n). (28.36)
Let
Y >1 (28.37)

and suppose that % < o < 1. Then, by (5.25)

o) 24100
1
Za(n)x(n)n_se_”/y = ﬂ/ L(s+w; x)M (s+w; x)YVT'(w)dw.
T J2—ico
n=1
The integrand has singularities at 0, and, when L(s;x) = ((s), at
w = 1 —s. In view of the bounds given by Corollaries 10.5 and 10.10,
Lemma 10.15 and (C.19) of Theorem C.1 we are able to move the path
1

of integration to the line Rew = 5 — o and pick up the residues at 0

and, when L(s;x) = ((s), at w =1 —s. Thus

Z a(n)x(n)n=*eY =
n=1
EQOM1;x)Y 7 T(1 = s) + L(s; x)M (s x)+

1 [® ,
7/ L(: +it + v )M (3 + it +iv; )Y 27T (L — o + iv)dw.
T

— 00

E:IngD

E:IngK

E:Ingan

E:Ingand

E:IngY
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Let

Z =Y (log H)?. (28.38)
Then

Z a(n)x(n)n=*e Y « H™L.
n>7Z

When E(x) =1 and [t| > (log H)?, by Stirling’s formula (C.19),
E(X)M(1L;x)Y' ™ *I(1—s) < H ..

We also have a(n) = 0 when 2 < n < K, and a(1) = 1 and e~ /Y =
1+ 0O(1/Y). Hence

L+ Y atmx(mn™e™ = Lisix)M(six) + O(1/H)+
K<n<Z

1 e .

Py L($ +it +iv; x) M (3 + it + iv; X)Y%_‘”'“T(% — o +v)dv.

Tr —0o0

(2539

By Corollary 14.3 the number of zeros p = 8 + iy of the Riemann zeta
function with |y| < (log H)? is < (log H)? which is an acceptable bound
in our theorem. Thus we can exclude such zeros from our subsequent
analysis and holds for all remaining zeros s. When  is a primitive
character modulo ¢, let (0, x,T) denote the set of zeros p of L(s;X)
with 8 > 0, |y] < T, except that when ¢ = 1 we exclude the zeros with
|v| < (log H)?. Then

N2(0,Q,T) < Z Z* card Ro(0,x,T) + O((log H)?)

QSQ Xmod ¢

and for p € Ry(0, x,T) we have

1< Z a(n)x(n)n=Pe Y| +
K<n<Z
Y%*B/ IL(% + iy + iv; \)M (% + iy + iv; x) eVl dv.
By Corollary 14.7, given ¢ < @, a primitive character y modulo ¢ and
[t| < T there are at most < log 2QT zeros p of L(s;x) with [t—Im p| < 1.
Thus we can partition Ky(0, x,T) into < log H subsets in each of which
any distinct pair p and p’ of zeros of a given L(s;x) satisfy |Im(p —
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p')| = 1. Let R(0, x,T) denote such a subset with the largest number of
elements. Thus

No(0,Q,T) < (log H) S Y card R (6, x, T)+0((log H)?). (28.40)

q<Q Xmod ¢

For each p € R(0,Q,T) at least one of the following holds
2

t<| > amxmn—re Y|
K<n<Z

oo
1< Y§7§0/ IL(% + iy + iv; \)M (% + iy + iv; ) [+ 2~V dv.
— 00

The number of zeros in the first case is

<<Z Z* Z Z a(n)x(n)n=Pe /Y

q<Q Xmod q pER(6,x,T) |K<n<Z
and in the second is <
oo
2_4 * . . . . 4
Ys 39/ Y3 LG Hivtivi ) M (S +iv+ivix)| 5 2
T g<Q Xmod q pER(0,x,T)
By (26.28) the first expression is

< (log H) Z a(n)?n=2%e=2"/Y (n 4+ H)
K<n<Z

< (log H)* (1 —0)"'Y2"2 (20 — 1) 'HK' %)

< (log H)*(Y*™ % + HK'™%)

and, by Holder’s inequality and Corollary [26.31 and (26.28]), the second

1S
1/3

2_4 o * . .
< 30/ 3OS G +iaslt]
% \q<Q Xmod ¢ p€R(0,x,T)
2/3

* 1
Yo D MGty e May
4<Q Xmod q pER(0,x,T)
2/3

<Y573%log HYSH'Y® | (log H) > n~'(n+ H)
n<K

< Y3739 log HYPHY3(K + H)¥/>3.
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The choices

K=H, Y=Hr=
with (28.40)) secure the required bound (28.28|).

28.4.2 The Huxley Bound (|28.31))

We now concentrate on (28.31]). Since the bound in (28.30) is smaller
when 6 < 3/4 we may suppose that

0> 3 s

In (28.31]) the first term on the right only comes into play when, essen-
tially, 6 > %.
Define H as before and

P=0CQT (28.42)
where C' is as in Theorem and in that theorem take
X =7 =CPY*(log P)*,Y = P'/?*(log P)* (28.43)

where C is a sufficiently large constant.
We may certainly suppose that

0<n<l1/4, K=P"° (28.44)
and we use the same mollifier ((28.7) as before.
When o > 6 and [t| < T, by Theorem and ([28.41)),

L(s;x)M(s;x) — Z a(n)x(n)n™° <«

E(X)Y 2 K'"%(log K)|1 — |~ exp(—t|)+

Yéfe/ Z b(n;v)x(n)n=%| e~ I"ldv + P71

X In<KX
where
a(n) = > p)f(m/Y) (28.45)
I<K,m<X
Im=n
and
bniv) = > p(lym?TEE (28.46)
I<KKm<X

Ilm=n
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By We have f(m/Y) = 1+ O(mY 'exp(-Y/m)). By
(28.44

and ([28.44) we have K <Y (log P)~? < X and, when n < K,

a(n) = Y p(l)f(m/Y)

Im=n

= > u(l) + O(d(n) exp(—(log P)?)).

Im=n

The main term here is 0 unless n = 1 in which case it is 1. Thus

L(s;x)M(s;x) — 1<

Z a(n)x(n)n™| + H 1+

K<n<KX

E(X)Y K (log K)[1 — 5|t exp(—|t])+

yz—0 /00 Z x(n)n=*b(n;v)| e Vldv

—0 In<KX
When n < K, since o > 6, we have, by (28.46)),

> xmnTb(nsv) < Y 1T Y mi—o—3

n<K I<K m<K/l

< Zl_g Z mTe.

I<K m<K/l
Thus

Z x(n)n=%b(n;v) < Z 1777 K3 < K7 log2K.
n<K I<K

By (28.41) and (28.43) we have
(X/Y)*" 2 (log H)/? < 1.
Hence

L(s;x)M(s;x) — 1< Z a(n)x(n)n=%| + P!
K<n<KX

+Y: K2 (logK) (1+ E(x)[1 —s|7Y)

+/OO Z b* (n;v)x(n)n =% e~ ’ldv

— |K<n<KX
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where
b*(niv) = (log H)'/? >~ p(l)(m/2)° =2+ (28.47)
I<KKm<X
Im=n
and we have used ([28.43)).

We record for future use that

a(n) < d(n), b*(n;v) < (log P)Y/2d(n). (28.48)

Now we suppose that if ¢ = 1, then |1 — s| > 1, which we are certainly
entitled to do when s is a zero since in this case L(s;x) = ((s). Hence

Lis;x)M(six) —1< | > a(n)x(nn ™|+ H '
K<n<KX

+Y: K3 log P

+/ Z b* (n; v)x(n)n=% e 1*ldv
~X I K<n<KX

By (28.41) and ([28.43) we have
Y2 K3 log P < (logP)~".

Therefore, if p = 8 + i is a zero of L(s; x) with 5 =Rep > 0, then

K<n<KX

+/°° Z b* (n;v)x(n)n="| e~ 1"ldv

—%° |K<n<KX
We now partition the interval (K, K X] into
< log H
dyadic intervals I; = (Kj, Kj] where K; = K2/~! and

K! = min(K2’, KX).
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Thus

1<<Z<

j<log H

S a(n)x(n)n~?

’ﬂGIj
—|—/ eIl
— 00

Let P(x) be the set of zeros p of L(s;x) being counted. Then for each
such p there is a j < log H such that

Z b*(n;v)x(n)n="

nel;

1< (10gH)<

S an)x(nyn

nEIj
oo
—|—/ e 1y .
— 00

Let 2;(x) be the set of p € P(x) for which this holds. Then, for any
fixed k and p € P;(x),

S b (s 0)x(mn

nel;

1 < (log H)2k<

Hence

S erlm)x(n)n "

neJ;
[e's)
+/
—o00

1 < (log H)3k<

Z ca(n;v)x(n)n="

neJ;

2
e‘”ldv>.

J; C(KE KM, Jen(n)] < doi(n),  |ea(n;v)] < dox(n).

where

Let

N; = Z Z* card P;(x).

q<Q Xmod q
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Then, by Theorem we have

k(2—26 k(3-20) ;1 2
Nj < (log )1 (KFC20) 4 g5 gi v sy,
Thus

N; < (log2QT)°™® (K729 4 g F4= p),
If K; < H%, then we choose k so that
Hwt < K < Hor,
Note that by , K; > K = P"/5 Thus k < 1 as required and
31-0)

N; < (log H)=®) grse=1

If K > H%, then we take k = 2. By|28.43|and [28.44, KX < P2+n/4,
Thus

N; < (log H)?®) (P+m(=0) 4 Frsvi f)

3(1—-0)

< (log H)¢®) (P(2+?7)(1—9) +HST.

Since there are < log H possibilities for j, (28.31f) follows.
Theorem follows in the same way. We then define P = H = CqT
and use Theorems R26.18 and R7.13

28.4.3 Exercises

1. Suppose that there is no exceptional zero of any L-function formed
from a character with conductor dividing ¢. Prove that there are
positive constants ¢; and ¢y such that if

log x
gsexp| ———|,
co loglog x

then

e o [ (log x)

28.5 Primes in Short Intervals

One of the most important applications of zero density estimates, and a
driving force for their development, concerns the distribution of primes
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in short intervals. It is a routine consequence of the Riemann Hypothesis
that when 2 < h < x we have

w(x + h) —7n(z) z/

. logu

x+h d

+0(z'?log ).

It is, perhaps, surprising that without any unproven hypothesis the ex-
ponent 1—72 below is so close to %

T:HuxleyinShorts | Theorem 28.8. There is a positive number ¢ such that if G(z) > 1 and

272 (log )°G(x)7/? < h < x, then

W+ h) —b(x) = h+ 0 (G?x) + hexp <_ W)) (28.49)

(cloglogz)s

and
z+h 1
w(m+h)—7r(x)—/ ﬂ<<L—i-hexp —(IOL)?’l .
= logu G(JS) (C log log ,r) 3

550
If Corollary were to hold with 12/5 replaced by & for some & > 2,
then the above holds with 7/12 replaced by 1 — 1/£. Thus one sees that
the density hypothesis is practically as good as the Riemann Hypothesis
in this context.

Proof By Theorem 12.5, when 2 < T < 212 and z > ¢ we have

z+h
Y(x+h)—x)=h-— Z / ' uw’ldu+ O(2T ' (log z)?).
P x
[VI<T

Here the sum is over zeros p = 8+ iy of ((s) with 0 < § < 1. By
Corollary 14.3, Theorem 6.6 and Corollary 10.3 we may restrict the sum
to zeros with 8 > 1/2. Hence

G@+h)—v()—h<he™ Y 2P 42T (logz)®. (2851

[yI<T
B>1/2
We recall that, by (28.1) and (28.2), N(0,T) = N1(0,1,T). The sum

above is
1

xl/QN(l/ZT)—i—/ 2“N(u, T)(log z)du.
1/2

By Theorem [24.18) N(u,T) = 0 when u > 1 — ¢ where
1

o= 28.52) [E:Huxdel
c1(log T)2/3(loglog T)1/3 ( )
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and c; is a positive constant. Thus the above is
1-6
:1:1/2N(1/2,T)+/ 2N (u, T)(log 2 )du.
1/2
Then, by Theorem 284 and Corollary 285 with ¢ = 1, this is

1-06

- /5/6 qulg(l—u)/5(1Og 2)e + / qull(l—u)/E’)(lOg )2 du
1/2 5/6

< (log ) (z/2T5/5 + (log 2)2a®/5T/® 4 &(T'/5 /z)°).

We now make the choice
T = xh~*(logz) 2G(z)
so that
T < 2°/'%(logz) ~¢G(x) /2.
Then, by
(x4 h) — () — h < hG(z) ™t + h(log )% (TH/5 /z)0.

By (28.52),

log x
T11/5 1) < _
( /%) < exp c3(logx)?/3(loglogx)1/3 )’

which gives (28.49).

It is immediate from Chebyshev’s inequality that
Y(x+ h) —(x) — 9z + h) +(z) < z'/?,
and so (28.49)) holds with 1 replaced by 1. Moreover

Iz + h) — 9(x) =Y (t) — I(x)
log(x + h) /x tloth dt.

m(x+h)—7(z) =
Then substituting (28.49)) with 1 replaced by ¥ when
t>ax+272(logx)°G(x)"/?
gives (128.50) as required. O

Whilst it is speculated that results of the above kind persist for A
significantly smaller than %, or %, we can only establish that such results
hold for most, but not necessarily all, pairs  and h with h smaller.
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Theorem 28.9. There is a positive number ¢ such that if x > 2 and

h > 1, then
/0 (Wt ) — bl — h)dy

1 1
€ a1 o)+ antexp (- —BDT ) s

(cloglogz)s
Proof We will show that
| @y h) = o) - )y
©)2 1
< zh?(z'/5h=1)%/%(log )¢ + xh? exp ( - (loggc)sl) (28.54)
(c'loglog x)s
Then it follows that
[ @t = vt - 1)’y
ik
Z / u+h)f¢(u)fh)2du
k<31
< Z (2Y/Sh=1)2/5(log 2)°
k< 31(1’5;2

+ 2 hZex (— 7(logm)% )
2k P (cloglogz)3

which is acceptable, and we also have trivially
2/3

/Ox (¢(y +h)—(y) — h)Qdy < x2/3h2(logx)2.

Thus the theorem would follow from .

To prove we can suppose that h < x/4, since otherwise the
conclusion follows from Theorem 6.9. Suppose that h/2 < g < h. Then
the left hand side of is

/x_g (W(y+g+h) — by +g) — h)’dy

z

2_g

and on integrating over g we see that it is

h- h) — — B’ dydyg.
2 /h/z/z Yy +g+h)—vy+g) —h) dydg
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We have

(Wly +g+h) —ply+g) —h)*
< (Ply+g+h) —vly) —g—h)"+ (Vy +9) - ) —9)°.
Hence the left hand side of (28.54] m is

< h” /h wy+g) w(y)—g)zdydg-

On inverting the order of integration and making the substitution g = hu
we obtain

h- — 9)%dgd
//4/}1 V(y+9) —¥(y) — g) dgdy

2h/y 5
=h" // / (V(y + yu) — (y) — yu) ydudy
4 Jh

/(2y)

8h/x
< xh~ // /h (W +yu) — d(y) — yu)  dudy
4

8h/x
e / / <2x—y)(wo<y+yu>—z/m(y)—yufdydu
h/(2x)

where ¢y(v) = 9(v) unless v is a positive integer, in which case it is

U(v) — 5A().
By Theorem 12.5 and the discussion following that theorem we see
that when v > 2 we have

vf 1
Yo(v) =v— lim Z — —log2m — ~log(1l —v™?)
TLAOOIVISTW 2

and the series is boundedly convergent. We also have

L (Y 1 (14w -1 .
Slog (WYY T _ Mg (1o > T T .
2 og( 1 g2 2B\ T R rer 1) W

Hence the above is

8h/x 1 __1
Lr4+hPx 4+ h” / / (2 —y ZP tu dydu
h/(2x) /4 o
Therefore the left hand side of (28.54) is
2
Sh/:r 2x 1 p_1
Lz +ht / 2z —y Yy a+wr-1 dydu
h/(2x)
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and expanding the integrand and integrating by parts we obtain

(22)2H01 P2 (14 w)?r — 1) (1 + w)P2 — 1
x+hzz/’ (( ) ) (( ) )du.

(14 p1+P2)(2 4+ p1 + P2)p172

P11 P2 2z
We have p = 8+ iy with 0 < 8 < 1 and || > 1. Hence

1+u
‘(1+u)p_1 :/ v” " dv
1

) < min(u, [y|™h).

Then the inequality |2122] < |21]? + |22]? and the symmetry of p; and
p2 establishes that the above is

8h/w p2+28 mln( 2 |’71| 2)

LT+ - /
h Z h/(2e) 5 (14 |71 = 72])?

1
<Lz + mewl min(h2w72,'yf2) Z -
2 2 T+ )

du

By Theorem 10.13 the innermost sum is < log|vy;|. Thus the left hand

side of ([28.54)) is

Lzt wa(log |v]) min(h?2z =2, y~2).
p

The sum here is

26 1
< h?z Y (logx) Z 2 Z og |’Y|
|7|<w/h |7|>fr/h
By the symmetry of the zeros we can suppose that 5 > 1/2. The first
term here is

1

< h*(logx)N(1/2,2/h) + h*z~*(log ) //2 2% (2log z)N (6, z/h)do

=0 A(©)
< zh(log x)? +/ 201 (loga:) (h) do

where

Ay =450 (1/2 <0 < 5/6),
e+ -0 (5/6<6<1-4),
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and the second is
A > 2logt — 1
<z Z x +/ 2% (21og z)db / Ogig)dt
7 1/2 Iy ¢
B>1/2
ly|>z/h
& 2logt — 1
<a? N(1/2;t)0g73dt
z/h t

1 oo

2logt — 1

+ z(log z) / 2 [ N5 drdo
1/2 z/h t

1-6 (e}
<zh(logz)? + / g2+ / (log t)tM =3 dtde
3 #

2

By (28.31)) with n = 1/5 this is
1 [8 g6, 200 1=6 , .n (10
2 c
< zh*(log ) (h/; (7) d9+/2 (7h2+n> do

< zh*(log x)° ((f)g + (m}f)f +$h2(x;)§é +mh2(hin)5> '

If h < /6, then (28.54) is trivial. Thus we may suppose h > /6. Then

the above is
(log )3 )

< xh?(xz'/% /h)*/%(log )¢ + xh? exp ( - ;
(' loglogx)s

as required, and this completes the proof of the theorem.

28.5.1 Exercises

1. (a) Prove that if > 2 and

1/3
—5/6 (log ) <1
v P <(cloglogx)1/3 Sus

and x > 2, then

/ ;wo(y T yu) — oly) — yu)*dy
(log z)!/3 )

< 32 __ (ogz) ™
o exp( (c'loglog z)1/3
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(b) Assume the Riemann Hypothesis. Prove that if x > 2 and 0 <
u < 1, then

x 92 2

// (o (y + yu) — vo(y) — yu)*dy < 2*u <log u) :

x/4

2. (a) Prove that if the Riemann Hypothesis is true and 2 < h < z,
then

/Om(ﬁ(y +h) —9(y) — h)* < xh( 10g(2x/h))2.

(b) Prove that if p,, is the n-th prime in order of magnitude, then

Y (pas1 —pn) < zh7M(log)*.
pn<T
Pn+1—Pn>h

and

Z (pn+1 _pn)2 < x(logm)g.

pPn<T

3. Prove that for all large x the interval (z, x —Hv%“) contains a sum of
two primes. If the Riemann Hypothesis is true show that the interval
(2,2 + c(log x)?) contains a sum of two primes.

4. (a) Prove that there is a positive constant ¢ such that if ¢ > 1 and
x > 2, then

> sup [ih(y; x)| < (log ) (! 2q + &/ Mg 4 23470 4 ).

<
Xmod q ys®

(b) Prove that if (a,q) = 1, then

> (logp)e(ap/q) < (loga)*(wq~ /> +2™/® 4 2'/2¢"/2.

p<z

(c¢) Prove that if f(#) has the property that there is an « > 1 and
a > 0 such that whenever (a,q) =1 and |0 —a/q| < ¢~2 we have

[F(O)] < g + 2! 7",
then for any pair a,q we have

f(0) < x(q + x|0qg — al)~* + 2" (g + x|6q — a|)*
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(d) Prove that, if (¢,a) = 1, then

Z(logp)e(@p) < (logz)(xA™Y2 4 £T/8 4 21/2A1/2)

p<z

where A = ¢ + z|gf — a|]. Compare with Lemma ?? and with
Exercise 19.1.7.

5. Prove that there is a positive constant ¢ such that if @ > 1 and x > 2,
then

> Z sup v (5 X))

d<Q Xmod g y=
< (10g$)0($1/2Q2 + x?/llQlS/ll + $3/4Q6/5 + .’E)

Compare this with Theorem ?? and give an alternative proof of the
Bombieri-Vinogradov theorem, Theorem ?7.

28.6 Zeros near the 1-line

There are several ways in which one can obtain significantly smaller
bounds near the 1-line. One way in the special case of the zeta function
is to make use of the Korobov-Vinogradov-Richert bound Theorem [24.15
for ¢(s) near 1.

Theorem 28.10. Let

O(o,U) =1+ su o+ it) — — .
@U) =1+ s o +it) -

Then, for % <#<1
N(6,T) < 6(30 — 2,2T)3(log T)*®

Corollary 28.11. There is a positive constant ¢ such that if% <6<,

then

)3/2

N, T) < T~ (log T)*

Corollary[28.11]follows by combining the theorem with Theorem[24.15)

Proof By Theorem [24.18| we may certainly suppose that

3 1
S<o<1-
4=7 =" CllogT)?/3(loglog T)1/3

for some positive constant C. We then follow the proof of (28.30)), with
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X identically 1, as far as except that we instead move the path of
integration to the line Rew = a — 8 where a < 26 — 1, and we suppose
that s = p = B+ i is a zero of ( with 3 > 0 and |y| > (log T)?. Note
that then

la—Bl=B—a>0—-(20—-1)=1—-0>1/logT.

Thus we obtain

1+ > amn e =0(1/T)+

K<n<Z

1 e ,

pr / Cla+ iy + vy X) M (o + iy + )Y AT (o — B+ iv)dv
T J_—co

(2859

and we can observe that

1

Dla—pF+iv) < <1+|a—6+iv|

> e 1"l < (logT)e~ 1"l
At this stage the only constraints on K,Y,Z are C < K <T,Y > 1
and Z = Y (logT)?, and in addition we have Q@ = 1, H = C'T. Hence

1« Z a(n)n=Pe Y| 4
K<n<Z

(log T)?
(10gT)®(a,2T)Y°‘_9/( . |M (a0 + iy 4 iv)|e Pl dv.
—(log T

Let N\l ={Z277:0<j < (log(Z/K))/log2}. Then

Z a(n)yn=Pe Y| < Z Z a(n)x(n)n=re /Y

K<n<Z NeN |N'<n<N

where N’ = max(N/2, K). Hence

1« Z Z a(n)n=Pe Y| 4
Ned |[N'<n<N
(log T)?
(10gT)®(a,2T)Y°‘_9/ |M (o + iy + iv)|e”"ldv.  (28.56) [E:Ubound
—(log T')?

LEMMAS 28.12] AND R28.13] SHOULD GO IN CHAPTER 22.
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Lemma 28.12. Suppose that € = (&1,...,&n) and ¢ (1 < 1 < R),

(r € N) are complex numbers and ¢, = (¢r1,...,drn). Suppose further
that b, >0 (1 <n < N) and b, > 0 (n > N). Let (§,¢,) denote the
mner product

N —
Z gnd)rn M
n=1

Then

R V2 n R 1/2
DolEo)l< | Do I&let (ZZ meqncbm) :
r=1 1<n<N g=17r=1|n=1

Proof Choose 0, so that e (€, ¢,) = |(€, ¢,.)|. Then the sum in ques-
tion is

N R
Do &b 02y g,
n=1 r=1

Hence, by the Cauchy-Schwarz inequality, it is

oy 1/2

R
o
> b

r=1

N 1/2 e}
< (z |gn|2b;1> S0,
n=1 n=1

We square out the expression on the right to obtain

2

0o R R R 00
Z bn Z ewram = Z Z ei(er_(%) Z bn¢qn$rn
n=1 r=1 qg=1r=1 n=1
and the lemma follows. O

Lemma 28.13. Let
D(s;u,v) = Z e(n)n=*

u<n<v

where the c¢(n) are complex numbers, and let s, (r = 1,..., R) denote
a set of compler numbers s, = o, + it, with the property that 0 <
v<o, <1, |t| <T and |ty — t,| > 1 when ¢ # r. Suppose also that
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N/2<N' <N<T? andi§a<1. Then

R
S ID (s, N/, N)| <

N7((RN)'? + RO(o; 2T)'/2N*/2) | > Je(n))?

Proof To establish the lemma we note that
N
D(s;N',N) = N=?D(it; N',N) + / ou " tD(it; N', u)du

/

and so when 0 < ¢ > 1 we have

N
D(s; N, N) < N~¥|D(it; N', N)| —|—N*"*1/ \D(it; N', u)|du.

’

Therefore

R
> ID(ss N, N)| <
r=1

R

N R
N*”Z|D(itr,N’,N)|+N””1/N/ > ID(ite; N',u)|du.  (28.57)
r=1 r=1

We now apply the previous lemma with &, = c¢(n), b, = eV, ¢, =
n*r. Then for N’ < u < N we have

R
> ID(ity; N u)| <
r=1

00
E efn/Nnitqfitr

For brevity, put ¢ = ¢, — t;,. Then the sum over n here is

R R 1/2
> Je(m)Pen™N (ZZ ) . (28.58) [E:2Dbound |

N’<n<N

1 24100
C(w+it)NYT'(w)dw

270 Joioo

We now move the line to the path Rew = «. In doing so we pick up a
residue

N'7#D(1 — it) < Ne™ I

at w=1-—1it.
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On the a-line we write
n 1
wHit—1 wHit—1

C(w+it) = C(w+it) —

For the third term here we move the path to Rew = f% picking up the
residue

! <1
it —1

at 0 and the bound
0o N71/2ef\v| N71/2

< dv <
14 v+t 14t

— 00

from the —% -line.
We also have, by Corollary 1.17,

Cla+iv+it) — L2+ v+t

a+iw+it—1
Thus

/v|>(1ogT)2

Since |¢t| < T we have
/v|<(log T)?

Putting these estimates together we find that

Cla+iv+it) —

1
- = N9 iv)|d
oz—l—z'v—l—it—l‘ IDa+v)ldv

<<NO‘/ (2 + v+ t))e ldv <« NoT1,
|v]>(log )2

1

) oo
Clativtit) a+iw+it—1

‘ N« + w)|dv

< O(a, 2T)N®.

Ze_n/Nnitq_itT < ("‘)(O[,2T)Na 4 Ne—\tq—tr\.

n=1
Hence, by (28.58)),

R 1/2

S OID(its N uw) < | D Je(n)PeN x

r=1 N'<n<N

1/2
R R
RN + R*©(a, 2T)N® + 3 > Ne~ltar|

g=1r=1

r#q
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Inserting this in (28.57)) establishes the lemma. O

Let R be a maximal subset of the zeros p = 5+ iy of {(s) with 8 > 0,
(logT)? < |y] < T and the 7 spaced at least 1 apart, and let R = card ..
Then

N(,T) < (logT)®+ (logT)R

and, by (28.56)),

R« Z Z Z a(n)n=re ™Y

NeN peER |N'<n<N

(log T)?
+ (logT)Q(a72T)Y°‘_9/ eI | M(a + iy + iv)|dv.
_(IOgT)2 peR

By Lemma [28.13| with v = 6 and the s, the elements of K, the first sum
over R is bounded by
1/2

N7’((RN)'/? 4+ RO(a,2T)"/2N/?) e N [N d(n)?
N’'<n<N

< (log N)3/2R1/2N1_0€_N/(2Y)+
(log N)3/2RO(q, 2T) /2N 2% ~0 =N/ (2Y)

and summing this over N € Al gives the bound

1+a

< (log T)32RY2Y1=% 4 (1og T)*/? RO(c, 2T) /2 K =

provided that 1+ « < 26.
The second sum over R above is

D M (a+ iy +iv)| <
PER

D DI DRI

0<j< 1{?)%;2( PER |K2-1-1<k<K2-J

By Lemma [28.13| with v = « and the s, = o + iIm p where p € R, this
is

< (logT)R'?K'~ + (log T)RO(a; 2T) /2 K (1=)/2,
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Hence

lta _g

R < (log T)*2R'?Y'% + (log T)**RO(a, 2T) /2 K ~=°
+ (log T)?R'?Y >0 (a; 2T)K '~
+ (log T)?RY Y0 (oy; QT)3/2K1_T“_
Let
a=0-X\1-96)

where A > 1 is a parameter at our disposal. Then (1 + «a)/2 — 0 =
—A=-1D1-0)/2,a—0=-X1—-0)and 1 —a=(1+X)(1—0). Let ¢
be a sufficiently small constant and choose

K = (67 (log T)%/?0 (@, 2T)1/?) 5071 (28.59)
Then the second term above is < JR. Likewise if we choose

Y = (67 (log T)20(a, 213/ 2K 5% ) X0 (28.60)
then the fourth term above is

< JR.
Hence
R < (logT)*?R2Y1=0 4 (1og T)?RY?Y =90 (a; 2T) K~
and so
R < (logT)*Y?7 2% 4+ (log T)*Y 22209 (o; 27)2 K272,
To tidy things up, by the choices and
V2720 < (log T)%@(a; 2T)%

and

Y22 K22« (log T) 1 O(a; 27) o
Hence

R < (log T)** 61 0(a; 2T)

The optimal choice of A depends on whatever bound for ©(«;2T) that
we may insert. If  is restricted to being close to 1, then large values of
A are possible and exponents above would be small, but in the current
state of knowledge we have no better bound for © than

O(a; 2T) = O(0 — A(1 — 0)) < (log T)¢ TeA+D*?(1=0)°"*
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Thus for simplicity we suppose that A = 2. Note that then the require-
ment i <a=0-X1-0)=30—2 does permit % < 0 as required.
Thus

R < (logT)*30(30 — 2,2T)3 + (log T)**O(36 — 2; 2T)>.

28.6.1 Exercises
1 Assume the Lindelof Hypothesis in the form
O(;T) <. T*
uniformly for o > % Prove that whenever 6 > %

N(0,T) <. T°.

28.7 A logarithm free bound and the
Deuring-Heibronn phenomenon

Another way in which significant improvements can be made is to use
Turan’s power sum method to remove the logarithmic power. This also
comes into play if there were to be an “exceptional zero” of some L
-function close to 1, as it can be used to show that the non-exceptional
zeros are repelled to the left.

We need to remind ourselves of some basic results concerning the
concept of an “exceptional” zero.

Exceptional Zero Statement. By Corollary 11.10 of Volume 1
there is a positive constant ci such that

F(s,T) =] ] Z(s:x) (28.61)
q<T Xmod q
has at most one zero s with Res > 1 — m, of necessity real and if
this “exceptional zero” (1 exists, then the corresponding character x1 is
quadratic and, by Corollary 11.12, there is a positive constant co such
that 61 = 1 — 1 satisfies
1

—— <5 <
c2q1"* (log q1)? c1logT

(28.62)

where q1 is the conductor of x1.
It is convenient to write F; = 0 if there is no exceptional zero and
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E; =1 if there is an exceptional zero and to reserve x1, 81, ¢1 to denote
the corresponding exceptional character, zero and conductor.
Let

N*(0,T)

denote the number of zeros p = S+~ of , with § > 0 and |y| < T,
other than any exceptional zero.

One can observe that if as T varies there are only a finite number
of exceptional moduli, then in principle one could simply adjust the
constant ¢; and eliminate the concept of “exceptional”. On the other
hand if the exceptional moduli form an infinite sequence {¢;} and {3;}
are the corresponding exceptional zeros, then by the same token one
would have to have

limsup(1 — 3;)loggq; = 0.
]*}OO
Thus in principle one could take ¢; to be as small as one pleases. How-
ever, this leads inexorably to the non-computability of ¢;, which here we
would prefer to avoid, especially in connection with bounding the least
prime in an arithmetic progression.
With this in the background we can establish

Theorem 28.14. There are positive constants ¢ and cg such that when
%gegl and T > 2 we have

N*(0,T) < cqT=9, (28.63)

and if there is an exceptional real zero 51 associated with some excep-
tional primitive character x1 with conductor ¢ < T, then

N*(0,T) < coby (log T)T=9), (28.64)

We can immediately conclude from this an effective version of the
Deuring-Heilbronn phenomenon, which essentially says that if there is
an exceptional zero, then the other zeros are repelled away from 1-line.

Corollary 28.15. There are positive constants cy,c such that if 51 is
an exceptional zero as defined above, then any other zero p = [ + iy
with |y| < T of an L-function formed from a primitive character modulo
q < T satisfies

1
log S TeeT

<1-
= clogT

E:logfreel

E:logfree2
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We begin by eliminating some ranges for . By Corollary [28.7 there is
a positive constant ¢, such that

N*(0,T) < T3~ (1og T)®2.

Suppose that C' > 8 and § < 1 — ﬁ. If 5, exists, then, by (28.62)), the
above is

< T Y2 (log T) 1719 <« 6, (log T) T,
and when 31 does not exist it is
< Tc(l—@).

Also, from the definition above we have

N*(6,T)=0

when 6 > 1 — ﬁ. Hence we may assume that
17(:—8 S(gglicllogT'

Let

r=c3(1—6) (28.65)
where

cs = max(cq, 2).

Then

<r

1 1
o <TS 1 (2560

provided we take
¢ > (8 +10°) max(cy, 2).

Suppose N*(6,T) > 0 and let pg = Sy + iyo be a non-exceptional zero
counted by N*(,T) so that

1
1-By<1-60=—<=.
C3 2

Then consider v satisfying
70 —v| < g (28.67)
so that |v| < T+ 1 and

lpo —w| <1 =5+ |y —v| <r, where w =1+ iv. (28.68)



28.7 A logarithm free bound and the Deuring-Heibronn phenomen@i9

In particular, when y is principal we have |v| > 2.
The core of the proof is a lower bound for expressions of the kind
2

Y pryo+s 1 +E1p_61X1(p dy
I(X,Y, 7,70, X) :/ / Z T)X(p) dv—.
X Jv-% | x<p<y p Y

(28.69)
Suppose that s = o + it satisfies
3 5
— < - - <oc<2 28.
s—wl< 7, g=So< (28.70)
Then, by Lemma 11.1
L/( ) > L OogT) (28.71)
(s v) = . .
75X : s—p 2
lp—3—it|<3

Note that if x is principal, since then |v| > 2, we have |s — 1] = |s —w +
wl >l -§>1

It is useful to restate here an immediate consequence of Theorem 11.5
and Corollary 14.7 of Volume 1.

Lemma 28.16. Suppose that A, ¢ and t satisfy ¢ < T, |t| < T and
(logT)~' < X\ < 2. Then for, each character x modulo q, L(s,x) has
< AogT zeros p with |p— 1 —it] < .

If |p— 2 —it| <5/6 and |p—w| > 1, then [p—s| = [p—w+w —s| >
1— % = i. Thus the contribution to the sum in from such zeros
is < logT. Moreover, if |p— % —it| >
o=l = lp-3—it+3—o > 53~
from such zeros is < logT'. Therefore

r 1
f(s,x): Z 5_p+0(10gT).

P
lp—w|<1

andSaSQwehave

[N [e}]

and again the contribution

Suppose that
5 5 15
_ < Z —<og< = 28.72
s—wlsg, gso<4, (28.72)

If |p—w| > 3, then [s— p| = |p—w —s+w| > §. Hence the contribution
from such zeros to the above sum is < log T, and we have

r 1
TEXN= 3 s, +00ogT).

’ 3
|P—w|§z

E:doubleint

E:esssigma

E:L’Lapprox

E:newess
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Now suppose that there is an exceptional zero, and the associated char-
acter is x1. Then (28.71]) with (28.70) holds with s replaced by s + &1
and w replaced by w+ d;. Hence a parallel argument to the above shows
that
L 1
f(3+51,XX1)= > P —

/ 3
‘P —51—w‘Sz

+ O(log T).

where now the sum is over zeros p’ of L(s;xx1)-
Let

/ /

g(z,x) = f(z,x) +E1f(3+51aXX1)

1 1
- - E S
D D S
P 3 p
‘P*w|§1 |Pl—51—w\S%

Suppose that [s — w| < . The function g(z,x) has only removable

singularities when |z — w| < 2 and by Cauchy’s integral formula

(h)
g (s, x) 1 / dz h
— 4" logT
h! 2mi Cg(z,x) (z —s)htt «<he
where (C is the circle, centre w, of radius %. Let
/ !
F(zx) = 7 (2:X) + Bvf (2 + 01, x1)- (28.73)
Then
FM (s, %) 1
_pHhl_>A -
()" Z T
lp—w|<%
h
- E Z (51 01— )it < 4" logT.

Now suppose

so=w+r (28.74)

and let

A = 200 (28.75)
Then, by (28.66),
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and so by Lemma |28.16| we have

F™ (s0,%) 1
(=" h!o - Z (so — p)h+1

[p—w|<A

1
—F
' Z (so+ 01— p/) !

P
|p' =81 —w[<A
< (AogT)N™ "1 = X\"Plog T.

Also, if N is the total number of terms in the above sums, then

N < MogT < logT. (28.76)

Suppose that

L>N. (28.77)

Then, by Turdn’s Second Main Theorem, in the form of Corollary
there is a k with L +1 < k < 2L such that

1 1
_— E -
zp: (so—pF " Z (so + 01— p)*

p
[p—w|<A [p =81 —w|<A

> 2(16¢) " ma fso - pl=F > (50)"F[s0 — pol "

By (28.68) we have |sg — po| < |so — w| + |po — w| < 2r. Thus on taking
h=k—1wehave L <h<2L—1 and

(h)
‘f (h'S'OaX)‘ > (50)7h71|50 _ po‘fhfl _ 04/\7}1 10gT

> (100r) "1 — ¢4(200r) " log T

for some positive absolute constant cy.
We choose ¢5 > 1 so that when

L >csrlogT (28.78)

we have
100cyrlog T
2h

by (28.76)) we have (28.77)), and at several points below, including (28.82)

1
<7a
-2
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and (28.83)), we suppose that it is a sufficiently large absolute constant.
Then

v

FM (50, x) —h-1 100¢yrlog T
)h! (100r) 1-— —

1
> 5(100@*’1*1

We now return to the definition of f, (28.73)). Thus, by (28.74)),

(h) h
n " (50 _ h+1 (rlogn)"A(n)x(n) —51
r A Z hinso (14 Evxi(n)n™°)

i Z @n(rlogn)(1+ Erxi(nyn™)

where, for y > 0,

h
Y
wn(y) = hley

We have

" u)

logh! = hlogh — / =—=du > hlogh — h.
1 u
Hence
@n(y) < (ey/h)"e™

Thus

@n(y) < (300)~" (> 900y).
The function of y, hlog(ey/h) — y/2 is decreasing for y > 2h. Hence
hlog(ey/h) —y/2 < h(1 +1og20 — 10) (y > 20h)

and so

wn(y) <3007 e~v/2  (y > 20h). (28.79)
We now consider any x with
x> T (28.80)

where c5 is as in (28.78)). Then (28.75)), (28.76) and the choice L =
[rlogx] ensures that (28.78)), and so (28.77) holds, and that h satisfies

rlogz < h <2rlogzx. (28.81)
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1/900

Thus, when n < z we have rlogn < h/900 and when n > 240 we

have rlogn > 20h. Hence the contribution from these n to

Z %wh (rlogn)(1+ Eyx1(n)n~)

is

5(300) —h

< Z 300 +Z

n<m1/900 ’I’7,>I40
< (logx +1/r)(300)~"
< 10071378 % (rlog 2 + 1).

We also require of ¢5; that when y > ¢5 we have

By < oo (0> ) (28.82)
Thus the total contribution is
1
< 1r100m+L

It follows that

An)x(n
Z %wh(r logn)(1 + E1x1(n)n~°")
217900 < < 740
> _ 1
= 47100 +1°

We also have wy,(y) < 1. Hence, by Chebyshev’s inequalities and (28.80)),
the contribution from the n = p* with k& > 2 to this sum is

2(log p) _ .
< Y < 1/20000 (3 > %5, (28.83)

21/900 £ pym < 40
m>2

whereas, by (28.66)),

4r100P+! < 800710027 087 < 42rlog100  ,2(log 100)/10° _ ,.1/2000_

Hence

> UBPIE) -, (r10g )1+ B (p)p~™)

w
£1/900 £ p< 340 p

1

> 28.84) |E:B 1b
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For convenience write

X =29 v =%, (28.85)
Then
log p)x(p _
) ww’z(ﬂogp)(l + Eixa(p)p~™)
21/900 < p< 40 p
Y / Tdy
= F(Y,v)wp(rlogY) — F(y, U)wh(T log 9)7
X
where
lo _
Py = 3 LB (1 ). (28.36)

w
X<p<y p

We have, by (28.81)), rlog Y = 40r logx > 20h and by Mertens theorem,
Theorem 2.7 (b),

F(Y,v) < log .

Hence, by (28.79),
|F(Y,v)wh(rlogY)| < (logx)300_he_log2-y

and since c5 is assumed sufficiently large we have

1

| ( ’U) n(rlog )| < 16007100"
We also have

|k (w)| = [@wh-1(u) — wa(u)| < 1.
Hence
Y
d
/ |F(y,v)|—y > 10072
X Yy

and so by Schwarz’ inequality

Y
d
/ |F(y,v)|2;y > (log ) 1100724 (28.87)

X

To summarise what we have established so far. We are given T' > 2 and

r and 6 satisfying and (28.66). Then for each non-exceptional
zero po = Bo + ivo with By > 0 and |yo| < T, and for each v satisfying
([28.67)), namely |yo — v| < r/2, we have (28.87) with (28.86]) and
for any x satisfying and some h for which holds.
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By (28.81))

(log 2)~110072"=% > (log #)®100~ 4" 18 % (r log ) ~*

By (28.80) and (28.66) and that fact that cs is sufficiently large, the
above is

> (log z)3z~¢"

for some positive constant cg. Integrating over the v satisfying ([28.67)

we obtain

Y Yo+1/2 dy

/ / |F(y,v)|*dv—= "> r(log z)3x "
X Jyo—r/2 Y

For concision we now drop the suffix 0 and sum over the non-exceptional
zeros p of L(s;x) with 8> 6 and |y| <T. Thus

r(log w) TN (0;x, T
2

/ / e (ogpx(p)y | g, %

w
X<p<y p Y
lp—v|<r

where N*(0; x,T) is the number of such zeros and

b(p) = 1+ Erxa(p)p™*

. By (28.65]), for a each p in the sum we we have |[p—1—iv|= | -1+
i(y —v)] £1—0+r < r. Hence, by Lemma [28.16| the number of p in
the sum is < rlogT. Thus

(log )%~ N*(6; x, T) <
2

1ogT/ /TJFT (og p)x ()b(p) dvd—y.

w
Xp< < Y D Y
Therefore, summing over all primitive characters modulo ¢ < T" we have

(log )z~ " N*(0;T) <
2

T (log p)x(p) dy
loT/ / LOBPIXWD) N av® . (28.88) [E:w
oy e e

q<T Xmod q X<p<y

We now require a lemma arising from the large sieve.
THIS SHOULD GO IN CHAPTER 18.
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Lemma 28.17. Suppose Q@ > 1, N > 1 and T > 2 and that a, (1 <
n < N) are complex numbers with the property that a,, = 0 when n has
a prime factor p < Q. Let

N
S0 = 3 anx(nn.

n=1

Then

> (5) X

q<Q Xmod ¢

T N
/ 15t 01 < 3 Jan 20+ Q°T)
0 n=1

where the sum over x is over primitive characters modulo q.

To prove the lemma, we start from the observation that, by (9.6),
when (n,q) = 1 and x is an arbitrary character modulo ¢ we have

X()7(X) = Y _ X(a)e(an/q)

and so
1 B q
@ Y @S = > |T(a/g))?
q Xmod ¢ a=1
(a,q)=1
where

N
T(a) = Z ane(an).

By Theorem 9.10, when y is induced by the primitive character x* with
conductor d|q we have

T(X) = wla/d)x"(q/d)T(X")
and by Theorem 9.7
()| = d/2.
Moreover, since a, = 0 when n has a prime factor p < @), we have
1 _ d * *
) Z IT(X)S(0, x)|* = Z 20 Z 1S(0,x*)[%.
q Xmod ¢q d|q q X* mod d
(d,q/d)=1

We sum over ¢ < @ and replace ¢ by dm. Thus, by Corollary 7?7, the
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above is
,u N
IE IO ) C SISO € (V4@ Y el
d<Q m<Q/d X*mod d n=1

(m,d)=1

By Exercise 3.2.1.9 and (3.18)

Therefore

N
) (logfj) SISO < (N + Q)Y Janl

d<Q X*mod d n=1

Now following the proof of (26.22)) gives the lemma.
We now return to (28.88]). The right hand side is

<</Z

q<T?

2

(log) > / |y ey gl

X<p<v y

Applying the lemma gives the bound

zeer logp BN
T) E +7T
N, logfﬁ / o | v ) Y

X<p<ly
el (logp)2
< llog)? > T\b(p)|2(p+T5)-

X<p<lY

We now have to deal with the sum over p. If E; = 0, then by Mertens,
Theorem 2.7 (b), the sum over p is

< (log X)*(1+T°/X)
and we are done. Thus we can henceforward suppose that E; = 1.

Lemma 28.18. Let

=3 xm)

m|n

where x1(n) is an exceptional character with conductor qi. Suppose fur-
ther that U/logU > q1. Then

Z @ = (logU +7)L(1,x1) + L' (1, x1) + O(q}/Q(log U)Y2u-12).
n<U
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The proof of the lemma is a routine application of Dirichlet’s method
of the hyperbola. Thus, with V = qi/2U1/2(log U)l/2 we have

c(n 1(m 1 1 1(m
DECED LD WETID NP Dt

n<U m<V I<U/m IKU/V  V<m<U/l

Then applying Euler’s estimate to the first sum over [ and then partial
summation to both sums over m we obtain the desired conclusion.
By the lemma, when X > ¢? we have

c(n L 3 LD
3 % = L(1,x1) <logX+’Y+L(17X1)> +0(qf (log X)2 X7 2).
n<X

By (11.8) of Theorem 11.4 of volume 1 we have

L 1
f(LXl) = 1_761 + O(log q1).

We recall that, by (28.85), X = /900 and, by (28.80), z > T > ¢{°.
Also, by (11.10) of volume 1, L(1, x1) > 1—/;. Hence, as ¢5 is sufficiently
large, it follows that

e(n) _ Ll )
2 T Zaiogy

n<X

On the other hand, also by the lemma, and Theorem 11.11 of volume 1,

we have
c(n) —-1/3
> == =(logY)L(1,x1) + O(X /%) < (log V) L(1, x1)
X<n<XY n

Since ¢(n) is multiplicative and non-negative we have

Z c(n) Z c(p) < Z C(n)'
n D n

n<X X<p<Y X<n<XY

Combining this with the above inequalities shows that

1 c

Z - < Z “p) < (1—p1)logY.

X<p<lY p X<p<Y p

x1(p)#—1

We have

b(n)> =1+2p % x1(n) +p 2 x1(p)? < 2(1 +p "' x1(n))
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Hence

b 2
Z () < (1= p1)logY.
X<p<Y p
x1(p)#-1

We also have
1-p < (1 —p1)logp.

Hence, by Mertens once more,

b 2
Z () < (1—p1)logY.
X<p<lY p
x1(p)=-1

The theorem now follows.

28.8 Linnik’s Theorem on Primes in A.P.

An important application of the previous section is to the distribution
of prime numbers in arithmetic progressions with relatively large com-
mon difference, and in particular to the least prime in an arithmetic
progression.

Theorem 28.19 (Gallagher). There are constants ¢ > 1 and ko > 3
such that if k is a constant with k > kg and q and x are such that
1 < Q% < x, then we have

Yo D> @ix) — Eo(x)a]
¢<Q Xmod q
P log x n log x Qmel
P klog @ log Q

Fis,o)= [ [T Zts:x) (28.89)

g<Q Xmod g

unless

has an exceptional real zero By with
1
klog @

in which case the general term on the left is to be replaced by

1-p61 <

P

A

‘19(95;;(1) +
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when x = x1 s the exceptional character and the right hand side s
replaced by

e e (122 2z

Proof By Theorem 12.12 and Corollary 14.7, when 2 > 2 and T' < z!/2
we have

P
I(xix) = Eolx)e — Y % +0 (% (0g2)?) (28.90)
PER(X)

where R (x) is the set of zeros p = 8+ iy of L(s,x) with 8 > 1 and
V| <T.
Let the constants ¢, ¢y, ¢1, co be as in the Exceptional Zero Statement,

Theorem [28:14] and Corollary 2815 and let

ko = 3max(c, c1, coe, 1, coe®€). (28.91) |E:kappalin

On hypothesis, k£ > kg and it is convenient to write
K = r/3.
Let
T = Q> (28.92) [E:Tandx

The proof divides into two cases. First we suppose that F, given by
(28.89), has no zeros p = 8 + iy with |y| < T and

>1— —,
P ko log T

that is, either there are no exceptional zeros, or the exceptional zero
exists but satisfies 1 — 37 > ﬁ. By [28.90] our sum is

< QrT ' (logz)? + Z Z* Z P,
4<Q Xmod q pER(X)

We have
B
P = 21/? +/ x*(log z)du
1/2

and so the multiple sum above is

1-1/(x"logT)
< z'2N*(1/2,T) +/ 2*N*(u, T)(log x)du.
1/2
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By Theorem this is

1-1/(x"logT)
< z/?7e? 4 / 2T~ (log ) du.
1/2

By (28.92)) and the hypothesis on .
2T—¢ = l,Qf?:c > x1/2 and z1/2Q5/2 < I3/4.
Hence the sum of interest is

< $Q72(10g$)2 _|_1:171/(n' logT)Tc/(ka' log T')
=2Q *(logz)® + zexp (— (logz)/(x'log Q) + ¢/K’)
< 2Q *(logz)® + zexp (— (logz)/(rklog Q) + ¢/K').

The remaining case is that in which there is an exceptional zero satisfying

1

1——.
> Kk'logT

Now we have

2
Y x) + B 5

< 2T (logz)? + Z z?
PER*(X)
where R *(x) denotes the set of zeros p = 8 + iy of L(s;x), other than
B1, with |y] < T and 8 > %
We can proceed as above, but now the multiple sum is

1-0

< (1 — /61)(10gT)x1/2TC/2 +/ (1 _ lgl)(logT)quc(lfu)du
1/2
< (1= B1)(ogT)z' =0T
where
1 1

0= 1 .
clogT ® co(1— p1)logT

Hence, by (28.62f), the sum in question is
< (1= 61)QzT(logx)? + (1 — B1)(log x)z! ~9T

1
< (1= B1)(log ) 525

where the implicit constant is absolute.

+ (1 - 51)(log :v)arzlf‘STC‘S
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We have
log
1—8rcs
0T = ( clogT log (co(1 = B1)log T))
loga — 3clog @ Q ,
<z 1
< wexp (25D by )
R _
< zexp logz — 3clog @ 3clog @
log Q
L zrex log z
P 1og Q
and that completes the proof. O

The following two theorems are almost immediate
Theorem 28.20 (Gallagher). Suppose that 1 < ¢° < z, (a,q) =1,
is as in Theorem and that there is no exceptional zero By with

1
klogq’

T log x log”
19 . = — 1 - ’
('rv(La) (b(q) ( -|-O(exp( Hlogq> +q10g2q>>

Given ¢ € N and a € Z with (¢,a) = 1 we define p(g, a) to be the least
prime number p such that p = a (mod q).

Theorem 28.21 (Linnik). There is a positive constant A such that whenever

q€N, a€Z and (q,a) = 1 we have p(q,a) < ¢*.

1-p61 <

Then

Proof We have
1

Awig,0) = ¢<>

> Xl(@)d(z,x)

Xmod q

Z 3 x(@)d(z,x) + O((logq)/élq))  (28.93)

m\q Xmod g

and Theorem [28.20] follows immediately from Theorem [28.19
The proof of Theorem [28.21]| divides into two cases. First, when there
is no exceptional zero $; with

1

1_181< )
klogq
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by Theorem [28.19| we have, for some constant ¢/

T T log x log? z
Iz;q,a) — —— <c’(eX (— )—1—
(wig.a) ¢(Q)‘ 6@ \"P\ " kloga) " qlog?q

and so on taking

z=q"
with
A = klog(4c’)
and ¢ > go(A) we have
x
Hzx;q,a) > —— >0
(509> 550

and this gives Theorem in this case.
Alternatively, suppose that 1 exists. Then, by (28.93)) and Theorem

28.19,

s
#(q)¥(x;q,a) — x4 x1(a) 5
< (1- f)(logz) <:cexp (logx) N xlogm)
logg qloggq
Since
1 1
1_ -
fr < klog q < 4

and x is large we have

o /1u10gx1 u
x — = ——a"du.
A u?

1
Therefore
o

1

T —

> (1= B1)(log @)z exp(—(1 — B1) log )

> (1 —p1)(logx)zexp ( — (logx)/(filogq))

where the implicit constant is absolute. Thus for positive absolute con-
stants ¢’ and ¢”” we have

$(@)d(z;q,a)a™! >

¢(1— B1)(log z) exp (-’:) —c"(1-B1)(log z) (exp (—A) 4 082 ) .

qlogq
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Thus if we choose

K 2c"

A= TTqles

then the above is
/

> (1 —Bﬂ(logm)%(l — B1)(logz)exp (— A/k) — " (1 - B1)(log x) log z

qlogq
. Then for ¢ > %,C”eA/'“ we have 9(x;¢q,a) > 0 and that completes the
proof of Theorem O

28.8.1 Exercises

HT74
1 (Iwaniec fwaniec| (1974)) Suppose that there is a non-negative function
f(g) such that lim,_,~ f(g) = oo and

Fs,o) =[] T Ls:0)
m|q Xmod m

contains no zero in the region

B f(a)
log (q(2 +t))’

then the least prime p with p = a (mod g¢) satisfies

o>1

p<eqite

2 Show that if x is a non-principal character modulo ¢, then there is a
constant ¢ such that if x > ¢, then

Y xv)| < @

p<z

HM71

VE49 HS49

3 (Fridlander [Fridlander]| (1949), Salié Salié| (1949)), Montgomer [Monbtgomery
(1971)) Theorem 13.5.) Suppose that p is an odd prime and let ns(p)
denote the least quadratic non-residue modulo p. Show that

na(p) = Q(logp).

Assuming the generalized Riemann Hypothesis show that

na(p) = 2((log p) loglog p).

EP49
4 (Erdds [Erdds| (1949)
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(a) Let ¢ =[],<, p- Show that for any C' > 0 and any y > yo(c) there
is an m such that (m,q) — 1 but (m +n,q) > 1 for 1 < |n| < cy.
(Hint: Use the method employed in proving Lemma 7.13)

(b) Let dy, = pn+1 — pn where p,, denotes the n-th prime. Show that

in(dy,, dy
Jim sup T (dnsdnit)
n—oo log p,

28.9 Maier’s theorem on irregularity of primes in
short intervals

The theorems we have established on the distribution of primes in short
intervals can be used to show that the distribution of primes in very
short intervals is more irregular than is predicted by the simple, classical,
probabilistic model of the primes proposed by Cramér. This states that
when n > 2 the probability that n is prime is taken to be

1
logn’

Thus the expected number of primes not exceeding = would be

1
— =li(x) + O(1).
gnjgmlogn () +0(1)
which fits well with what we know of the prime number theorem. It
does so also with the theorems on primes in short intervals contained in
section [28.5| However this model would also predict that when A > 1
the expected number of primes p with

< p<a+(logx)
is

1
S L fogap
z<n<z+(logz)* ogn

The theorem below contradicts this prediction. In retrospect this is per-
haps not so surprising since probability models have some difficulty
distinguishing between reduced residue classes and non-reduced residue
classes.

In addition to Theorem 2820} crucial rdles are played in the proof by
Buchstab’s Theorem 7.11 and the Maier matrix method. For use in the
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proof we remind ourselves of the properties of the Buchstab function
w(u) defined in section 7.2, (7.37) and (7.38) by the equations

wu)=—- (1<u<2),
(ww(u)) =wu—1) (u>2)
and continuity at u = 2. Thus

w(u) = 1+ log(u—1)

U
Also, when 2 < u < 3 we have

, 1—(u—1)log(u—1
R

(2 <u<3).

so that w'(2) = % and w'(3) = %g’ﬁ < 0. Thus for some u € (2,3),

w'(u) = 0 and w(u) has a local minimum. We also have for u > 2
uww' (1) = wlu —1) —w(u) = —/ W' (v)dv
u—1

so w'(u) changes sign in every interval of length 1.
By considering the behaviour of the Laplace transform in Theorem
7.12 as s — 0+ it follows that

lim w(u) = e~
U— 00

where Cy is Euler’s constant.
The following lemma is particularly useful in the proof of Maier’s
theorem.

Lemma 28.22. The function w(u)—e~%° changes sign in every interval

[t — 1,t] with t > 2.

Proof We define the auxiliary function £(u) for u > —1 by

&(u) = /0 exp (—u:ﬁ —x —|—/0 e*yy, 1dy) dx.

The function is differentiable for u > —1 and by integration by parts we
have

u' (u—1) 4+ &(u) = 0. (28.94)

We also have
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For t > 2, let
t
n(t) = / w(w)é(u)du + tw(t)E(t — 1).
t—1

Then

n'(t)=0 (t>2)
and

tli}m n(t) = e~ 0.
Hence

/H w(u)E(u)du + t(BE(E —1) = e=C0 (> 2),
Let
u(t) = /t_1 € (u)du + t€(t — 1).

Then, by (28.94), v/(t) = 0 (t > 0). We also have v(t) — 1 as t — 0.
Therefore

/t E(u)du+tE(t—1) =1(t > 0)

and so

/t (w(u) — efco)n(u)du + t(w(t) — efco)n(t —-1)=0.

-1

Since n(t) > 0 and w(u) is not a constant when 2 < u < 3, then the
lemma follows. O

Theorem 28.23 (Maier). Let A > 1,
Q™ () =inf{w(r) : 7 > A}, QT (\) = sup{w(7) : 7 > A}

Then

. m(z + (logz)*) — () Co

AT
and

o 77(:U+(1ogx A)—w(x) Co

<e’? .

h;r_l}l;gf (log x)*1 s ety

Moreover Q= (\) < e=% < QF()\) and
1
Qt(\) = 3 (1<A<2).
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Let

P(z) = Hp.

p<z

Lemma 28.24. Suppose ¢ and kg are as in Theorem [28.2(] and that

A > max(2,6¢). Then there are k € [Ko,2K0] and arbitrarily large z >
20(A, k) such that whenever (a, P(z)) = 1 we have

P()"
¢(P(z))(Alog P(z))
P(2)" exp(—A/r)
¢(P(2)) (Alog P(2))
Proof Let p,, denote the n-th prime in order of magnitude and suppose

that n is large. Then consider Theorem [28.20| with ¢ = P(p,,). If there
is no exceptional zero (31 of

Fus)= [ 1T Zts.x)

m|P(py) Xmod m

ﬂ'(ZP(z)A,P(z),a)) - W(P(Z)A,P(Z),a)) -

<

with
1
1-— 28. E:
Bt (2599
then we have, provided p,, is large enough in terms of A and k.
P(p)*
19 2P(pn)A7P(pn)aa) _19 P(pn)A,P(pn),G,) AN
( )= ) ¢(P(pn))
o Pon) exp(—A/ro)
¢(P(pn)))

Moreover, for P(p,)4 < p < 2P(p,)?, we have
logp = Alog P(p,) + O(1)

and the desired conclusion follows with z = p,.
Now suppose that there is an exceptional zero 3y satisfying (28.95) of

Fs)= I II L

m|P(ppn) Xmod m

and let g1 be the corresponding conductor. Since

log P(py) < < q’logq?

1
1-p

q1 is large in terms of n. Now choose ! minimally so that ¢1|P(p;) and
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consider P(p;—1). The [ will also be large in terms of n, and £ will satisfy
(28.95) with n replaced by I, so will be exceptional for Fj(s). Suppose
that F;_1(s) has an exceptional zero (2, so that

1

>l —
P rolog P(pi-1)

Then the associated conductor will divide P(p;) but by the minimality
of [ the exceptional conductor will differ from ¢;. But there cannot be a
second exceptional zero of Fi(s), so

1 1
o<l ——m—=1-
2 ko log P(pi) ko (log P(pi—1) + log p;

1
20 log P(pi—1)’

<1

Thus there are no exceptional zeros of the kind

1
S P —
! 2r0 log P(p—1)

associated with P(p;—1) and we can proceed as in the first part of the
proof. O

Let 7 > A and consider the array
M = (ayw) (1 <u< P(Z)Afl, 1<wv<(Alog P(2))", (’U,P(Z)) = 1)

where a,, = 1 when up(z)“~! 4 v is prime and 0 otherwise.
By Theorem T:PXGspinap, the number of non-zero entries in the v-th
column is

7(2P(2)4, P(2),0) — 7 (P(2)*, P(2),v)
- P(Z)A exp(—A/k
= P Alg Pl (L O(exp(=A/R))) - (28.96)

and so, by Theorem 7.11, the total number in the array is

P(z)A<I>((A log P(Z))T’Z)
¢(P(z))Alog P(z)
P(2)4~! (Alog(P(2))) w (Wmm)

) (1+0(c)).

Alog P(2) [],<.(1—1/p)

Moroever, by the standard form of the prime number theorem, Theorem

(1+O(exp(—A/K))) =
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6.9,
log P(z) = 9¥(z) = z + O(z/ log 2),
log(Alog P(z)) =logz +log A+ O <lo;z)

= (log 2) (1 O (f)i‘:))

and by Merten’s theorem, Theorem 2.7,

[ -1/p)= T;gcz (1 +0 <1o;z>> ’

p<z

Hence
w(rlog(Alog P(2))/logz) = w(7)(1 + O(log A/ log 2))).
and the total number of non-zero entries in the array is

P(z)4" ! (Alog(P(2))) e w(r)
Alog P(z)

(1+ O(exp(—A/K))).

The total number of rows is P(z)4~!. Hence there are rows with at least

(Alog(P(2)))"e“w(r)
Alog P(2)

(1 + O(exp(—A/f@')))

non-zero entries. By dividing the primes counted in these rows into N
subintervals of length

(Alog(P(2)))
N

where
N = [(Alog(P(2)))" ]

we find that there are intervals

(Alog(P(2)))"

X, X
(o 55

containing at least

(Alog(P(2)))*e“w(r)
Alog P(2)

(1 + O( eXp(—A/n)))
primes where

P(2)* < X <2P(2)* + (Alog P(2)) .
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The length of such intervals is as most

(Alog P(z))A < (log X)*.
Moreover

Alog P(z) =log X + O(1)
Thus it follows that there are arbitrarily large X such that

(X 4 (log X)*) — 7(X) > e“w(r)(log X) 1 (1+O(exp(—A/K))).

In the opposite direction, there are rows with at most

(Alog(P())) e w(r)
Alog P(2)

(14 0(exp(~4/r)))

non-zero entries. The choice

. { (Alog(P(2)))" J
(log (2P(2) + (Alog P(2))))"

produces intervals

(srx + (e

N
of length at least

(log (2P(2)* + (Alog P(z))T))/\ > (log X)*
containing at most
¢“w(r)(log X)* (1 + O(exp(~A/k)))
primes. Thus it follows that there are arbitrarily large X such that
(X + (log X)*) — 7(X) < e“w(r)(log X)* "1 (1 + O(exp(—A/k))).

The theorem now follows.

28.10 Not

§1. The Euler product is a crucial ingredient in establishing that Di-
richlet L functions have relatively few zeros, if any, off the critical line.
There is an extensive literature showing that Dirichlet series without
that feature can have < T zeros p = f + iy with |[y] < T and 8 > 3.
See, for exampleBalanzario & Sanchez-Ortiz | (2007)), [Bombieri & Ghosh
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HOA 11CA1
(2011), IBombieri & Hejhal (1995), [Cassels| (1961), Davenport & Heil-
bronn [Davenport| (1977). [Davenport & Heilbronn| (1936a), [Davenport|

& Heilbronn| (1936b)), Dubickas, Garunkstis, Steuding, Steuding| (2013),
aczorowski & Kulas| (2007), [Karatsubal (1989), [Laurincikas| (1986 S04
otter & Titchmarsh|(1935)), Saias & Weingartner| (2009)), Spira aibl);

§28.41 This subject was initiated by [Bohr & Landau | (1914a) (see also
Littlewood| (1924)) who showed that if o > 1/2, then N(0,T) <, T,
and then improved this to N(o,T) = 0,(T), Bohr & Landau | (1914b).
The first improvement in the exponent of 7" is due to
who obtained

N(o,T) < T4o(=o)+e,

H H30b
See also (1922)) and [Hoheisel (1930ajb) who replaced the 7 by

8 EF29
a powers of logarithms. [Titchmarsh| (1928, [1929) improved the exponent

3(1—0)
2—o

N(o,T) < T 2= (logT)°.

(1946) obtained a sharper bound when
1 loglogT

2 logT
and (1982)) sharpened this further and obtained
N(o,T) < T'=(1=9=1/2) 15g T

(1958) made a number of improve-
ments when o is close to 1. Iglina [glinal (1966) has similar improvements
near the 1-line. Vi A

|
Various authors, including Linnik ﬁ%mmk (1946a), Linnik (1946b),

L o~

Chudakov i%séudakoﬂ (1947), l%sﬁudakov | (1948), Haslegrove | aselgrove
) have discussed bounds for N(o,x,T), N1 and Na, and Rényi

Rényi (1948) had shown that early forms of the large sieve already
gave interesting consequences for the distribution of zeros of L-functions.
VG5 VRA
A. 1. Vinogradov i%mogradov| (1965)), i%mogradov| (1966) and Bombieri
(1965)) used the large sieve to give significant bounds for Ny
which lead to important new results on the distgibution of primes in
arithmetic progressions and Haldsz and Turdn %%l'ész, Turdn| (1969) in-
troduced ideas which resulted in significant improvemens when o is cloe
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[HM7 1
to 1. Montgomery [Monbtgomery| (1971) gives a systematic account of
these developments. This lead to intense activity over the next twenty

years by Huxley, Jutila, Ivi¢ and others. However, the generalization of
Ingham’s bound to Ni(c,q,T) and Na(o,Q,T) when % <o < % has
apparently not been significantly improved.

It is crucial in applications that the bounds are uniform in ¢ which
the stated bounds are. Jutila @ 7) extended the range for the

puehed

this to < ¢ < 1. This is an area which continues to be active. See

o P i1

0
The use of the Mollifier M already occurs in Carlson (1920)),
but prior to Montgomery [Montgomery| (1969), it was used via variants
of Littlewood’s Lemma. Montgomery introduced the transform (28.39)
to count zeros and this and its variants have been at the core of later

density hypothesle to 11 <o <1land Bourgaln

developments. Montgomery obtained
Ni(0.¢.T) < (qT) " (log ¢T)

and

No(0,Q, T) < (QT) ™= (log Q*T)"*

which already improves upon Ingham when o > %. Huxley
(1972a) obtained

N(o,T) < T(5073)(170)/(U2+071)(IOgT)9
which gwes Corollary-vmth Q = 1, and then established ([28.29) and

For the Rlemann zeta function at least, there are numerous small
improvements in the range 3/4 < o < 1. See Forti & Viola
(1973), Heath-Brown [Heath-Brown (1979), Huxley [Huxley (]ﬁ[),

A T70 AT

 (1975a)., [ixley, (1975b), Iviélvic (1979), Ivicl {1980), [fvic, (1984),
19721, utilal (1977), Ramachandra [Ramachandra) (1975).

qmp gives a comprehensive overview of the state of play in

Tvic [vic
1985.

5| Results of the kind contained in this section are intimately con-
nected with zero density estimates. The first theorem hke Theorem [28.8
was established by Hoheisel m 930 , but with 15 replaced by

33000
Hoheisel was constrained by only having the weaker Littlewood zero-
free region available, and so his exponent depended on the constant in
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that as well as the exponent in the zero-density estimate. Heilbronn, by
working hard with the constants replaced that by

1
1——.
250
Chudakoy obtained an improved zero free region for the Riemann-zeta
U NC36bb . Lo .
function [7"from the Vinogradoy mean value theorem which immediately
3

reduced the exponent to 5 |Chu akov| (]1936aD, and Ingham used his

zero density estimate, combined with the Chudakov zero-free region, to

obtain the exponent % .

In more recent times the methods displayed here have been combined
with sieve methods to show that when & is somewhat smaller than x 7%

there is a prime in (2, 2+ h]. The current record, due to Baker, Harman
& Pintz Baker, Harman & Pintz | (2001)), is that this holds for h = z¢
with any ¢ > %.

The main idea of the proof of E%eprem 28.9|is taken from the proof of
Lemma 6 of Saffari & Vaughan [Saffari & Vaughan| (1977). The second
part of Exercise 1 (b) is essentially due to Selberg Selt . It

differs in that the bound in the exercise is uniform for u close to 1,

whereas Selberg apparently requires u < €.

§28.061 ;_Eglis section has its origins in the seminal paper of Hal’asz and
Turén [Halasz, Turan, (1969).

§28.7 Theorem [28.14] is useful when the presence of an exception zero
is a nuisance, and shows that it may not be such a big nuisance, The
first results of this kind were obtained by Linnik l%#riﬂ (1944a)), %%ﬁ
(1944b), |% (1944¢) in his fundamental work on the least prime in
an arithmetic progression. In addition to the original application it has
also found use in work on thev_%«:eptional set in Goldbach’s Problem
(see Montgomery & Vaughan l%ﬁltg‘omery & Vaughan| (1975)). Our ex-

fisYal

position is inspired by Gallagher [Gallagher and Bombieri in §6 of
(1974), the latter of which has the merit of giving the Deuring-
Heilbronn, Corollary for free. Again, stimulated by the question
of the least prime in an arithmet progression, there is a cnsiderable
history, with papers by Rodosskii [Rodosskij (1954), Tura',n (1961),
Fogels (1965),, Jutila ﬁﬁﬁﬂa{ (1969)), Jutila (1970), Selberg
(1972)), Motohashi [Motohashi (1976). Selberg’s method gives

Ni(o,q,T) < (qT)(3+€)(170)

and

Na(o,Q,T) < (Q°T3)(1+e)1-a),
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§28.8| Below is a, not necessarily complete, history of bounds for the
exponents A in Theorem [28.21

A Year
10000 1957
777 1965

550 1970

168 1977
80 1977
36 1977
20 1981
17 1979
16 1986

13.5 1989
8 1990
5.5 1992
5.18 2011
5 2011

Pan m
Chen (o 1D

Chen @_@
Jutila [Jutilal (1
Graham | TTe
Graham 1)) (submitted before Chen’s 1979 paper)
Chen e 1
.......... | m
Chen & Liu |Chen & Liu (]1989&[)}(3“ & Liu| (1989b) ,[C}Tn & Liul (1991))
Wang Wang| (1991)
Heath-Browmn [Heath-Brown| (1992)

Xylouris LX vylourls| (2011a))

Xylouris Xylouris | (2011b)

§28.9| Maier’s theorem (1985) came as something of a sur-

prise, and caused some anxious rethinking of how we might model the

primes in short intervals. Hildebrandt & Maier i%li%ebrandt & Maier

(1989) extended the method to show that even in somewhat longer in-
tervals there are still greater biases in the distribution than had hitherto

been believed. In a dlfferent dlrectlon the method has been adapted by
Friedlander & Granyille [brledlander& Granville| (1989)), [b‘rledlander &

|Granville| (1991]), [brledlander & Granville (1992) and by Friedlander,

TRATIN

Granville, Hildebrandt and Maier [brledlander, Granville, Hildebrandt &|
to show that the distribution of primes in arithmetic pro-
gressions, when the modulus is quite close to the size of the primes, is
not as good as had been anticipated.
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29

The pair correlation of zeta zeros

As usual, we let N(T') denote the number of zeros p = 8 + iy of the
Riemann zeta function with 0 < v < T. Multiple zeros are counted
according to their multiplicity. From Theorem 10.13 we know that

N(T+1)-N(T) <« logT (29.1)

for T' > 2, and in Corollary 14.3 we found that

T log r_T +O0(logT). (29.2)

N(T)= —
(T) 21 2 2w

Thus we see that the average spacing between the consecutive 7 at height
T is approximately 27/ log T'. Our object in this Chapter (which will only
be partially achieved) is to determine the distribution of the differences
v — v between the ordinates on the scale of 27/log T. We shall assume
the Riemann Hypothesis throughout this Chapter.

Our approach to the distribution of the numbers v — +' is to try to
determine the Fourier Transform of this distribution, which is to say
the asymptotic size of sums of X =) In summing this quantity we
introduce a weighting w(y —+), so that pairs of zeros that are far apart
receive little weight. Specifically, for X > 0 and T' > 2 we set

F(X,T)= Y X0 w(y—v) (29.3)
0<~y<T
0<y'<T

where w(u) = 4/(4+u?). Since w is an even function, on exchanging the
roles of v and 7/ in the above it follows that F(X,T) is real for all X
and T'. The weight w(u) arises naturally in our analysis in the equation
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(29.9), from which it follows that
2

X
dt. (29.4)

1+(t—19)?

TIOgﬂ - 0<«,<T

From this formula we see that F(X,T) > 0 for all X and 7'

To derive an asymptotic formula for F(X,T) we start from a con-
venient explicit formula (proved below) which asserts that if X > 1,
then

X
2T
1/2( Z A(n)(X/n) 1/2+zt+ Z A(n X/n)3/2+it) (29.5)

n<X n>X
+ X Hitlogr 4 O(X_l) + O(X1/27_2)

where 7 = [t| + 4. We write the above briefly as L(X,T) = R(X,T).
In Section we shall show that fOT |L(X,T)|?dt is approximately
F(X,T), while the mean value theorems of Chapter [27] will be used to
estimate [ |R(X,T)|?dt. Unfortunately, in this latter endeavour the main
term is larger than the error term only when X = O(T(log T)/loglog T).

To see how we might derive useful information concerning the zeros
from asymptotic information concerning F(X,T), we observe that if
R(a) € L}R), then

/Oo R()F(T*,T)da= Y w(fyﬂ')ﬁ(w). (29.6)

2
> 0<~y<T
0<y'<T

In view of the remarks we have already made, we see that we can de-
termine the asymptotic size of left hand side of the above only when
supp R C [—1, 1], but it is still the case that

/OO R(a)F(T%,T)do > /1 R(a)F(T*,T) da (29.7)

e -1
for R with arbitrary support, provided that R(a) > 0 whenever |a| > 1.
(The above inequality is reversed in case R(«) < 0 when |a| > 1.)

29.1 The basic asymptotic estimate and conjectures

We now prove the approximate identity (29.5)). To this end, let K(w) =
2 (w) has simple poles at +1, and K(iv) =

1—w?2

E:intRFineq
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I +v2 By the calculus of residues we see that

1 a+100 l —
— Kw)zVdw =< =
0

2mi a—100

Hence

L. a-+1i00 </ (w+ +Zt)K(w)dew: Z M({ _ ﬁ)

27T/L a—1i00 < n<X

for a > 1. Now & (w+ —Ht) has a simple pole at 1 — it with residue —1,
simple poles at —2n — 5 — it with residue 1 for n = 1,2, ..., and simple
poles at i(y — t) with residue 1. The convention here is that if a zero
p = % + 47 has multiplicity m,, then in a sum over zeros a summand

corresponding to p is repeated m, times. Write w = u + ¢v. On moving

the contour from the abscissa ©u = a > 1 to u = —o0, we see that the
above is
¢ t) X S X - K t) Xzt
<(+Z) +C(_§+Z) - (7_7’)
X@(v t)

S+ Z K(—2n—1—it)x 2nz-it,

+2Z

That the contour may be moved with this result is justified in the same
way that it was justified in §12.1 when we discussed the classical explicit
formulae. We note that — —( +it) =3, A(n)n~ 271t we multiply both

sides of the above equation by X%, and rearrange to see that
X Z+it X\ 3+it
D e b < OIERICY D CIC Iy
Y n>X
C/

- f(— L) Xt L K (L i) X3

—Y K(-2n -1 —it) x5
n=1

This is an exact equation; to complete the proof of (29.5) we now es-
timate the last three terms above. In §10.2 we took the logarithmic
derivative of the asymmetric form of the functional equation to show
that

!/ F/
2 (s) = —%(1 —5) + log 27 — f(l —8)+ gcot§.
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Also, Theorem C.1 asserts that

/

T (8) =logs +O(1/]s])

provided that |s| > 0 and |args| < m — §. Hence

oot S Y, _

Z(_ 3 +it) =— ¢ (3 —it) — T (3 —it)+0(1) = —log T + O(1).
For the second term it suffices to observe that K(% — it) < 772, Since
X > 1, the sum over n is < X735 (n?+ 13" « X737 « XL,
Thus the proof of (29.5)) is complete.

We now estimate the integral of the square of the modulus of the
respective sides of (29.5)) to establish

Theorem 29.1. (Assume RH.) Let F(X,T) be defined as in (29.3).
Then F(1/X,T)=F(X,T) for X >0, and

log%—2 . log X

F(X,T) =
( (log2X)? > O(Xlog log4X)
X1/21ogT TlogT
for1< X <T.

In the notation X = (%)a, the main term above takes the shape

() () o

Here the first term behaves in the limit as a Dirac delta with mass 1 at

T2« T
/ (—) log — da = 1.
_ 27 27

o0

the origin, since

Proof Let L(X,t) denote the left hand side of (29.5)). Then

T , ~ T dt
2 g, i(y—7")
/O LX) dt=4) X /0 1+ t—2) 1+ t—7)?)

v

From ([29.1)) we see that if 0 < ¢ < T, then

1 1 1
Z < + logT
14+ (t—7v)2 (t 1 T-—t 1) ’
Y¢[0,T7 =) * *
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and
Sl
ATHE-P ST
gl
Hence
T
dt
< (log T)3,
>3 wremaram
and so
! 2 i(v—~") r dt
L(X, )2 dt = 4 Xt /
| Py A R e e e
0<v'<T
+0(logT)?).
If ¢t > T, then

— 2 —_ ’
0Zr 1+ (t—7) t—T+1

and similarly for v/, so
> dt e dt
< (logT)? / B —
2 ) wreemaren <,

0<~y<T
0<~'<T

< (log T)3.

The estimate is the same if we integrate instead over the interval —oco <
t < 0. Finally, it is easy to see that by the calculus of residues that

> dt o .
/m A+t-a?)(0+t-02) (@-b2+4 Sw(a—b). (29.9)

Thus we conclude that
T T
/ |L(X,t)|?dt = F(X,T)T log o+ O((log T)?)
0 Y5

uniformly for X > 0.

The error terms on the right hand side of are due mainly to
the pole and trivial zeros of the zeta function, but they are troublesome
only when ¢ is small. To avoid considering them for small ¢t we let V be a
parameter to be chosen laeter, and employ a crude method for the range
0<t<YV.From we see that

[R(X. )| = |L(X. )] < L(L1) < logT
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for all X. Hence
v
/ |R(X,t)|?dt < V(logV)?
0

for V> 2.
We now consider the contributions of the main terms in R(X,t) when
V <t <T.Wefirst observe that from Corollaries and it follows

that
T
/.

i QEZ)W(n/X)n*“ + ! i A n't

= le = n/2
:(T—V)(ZA( ) W(n/X)%iZZA( ) )

n=1 n=1

dt (29.10)

- o(i APy xp v LS AEL” 2)

n=1

where d,, denotes the distance from n to the nearest other primepower.
From the estimate ¢(z) = 2 + O(z'/2(log 22)?) of Theorem 13.1 we see
by integration by parts that

> AMm)? =Y A(m)logn + O((¢(x) — 9(x)) log )

n<x n<x

=zloge —x+ O(xl/Q(log 2z)%).

Write this as S(x) = zlogz — x + R(z). Then by a further integration
by parts we see that

> %W(n/){)2 = /OOO %W(uz/X2) dS(u)

e}

u

1 X > R(u
0 X

u
=log X + O(Xfl/g(logX)?’).

= /oo 081 (2 X2) du + [R(u)w(u?/xz’)
0 u

0

du

By Theorem the error terms in (29.10) are < X loglog4X. Thus
the expression in (29.10) is

= (1= V)(log X + O(X~"/2(log X)?) ) + O(X loglog4X). (29.11)

The above accounts for the contributions of two of the main terms on
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the right hand side of (29.5). The mean square of the third main term

1S
T 2 T \2 T
X*z/ (1ogl) dt:X’2T<log—) 92X 2T log —

2 (29.12)

=  OX7T)+0(X*V(logV)?).

The mean square size of the main terms in are determined in
(29.11)) and (29.12)), but it remains to show that the correlations between
these two main terms is small. The first main term, times the complex
conjugate of the second one, integrated, is

LT Al L, LA g T
X/v (Z:l pYE W(n/X)n +§Z 32" log%dt.

n=1

If t > 0, then 7 = ¢ + 4, by definition. Thus if 0 < a < b and c is a
nonzero real number, then f; et log T dt < %. This can be shown

by integration by parts, or by appealing to Theorem ??. Thus the above

18

logT [ A 1 A
<22 (S ) _y, (n/X)+ = > :7(71)
X — nl/2logn X £~ n3/2logn
n=1 n=1 (29.13) |E:Term12

logT
L ="
X1/2]og2X
On combining these estimates we deduce that

/VT 5 2030 — & (108 = + )

n=1

T \2 T
= Tlog X + TX 2(log 5—) —2Tlog (29.14)
™ ™
+ O(TX_I/Q(log X)?) + O(X loglog 4X)
+O0(Vlog X) +O0(VX*(logV)?).
The integral of the square of th sum of the error terms in (29.5)) is

T
/ Xl XV 2P < X2V XV (20.15)

v

To ensure that the last two error terms in are majorized by the
other error terms in that formula, we take V = TX~/2(log T)~2. Sup-
pose that f; and fy are measurable functions, that M; = ff |fi(t)|? dt,
and that M; > Ms. Then

2
dt

/b|f1(t) + fo(t)|* dt = My + O(v/ My Ms)



29.1 The basic asymptotic estimate and conjectures 259

by the Cauchy—Schwarz inequality. Let M7 Denote the integral in
and M the integral in . In order that Ms should make no contri-
bution to our final result, we need to know that not only is My majorized
by the first two error terms in , but also that the larger quantity
V/Mi M; is also majorized by these error terms. Since My < T'(log T)?
in all cases, this will be the case provided that My < TX ~!(logT)~?
It is now easy to verify that this is the case (by a wide margin) when
our choice of V' is substituted into . O

If we could derive (assuming RH) an asymptotic formula for F'(X,T)
when T < X < T4 for any fixed A > 1, then by Fourier inversion we
could determine (still assuming RH) the distribution of the differences
~—7' relative to the average spacing. The main issue would be to derive
an asymptotic estimate for

|| S wen)

n=1
To assess the difﬁculty here, consider the simple formula
[ I

Let h=n—m.If 0 < |h] < m/T, then

sin(T'(logm/n)) _
T(logm/n)

2
dt.

__sin(T'(logm/n))
dt =2T Zyor a, “Tloemin)
D lanl+2T D ani G S
n<N m,n<N
m;én

)

so such nondiagonal terms carry a weight comparable to that of a diag-
onal term. Of course, such nondiagonal terms exist only when V is larger
than 7. The function 2% js not in L!(R), nor is it of bounded variation.
Thus it is not easy to determine the contribution of nondiagonal terms

directly from the above. The situation is improved if we average. For
example,

[.0-7)

2

dt =T |an|”

2 annfzt

n<N n<N
sin =T (logn/m
Ty mnn(—T—l—54il)-
N 5T (logn/m)
m¥#n

The function (s“;“) is in L' (R) and is also of bounded variation, and we
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could proceed from the above, but our work is made easier if we instead
employ the smoothing found in Corollary [26.11

22.1.1 Exercises

1. From ((29.1)) it follows that 3 (1+(t— 7)2)_1 < log 7. Use ([29.5)
to show that
T ¢

1
~

Exer:Lambda~2| 2. For o > 1 set

n=1 p
> A(n)logn >, k(logp)? Y
()= 3 o =Ty L (S9).

and put F(z) =3, ., A(n)?, G(z) = > <z M) logn.

(a) Show that ZTOOZI o(r)f(rs) = g(s).
(b) Show that

S aroton) = 16 10
r=1
for ¢ > 1 if and only if

m

E a,— =1
T

rk

rk=m
for all m.
(c¢) Show that the identity immediately above is equivalent to assert-
ing that
. a
=15 =)

s
r=1

for o > 2.
(d) Deduce that for o > 2,

= l-p 1-
Z—Z:H(H Py p+~--).
p

2
— p p=?

S

<
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(e) Conclude that ([29.16]) holds if
a, = [J(1 - p).

plr

3. Let U = T/(27). Determine the size of U~2*logU for the following
values of a:

(a) a=1/logU,
(b) o= (loglogU)/logU;
(c) a = (loglogU — FlogloglogU)/logU.

Exer:w,whatinvert | 4. For a > 0 let

> —27alx| > 2a
I(a,u) = 2w e e(ux) dz, J(a,z) = me(xu) du.

(a) Show that
I(a,u) = 271'/0 e 27 (e(uzx) + e(—ux)) dz.

(b) Show that the above is

oo

|:€27r(a+iu)x 00 |:627r(aiu)m

a—+u 0 a— 0

(¢) Deduce that
2a
Iau) = —2 .
(a, ) a? + u?

(d) Deduce that

w(u) = 27T/ 674””'6(1&) dx. (29.17)

(e) Show that J(a,—x) = J(a,x) for all x.

(f) Replace the real variable « in the definition of J(a, z) by the com-
plex variable w = u + v, consider the integral to be a contour
integral in the complex plane, assume that x > 0, form a semi-
circular path in the upper halfplane, and calculate the residue at
the pole at w = ia to show that

J(a,x) = 2me~2malel,
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(g) Deduce that

w(x) = / w(u)e(—zu) du = 2re 4717, (29.18)

Thus (29.17) asserts that w(u) = [, w(x)e(ux) dx is a valid Four-

ier expansmn.

5. With @w(z) defined as above, show that

2

F(X,T2rlogT) / o(z)| Y XVe(ya)| de.  (29.19)
- 0<y<T
6. Let a1, as,as, ... be real numbers.

(a) Show that

/| (ZH(,@_G) Jar=or 3 s

- 1<i,j<n

= Y Sacor
- 1+(ai—aj)2'

1<ij<n

(b) By Cauchy’s inequality, or otherwise, show that

(T (X 0t s?)

1<i,j<n 1<i,j<n

(¢) (Putnam 2011 B5) Show that if there is a constant A > 0 such

that
[e%e} n 1 2
[ G rrap) =

0 =1
for all n, then there is a constant B such that

Y (1+(ai—aj)*) = Bn®

1<i,j<n

for all n.
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29.2 Applications

22.3.1 Exercises

29.3 An arithmetic equivalent of the Pair
Correlation Conjecture

22.4.1 Exercises

29.4 Notes

MVRR]
Berry, (1988) used physical reasoning to conjecture that

/T(S(t +6) = S(t)*dd = f(T)T + o(T)
0

IAF90 DAGR?
where f(T) =. [Fujiil (1990) used a formula for S(t) due to |[Goldston
&1,9,87) that is similar to, but more useful than a similar formula of
Selberg] (1946]) to show that ... assuming RH. If, in addition the Strong

Pair Correlation Conjecture is assumed, then Berry’s Conjecture follows.
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Appendix I
The Weak Distribution of Measures

1.1 Basic theory

We now develop an analogue for the real line R of uniform distribution
in the circle group T. This is useful in discussing the limiting distribution
of the error term in the Prime Number Theorem, and in Chapter [23] the
limiting distribution of additive functions.

Let p be a measure on the real line. We say that p is a probability
measure if it is nonnegative and if its total mass is 1. That is, u(8) > 0
for all measurable sets 8§ and u(R) = 1. The distribution function of u
is the function F(z) = u((—o0,z]). Clearly p is a probability measure if
and only if F' is increasing and

.TEIPOO F(z) =0, ’L‘EI—‘,I}OO F(z)=1. (L.1)
Conversely, if F is increasing, right-continuous (i.e., F(z*) = F(z) for all
real ), and satisfies , then there is a probability measure p of which
F is the distribution function. If i is a measure, we say that a sequence
of probability measures uy tends weakly to p if limy oo Fy(z) = F(x)
whenever x is a point of continuity of F'. We note that the distribution
function F' of a nonnegative measure can have at most countably many
jump discontinuities. As a first observation about sequences of measures,
we have

E:1imF (x)

Theorem 1.1 (Helly’s theorem). Let pu1, po, us, - .. be a sequence of prob-

ability measures. Then there is a strictly increasing sequence ny of pos-
itive integers such that the subsequence pi,, s weakly convergent.

Proof We proceed by a Cantor diagonal process. Let x1, xo, ... be dis-
tinct and dense in R. The numbers Fy(x;) have a limit point. Thus
we may choose indices N(j, 1) so that Fi(;1)(z1) converges. From the
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indices N(j,1) we choose a subsequence N(j,2) so that Fy(j2)(z2)
converges. We continue in this manner, and find that the sequence
Fy ;) (xx) converges for all k. Hence there is a unique right-continuous
function F' such that Fy; jy(x) tends to F'(x) for all points of continuity
x of F. O

Consider now the particular case in which p is the probability measure
that attaches weight 1 to the integer N. The sequence uy converges to
the measure that is identically 0. Thus a limit of probability measures
need not be a probability measure. This can be explained by noting that
need not hold uniformly for all measures uy in a sequence. We say,
however, that a collection of measures is tight if holds uniformly
for all measures p of the family. Our first observation concerning tight
families of measures is obvious.

Theorem 1.2. If py, pio, ... is a sequence of probability measures con-
verging weakly to a measure p, and if the sequence is tight, then u is a
probability measure.

If u is a probability measure and f is bounded and continuous, then
the integral fj;o f(z)du(z) is well-defined. In particular, for real ¢ we
let fi(t) denote the Fourier transform of the measure,

i) = [ el-t)duo).

—00

We note that 7i(0) is the total mass of a measure, so that 1i(0) =1 for a
probability measure.

Lemma 1.3. Let u be a probability measure. Then |f(t)] < 1 for all t,
and [i(t) is continuous. Let 8 be a tight family of probability measures.
Then [i(t) is uniformly continuous in t, and uniformly so for u € 8.

Proof By the triangle inequality, |1i(t)| < ffooo 1dp = 1. Suppose that
e > 0 is given, and that A is so large that p([—A, A]) > 1 — €. Then for
any real t,

A
' / e(—tx) du(x) — ﬁ(t)' <e.
—A
Hence by the triangle inequality,
A
[i(te) — B(t2)| < 2e +/ le(—t1x) — e(—tax)| dp(z).
—A

Here the integrand is 2| sin w(t; —to)x| < 27|ty — t2] A. Thus if |t — to] <
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g/A, then the integrand is uniformly < 2me. Hence the integral is < 27e,
so that [fi(t1) — [i(t2)] < 9e. Thus f is uniformly continuous. If 8 is a
tight family of measures, then the choice of A depends on € and 8, but
is independent of the individual y € 8. O

Lemma L.4. If f(t) € L}(R) and p is a probability measure, then
| Fwdnw = [ roawa.

We note that f is bounded and continuous, so that the integral on
the left can be considered to be a Riemann-Stieltjes integral [ f dF. As
|f1i] < |f|, the integral on the right is a Lebesgue integral for f € L'(R).

Proof By the definitions of & and f, the above asserts that

/0; /0; f(t)e(—tz) dt du(z) :/OO f(t) /Oo e(—tx) du(z) dt .

— 00 — 00

The interchange of integrals is justified by Fubini’s theorem, in view of
the joint integrability of f(t)e(—tx). O

Corollary 1.5. If py and po are probability measures such that fii(t)
= fi2(t) for all real t, then puy = ps.

Proof Let I = |a,b] be a given interval, and let f(z) be determined so
that f(t) is the piecewise linear function whose graph passes through the
points (—00,0), (a — 6,0), (a,1), (b,1), (b+4,0), (00,0). Then f(x) <s
272, and hence f € [}(R). By Lemma [[.4] we see that

/ fdm:/ fdus.

On the other hand, as 0 tends to 0, the respective sides of this decrease
to w;([a, b]). Hence py(I) = pa(I) for all closed bounded intervals T, and
it follows that ps = po. O

We now characterize weak convergence in a number of useful ways.

Theorem 1.6. If p, p1, pe,... are probability measures, then the fol-
lowing are equivalent:

(a) The puy tend weakly to w;

(b) For every OI()Jounded continuous function f, the integral f_oo fdun
tends to [~ f du;

(¢) For each real number t, fin(t) tends to fi(t);
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(d) For each real number T > 0, ln(t) tends to u(t) uniformly for
lt| < T.

Proof We first demonstrate that any one of the above conditions implies
that the pn are tight. Suppose that (a) holds. There is an A such that
u([—A, A]) > 1 —e. Hence un([—A,A]) > 1 —2¢ for all N > Ny, and
consequently there is a B such that py([—B,B]) > 1 — 2¢ for all N.
Since both (b) and (d) include (c), we now suppose that (c) holds. Take

f(t) = X[_s.) (t)/(26) in Lemma Then

10 *° sin 2wdx
i [ o= [ R e a2

By the principle of dominated convergence, the left hand side tends to
2 fjﬁ i(t)dt as N tends to infinity. But i(0) = 1 and i is continuous
at 0, so if § is small, then

1 6

— u(t)dt —1 .
55 [ A1) <
Hence

> sin 2mdx
—d 1-2
/ oror pN () > €

— 00

for all N > Nj. Here the integrand is < 1 for all real z, and is < 1/2
when |z| > B = 1/4§, so that this integral is

< (1B, Bl) + gpu{lel > BY = 5 + 2w (1B, B])

Hence pun([—B, B]) > 1 —¢ for N > Ny, and therefore the p1y are tight.

We now derive (b) from (a). Suppose that |f(x)| < M for all z, that
F(z) is the distribution function of u, and that Fi is the distribution
function of pp. Since F' is increasing, the set of points of discontinuity
of F'is at most countable. The same is true of each Fly, and hence there
a set D that is at most countably infinite, such that if © ¢ D, then F
and each of the functions Fly is continuous at x. Suppose that £ > 0 is
given. Choose A ¢ C so large that p{|z| > A} < e and pn{|z| > A} <¢
for all N. Such an A exists because the family is tight. Hence

’/_Zﬂx)duzv—/:f(:c)du’ < ‘/_if(x)duN_/:f@dM’HM&

Since f(z) is uniformly continuous on [—A, A], we may choose numbers
Tp, —A =20 < 11 < ... < 3K, = A, so that |f(z) — f(2')| < € if
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i1 <z < 2’ <z for some k. Moreover, these x; may be chosen so
that none of them is a member of D. Then

/zlc f@)dp — f(z)(F(2k) — F(agp-1))| < e(F(ax) — F(ap-1)) -

This also holds with p replaced by g . On summing over k and using the
triangle inequality, we find that the difference in question has absolute
value not exceeding

K

MY v ([k—1,2x]) — p([r—1, 2x])] + 2(M + 1)e.

k=1
From the hypothesis (a) it follows that this first term tends to 0 as N
tends to infinity. Since ¢ is arbitrarily small, this gives (b).

We note that (c) is the special case f(x) = e(—tzx) of (b), and hence
(b) implies (c).

Suppose that (c) holds. Since the py are tight, by Lemmait follows
that the py(t) are uniformly continuous both in ¢ and in N. Hence (d)
follows from (c).

To complete the proof it remains to show that (d) implies (a). Suppose
that f € L}(R). Then by the principle of dominated convergence

i [ wav = [ sop

N —oc0

and hence by Lemma [[.4]

i, [~ fla)dunto) = [~ Fla) duto)

N—o0

Let f be chosen as in the proof of Corollary so that f € I}R) and
f is a piecewise-linear majorant of Xiap" Then
pvllat) < [ Faydun(e) — [ Fa)duta) < ulla - 5.6+ )

as N — oo. Here the last member tends to p([a, b]) as 6 tends to 0, and
thus we conclude that lim sup y_, . pn ([, b]) < p([a, b]). Supposing that
a < b, we may construct f € L}(R) so that fforms a piecewise-linear
minorant of X(ap]" and thus similarly show that lim inf o pn ([a, b]) >
limg_,o+ p([a+0,b—4]). This last expression is equal to p([a, b]) provided
that p({a}) = p({b}) = 0, i.e. if the distribution function F' is continuous
at @ and at b. Thus we have shown that

Jim_Fy(b) — Fy(a) = F(8) - F(a)
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whenever a and b are points of continuity of F'. Since the family py is
tight, the numbers Fyy(a) and F(a) are near 0 if a is large and negative.
Hence limpy o0 Fiv(b) = F(b), which is (a). O

We now sharpen Theorem by showing that the limiting measure
need not be given in advance.

Theorem 1.7. Let p1, po, ... be probability measures, and suppose that
for each t the sequence [i1(t), fia(t),... converges. Call the limit r(t). If

r 1§ continuous at 0, then the uyn are weakly convergent to a probability
measure p, and r(t) = [(t).

Proof We note that fix(0) = 1 for all N, so that r(0) = 1. In proving
Theoremwe showed that condition (c) implies that the py are tight.
The only properties of fi(t) used in that argument were that z(0) = 1
and that fi(t) is continuous at 0. Hence by the same method we may show
that the py are tight. By Theoremthere is a subsequence p (g that
is weakly convergent to a measure p. By Theorem we see that u is a
probability measure. By Theorem applied to the subsequence pn ),
we deduce that fiyg)(t) — fi(t) as k — oo, for all real ¢. Hence i =,
and iy (t) — 72(t). Then by Theorem [[.6| again we conclude that the uy
tend weakly to p. O

We now characterize continuous measures in terms of the behaviour
of [

T:CharContMeas | Theorem 1.8. Let p1 be a probability measure. Then u is continuous if

and only if
T
| 1P at= o)
-T
as T tends to co.

Proof The left hand side is

/ / —tz) dp( )/OO elty) duly) dt
/ / / ) dt dp(z) dp(y)
/ / sin 27TT ) )d (@) du(y) -

If we divide by 27, then by the principle of dominated convergence this
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latter integral tends to

//l__y dp(w) duly) = 3 d}

as T tends to infinity, where the d; are the heights of the jump discon-
tinuities of p. But p is continuous if and only if Y~ d? = 0, so we have
the result. O

7?7.1 Exercises

1. Suppose that p1, ps, ... are probability measures such that for each
convergent subsequence the limit is a probability measure. Show that
the sequence is tight.

2. Construct an example to show that in the situation of Theorem
the convergence of the i (t) to i(t) need not be uniform in ¢.

3. Suppose that py is a sequence of probability measures on T, and
that p is also a probability measure on T. We say that the puy tend
weakly to p if pun([e, 8]) — (e, B]) whenever 0 < f— « < 1 and
u({a}) = p({B}) = 0. Show that the following are equivalent:

(a) The py tend weakly to y;

(b) For each integer k, iy (k) tends to fi(k) as N tends to infinity;

(c) If f is a continuous function defined on T, then [, f(z)dun(z)
tends to [i. f(z)dp as N tends to infinity.

4. Let pu be the measure on R defined by du = (27r)_1/26_””2/2 d)\ where
A denotes Lebesgue measure. Show that p is a probability measure.
(This is called emphnormal distribution with mean 0 and variance
1.) Show that [ xdu(z) = 0, that [2*du(z) = 1, and that fi(t) =
e=2m

5. Let p be a fixed real number, 0 < p < 1. For each positive in-
teger N let uny be the discrete measure that has a point mass of
weight (1\;”)”(1 —p)V""at (n — Np)/o for n =0,1,2,..., N where
o = /np(l — p). Show that py is a probability measure. Show that
in(t) = (pe(—t(1 —p)/o) + (1 — p)e(—tp/a))N. Show that if T is
given, then fiy(t) = e 2"t + O(n=1/2) as N tends to infinity, uni-
formly for |¢t| < T'. Conclude that the measures p tend weakly to the
measure p of the preceding exercise. (This is a special case of the
Central Limit Theorem of probability theory.)
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1.2 Notes

S:NotesLimDist |

Section 77. The r‘eRS(hl]tﬁAgé Exercise 7?7 is due to %%l%l (1906) (see p. 279 of
his paper). Later, [Bohr (1925)) created an extensive theory of almost peri-
odic functions, and in the course of this demonstrated (cf pp. 119-121)
that Bohl’s Theorem is equivalent to the localized form of Kronecker’s
Theorem, i.e., to our Corollary ?77.
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Appendix J

Topics in harmonic analysis 11

| C:AppJHarmAnalIII |

J.1 A majorant inequality
S:magorant
T:L2Majorant | Theorem J.1. For positive integers n let ,, be real, suppose that |a,| <

b, for alln, and that Y>> b, < co. Then for any real Ty and any T > 0,

n=1

To+T
/ ‘Zane)\nt’dt<3/ ’Zbe)\t’dt.

Proof 1t suffices to prove the inequality when T, = 0, for once this is
done, the general case follows by replacing a,, by a,e(A,Tp). Let K(t) =
max(1 — |¢|/T,0). Then

; 2
1 (smﬂ'TU) >0,

=l

U

SO

/ h K(t)' i ane()\nt)’? dt =" @K (An — Am)
- n=1 m,n

_ /_O; K (1) i bne()\nt)r dt.

By replacing a,, by ane(A,Tp), we see more generally that

/ K(t —Tp) Za” (A t’ dt</ ’Zb e(Ant) ’ dt. (J.1) |E:WeightedL2Est
But X(_ry ) <K@t+T)+ K(t)+ K(t—T), so we apply (J.1)) three
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times, with Ty = =T, Ty = 0, and Ty = T', and sum to find that
T 0 2 [e%s} o 2
/ ‘Zane(/\nt)’ dt < 3/ K(t)‘ ane(/\nt)‘ dt .
T ' n=1 -0 n=1

This gives the stated result, since K(t) < X(_r.11 (1).



Appendix K

Notes on Turan’s Power sum method

K.1 Turan’s First Main Theorem

Let a,, z, € C and consider the power sum

N
Sh=> anzl (h=0,1,2...). (K.1)
n=1

It is sometimes useful to know that h can be chosen so that the majority
of the terms a,z" point in approximately the same direction, And to
have some control over the size or range of h for which this occurs. If
the numbers arg z,, are linearly independent over Q, then it follows by
Kronecker’s theorem that given € > 0 there are h such that

N
1S > (1=2) ) lan2h]. (K.2)
n=1
The difficulty with this in applications is that we do not have any control
over the size of h in terms of e.
Any lower bound we obtain for |Sy| will depend on the nature of the
an- The simplest general comparison, therefore is with Sp.

Theorem K.1 (Turan’s First Main Theorem). Suppose that |z,| > 1
(n € N). Then for any M > 0 and N > 1 there is an integer h €
[M + 1, M + N| such that

1] = AM, N)|So| (K.3)
where

A(M, N) = (K.4)

o (MFy2r

275

E:Turllam



T:TurlCor
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Moreover

N-1
(M, N) > (Wfim) (K.5)

Corollary K.2. For any M > 0 there is an integer h € [M +1, M + N|
such that

N—-1
. h N
510> (oin o) () 1Sk (€0 (Bt

Proof 1t suffices to prove the theorem when the z,, are distinct, for then
the case when two or more of the z, are identical follows by combining
them and appealing to the case of smaller N. Note that, for a given M,
A(M, N) is an increasing function of N.

Let bg,...,bny_1 be complex numbers at our disposal. Then
N-1 N—1
' i< - . . :bli
2% by Sars14s| < Z 03], max 1Skl (K.7)
j= j=

Inserting the definition (K.1)) of S}, into the left hand side and interchan-
ging the order of summation gives

N N-1 N
Sat Y b= Y ) K
n=1 7=0 n=1
where
N-1
P(z) = Z bz
§=0
Consider the system of N linear equations in N variables by, ...,bny_1

P(z) = 2M"1 (n=1,...,N). (K.9)

The coefficient matrix is a Vandermonde matrix whose determinant

I G-=)

1<i<j<N

is non-zero. Thus (K.9) determines the b; uniquely and, by (K.7) and

K3),
N—-1
< ; .
S| < ZO D3], xSl (K.10)
]:
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Let Qy(z) =1 and

k
Q(2) = [[(z = 2n)
n=1
Then there are ¢ such that
N-1
P(2) = Z cr Qi (2),
k=0

since the system of linear equations connecting thec; and the b; is tri-
angular with 1s on diagonal.
Now consider for k > 0 the integral
1 P(z)
2mi J e Qur1(2)
where Cr denotes the circle centered at 0 and of radius R, described in
the positive sense, and such that

dz

R> |z, (n=1,...,N).

The function
N-1

Q=) Y Q)

j=k+1
has only removable singularities. Hence
N-1
1 Zj:k-H ¢;jQ(z)
27 J e, Qet1(2)
Moreover when j < k — 1

dz=0

QR _ pe2
Qet1 <k

so, by Cauchy’s theorem, letting R — oo shows that
k—1
1 >i—0 ¢ Q(2)

- dz = 0.
270 Jop  Qugi(2)

Therefore
1 P
— ldz = ¢p.
270 J o Qer1(2)
We also have
,—M-1
L _ < RZ

Qit1(2)
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Hence
1 P(z) —z~ M1
L= — —(Z) : dz
270 Jop  Qut1(2)
By (K.9), 2M*1P(z) — 1 has a zero at z, (n = 1,...,N). Thus the
integrand is analytic for z # 0 and we can replace Cg by C. where
0 <r < 1. But now P(z)/Qg+1(2) is analytic for |z| < r. Therefore

1 —p~M-1
Cp = — ——dz

21 Joo Qui1(2)

e
21 Rk+1
where
1 k+1
_ M1 1
/\k(M)_Qm/CTZ g(l—z/zn) dz.

When |w| < r we have

[e%s} k+1 1
1 1—2/2,
— 2mi J.
M=0 ™

Z—w

k+1

H(l —w/z,) "t

n=1

Since
oo
1—w/z,) ' = Z 2 MM
M=0

has coefficients of modulus |z,| ™™ < 1 it follows that |\ (M)| does not
exceed the coefficient of w™ in (1 — w)~F~1

()

M+ k
‘Ck‘ < ( k )/|21...Zk+1|.

and this is

Thus

Now we compare

N—

Z cQp(z) = P(2) = Z bpz"

k=0 h=0

—

N

—
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with
N-1 N-1
Z <M]::r k> (z+1DF =Q(2) = Z Bp2".
k=0 h=0

The coeflicients of the polynomial Q(z) majorise those of P(z). Thus

N-1 N-1 N-—1

M+ kN,
> imis Y m=am =3 (M)
h=0 h=0 k=0

and, by (K.10)), gives (K.3)) with (K.4]). To obtain (K.5)) observe that
N-1 N1
M4\ o o noa M+k
S (M (M
k=0 k=0

and here the sum is the coefficient of z™ in

N-1
Z (L4 2)MTF =271+ )M (1 +2)N - 1)
k=0

and this is

() <ot (5)

which completes the proof of the theorem. O

I.1 Exercises

1. Prove that the constant A(M,N) in Theorem cannot be made
any smaller.

2. Prove that for any d € N there is a polynomial Q(z) of degree d such
that Q(0) = Q(1) = 1 and

<1+2/d.
|gllégilQ(Z)l_ +2/d

3. Suppose that |z,| > 1 (1 <n < N).

(a) Prove that if N < H < N2, then

H

2
Z|Sh|2 Ze_SN /H|So|2~
h=1
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(b) Prove that if N < H < N2, then

H
2

D IShP = eSS, 2,

h=1

(c) Prove that if H > N2, then

H
> 1Sh? > HN 2[5,
h=1

K.2 Turan’s Second main Theorem

In lower bounds were obtained for S}, in terms of S and (min,, |z,|)".
For some questions it is necessary to have bounds in term of Sy and
(max, |2,])". However if we take ¢ to be a small positive number and
define

z1=1lz,=e(n>1),bp=¢,b, = (n>1)

N-1
it follows that
So=14c¢,|Su| =e" +& < 28]

Thus it is necessary to have extra constraints in order to deal with the
more demanding requirements.

Theorem K.3 (Turdn’s Second Main Theorem). Suppose that
1=|z1]| > 22| > ... > |zn].

Then for any M >0 and N > 1 there is an h such that M +1 < h <
M+ N and

N J

N
SOTER) b,

|Sh|22<

Q| -
1

n=

Corollary K.4. Suppose that |z1| > |22| > ... > |zn|. Then for any
M >0 and N > 1 there is an h such that M +1 < h< M + N and

. N N J
> R — i .
|Snl 2 2(1221&ng |Z"|) (Se(M + N)) 13]1?1\7 nz::la"

In applications it is useful to have a more relaxed range for h.
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Corollary K.5. Suppose that |z1| > |22| > ... > |zn|. Then for any

L >N and N > 1 there is an h such that L +1 < h < 2L and

J
E An | .
n=1

To deduce this corollary let M = L in Corollary and obseerve
that the inequality

h
> - i
|Sh| > 2(16€) (1£I%XN|ZH|)  in

1+ y/2 < (16e)Y

holds for all y > 0. Then with y = —1 4+ L/N it follows that

N >)N > (16e) L.

BV + 1)/ < (160) Y, (o

Proof To prove Theorem [K.3] we may suppose as in the proof of The-
orem [KI] that the z, are distinct.

A theorem of Chebyshev (see Exercise [K.2}1) states that if f(z) is a
monic polynomial of degree d and I is an interval of length [, then

ma | (@) 2 2(1/4)".

We apply this to

N
f(x) =T (@~ l=l)
n=1
and I = [a, 1] where
. M
N+ M

Then there is an r € [a, 1] such that

uvnz2(14“)N

and so

N N N
M . > —-M
P e = lzall = 201+ N/M) <MW+4N>

n=1

N N
_ . (K11 :
=2 (parew) - D

Note that r # |z,| (1 < n < N). Now we choose J > 1 maximally so
that |zs] > r, and then for n > J we have |z,| < 7.
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We follow essentially the same idea as in Theorem [K.1] We now choose
the coefficients b; of P so that

?(zn) =

M=l (1<n<),
0 (J<n<N).

and recall that they are uniquely determined. Then in place of (K.10])

we obtain

J
D> an
n=1

N-1
< : .
- z:‘) ;] M+1ShEM+N [l
]:
Again, as before,
1 [ P(z)—zM!
L,
27 J e, Qe41(2)

Also z2M*1P(2)—1 has a zero at z, when 1 < n < .J. Hence the integrand
has only removeable singularities for |z| > r and so

1 P(z) —z~ M1
=5 | — A
27 Jo Qet1(2)

The zeros of Qu1+1(z) with |z| < r are of the form z = z,, with n > J. But
such z, are also zeros of P(z). Hence P(z)/Qx+1(2) only has removeable
singularities on and inside .. Therefore

dz.

1 / -1 d
L= — —_dz.
"7 2w Jo Qe (2)
and so
1

lek] < ] :
el | R E |

Therefore, by (K.11]),

el <A

where

A—;(‘LG(MN*mN.

Now we compare

N—

—

N

Z cQp(z) = P(2) = Z bpz"

k=0 h=0

—
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with
n—1 N—-1
DA+ =Q2) =) Buz".
k=0 h=0

The coefficients of the polynomial Q(z) majorise those of P(z). Thus

N-1 N-1 N—1
S bl <> By =Q(1) = > A2k < a2V,
h=0 h=0 k=0

The theorem now follows.

1.2 Exercises

1. The n-th Chebyshev polynomial T, (z) (z € R) is defined for x
[~1,1] by T},(z) = cos(ncos™! x).

(a) Prove that Tp(z) = 1, Ti(z) = z, To(z) = 222 — 1, T(x)
423 — 3z and

Tni1(x) = 22T, (x) — Th—1(x).

(b) Prove that

max |Tp(x)] =1
me[—fﬁ]' (2)]

and that the maximum is attained precisely when x = z =
cos I (0 < k < n) and then T, (zx) = (—1)*.

(c) Prove that if f(x) is a monic polynomial of degree n, then

1
> .
ponax If@) 2 5=

Hint: Show that if the maximum is smaller than 2”1, then f(z)—
21="T,, () changes sign at least n times.

(d) Prove that if f(z) is a monic polynomial of degree n, and I is an
arbitrary interval of length [, then

max|/(2)] > 3 (i)

zel

2. Suppose that b, =1 (n=1,...,N)
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(a) Prove that if |z, > 1 (n = 1,...,N), then there is an h with
1 < h < N such that |Sy| > 1, and show that this is best possible.

(b) Prove that if S}, is real for all positive integers hm then there is
an h with 1 < h < N + 1 such that S, > 0.

(c) Suppose that maxi<n<n |2,| = 1. Prove that, for some h with
1<h<2N—1,[S, >1.
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