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Notation

We continue to use notation defined in Volume I, mostly without repeat-
ing mention of them here. Some symbols are used in more than one way.
The intended interpretation should be clear from the context in which
it arises.

Symbol Meaning
ilinDualit
A* The adjoint of the matrix A. See page ﬁ??f
B(z) Beurling’s function. See page % o
(T The set of continuous functions with period 1. See

( Ramanujan’s sum. See Theorem 4.1. alpha)
(N,a) = Z(N,a)— Na. Disc epancy. See page@—L
*(N) Discrepancy. See page

(N) Discrepancy. See page

deg P The degree of the polynomial P.

e(x) = 2™ the complex exponential with period 1. See Eage @

E° Entire functions of exponential type o; see PE age

Ey(x) =1if x = x,, = 0 otherwise. See page

f t) The Fourier transform of f. See page

na(p) The least positive quadratic nonresidue of p. See page @ nostGoldbach

P An almost prime; i.e. a product of at most k primes. See page @7
fsawtoothfcn

s(x) The sawtooth function. See page il

s(n) sum of the binary digits of n. See page @7

Sy (z) Selberg’s functions. See page cta

si(x) The sine integral. See page

sgn(x) = z/|z| for z # 0; sgn(0) = 0. The sign or signumlfitrllngtion.

{Z} Stirling number of the second kind. See page

w(u) The Buchstab function, used to approximate ®(z,y). See §7.2.

(N,alpha)
Z(N,a) The number of n, 1 <n <N, SuChCE}é%a{u”} < a; see page ﬁ? F asea

6 Dirac delta measure. See page S rDivProb
A(x) is the error term in the Dirichlet Divisor Problem. See page @7
A(n) Hooley’s function; see

An(z)  is the Fejér kernel; see e

A Lebesgue measure, see page ;

v(A) numerical radius of the square matrix A. See page A7

p(A) spectral radius of the square matrix A. See page {27
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Symbol

p(y)
p(N)

p(u)
on(z)
®(z,y)
2

Contents

Meaning
I g [feasrho, overlinerho
= lim supm?%f;’(m +y) — (@) e?fgi%ﬁll,ﬁﬁrnnerho
=maxpr y, p—prp1 1. See page [I42
pln = p>N
The Dickman function, used to estimate ¢ (z,y). See FATN

A Cesaro partial sum of a Fourier series; see page

N

The number of n < x composed entirely of primes p > .uﬁgg

37.2.

a
A sum over primitive characters modulo ¢g. See page

The number of n < x composed entirel ofaggiprpoeds p <1y. See §7.1.

A Cartesean product of sets. See page @7

The floor of z, which is the unique integer n such that n < x < n +1;
formerly denoted by [x].

The ceiling of z, which is the unique inte%er n such that n — 1 < x < n.
is a Fourier coefficient of f; see page [

T
is the Fourier transform of f; see age

Norm of the vector x. See page

. st
= min,eyz | — n|. See page l%} . | inFormIneal
The operator norm of the matrix A. See page ﬁg r
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Preface

We reiterate that our object is to introduce the interested student to
the techniques, results, and terminology of multiplicative number the-
ory. Whilst it is not intended that our discussion will always reach the
research frontier, it is hoped that the material here will prepare the stu-
dent for tackling the more advanced research literature. As far as possible
the topics of this volume are either self-contained or build on material
in the first volume. We continue to assume that the reader has some
acquaintance with the fundamentals of elementary number theory, ab-
stract algebra, measure theory, complex analysis, and classical harmonic
analysis. More specialized or advanced background material in analysis
is provided in the appendices. It should be noted that as we build on the
earlier volume and develop the more advanced material there is often
also increased complexity of detail and this requires greater stamina in
the reader. The average chapter length in this volume is about 50 pages,
compared with 30 or so for volume 1.

The relationship of exercises to the material developed in a given
section varies widely. Some exercises are designed to illustrate the theory
directly whilst others are intended to give some idea of the ways in which
the theory can be extended, or developed, or paralleled in other areas.
The reader is cautioned that papers cited in exercises do not necessarily
contain a solution.

The years since our first volume appeared have witnessed many devel-
opments, especially in sieves and gaps between primes, and very recently
on large values of Dirichlet polynomials and zero density estimates. As
happened with the first volume, we again have too much material for
one volume, so we are emphasising sieves in this volume, and postpone
such topics as Vinogradov’s method of exponential sums, the wider zero
free region for the zeta function, mean and large values of Dirichlet poly-
nomials, zero density theorems, Linnik’s theorem, probabilistic number
theory, and pair correlation of zeta zeros for the next volume.

While it is to be expected that we will be building on the first volume,
there are three topics that might have appeared minor but will take on
a greater role as we continue: (1) The Ramanujan sum, as discussed in
§4.1 will turn up repeatedly. (2) The function ¥ (x,y), which counts the
integers n < z all of whose prime factors are < y was discussed in §7.1,
where we found that it is asymptotic to p(u)z with v = (logx)/logu.
Here p(u) is the Dickman function. (3) The quantity ®(z,y) is defined
to be the number of integers n < x all of whose prime factors are > y. In
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§7.2 we found that ®(x,y) ~ (w(u)x —y)/logy when u is bounded. Here
w(u) is the Buchstab function. The Dickman and Buchstab functions
are determined by differential-delay equations, which imparts striking
behaviour:

Many people have assisted us in this work — including P. T. Bateman,
E. Bombieri, T. Chan, J. B. Conrey, H. G. Diamond, T. Estermann,
J. B. Friedlander, S. W. Graham, S. M. Gonek, A. Granville, D. R.
Heath-Brown, H. Iwaniec, H. Maier, G. G. Martin, D. W. Masser, A.
M. Odlyzko, G. Peng, C. Pomerance, H—E. Richert, K. Soundararajan,
and U. M. A. Vorhauer. In particular, our doctoral students, and their
students also, have been most helpful in detecting errors of all types.
We are grateful to them all. We would be most happy to hear from any
reader who detects a misprint, or might suggest improvements.

Finally we thank our loved ones and friends for their long term sup-
port, and David Tranah at Cambridge for his encouragement and patient
endurance.
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16

Exponential sums I: van der Corput’s
method

We are interested in non-trivial bounds for sums of the form

N
> elfn)

where f(z) is a smooth real-valued function. In this chapter we develop
methods whereby one may show that such a sum is indeed o(N). The
quality of the results depend on the finer properties of f. In some simple
cases the estimates are best possible, but in most situations the bounds
we achieve fall far short of what we suppose to be the truth. We begin
with the simpler continuous analogue. This provides motivation, and the
results we obtain are also useful in dealing with the discrete case.

16.1 Exponential integrals

We seek bounds for integrals of the form f; r(t)e®®® dt in terms of the
behaviour of r(t) and 6(t). We begin by generalizing the obvious inequal-

ity
iat <
’ / dt‘ min (b o |) (16.1)

Theorem 16.1 Let r(t) and 0(t) be real-valued functions on [a,b] for
which r(t) is continuous on [a,b], 6(t) is differentiable on [a,b] (where
if necessary we take the right and left hand derivatives at a and b re-
spectively), 0'(t) is continuous on [a,b], and 0'(t) # 0. Suppose that A
satisfies Varygpr(t)/0'(t) < 2\ and [r(t)/0'(t)] < A when a <t < b.

1

E:ExpIntEstO



2 Ezponential sums I: van der Corput’s method
Then
b .
‘/ r(t)e® dt| < 4.

In many interesting cases r(t)/6’(t) is monotonic and then the bound
on r /0" implies the bound on the variation.

Proof Let p(t) = r(t)/0'(t). We integrate by parts, using the Riemann—
Stieltjes integral as developed in Appendix A. Thus

b b
/ r(t)e® dt = —i/ p(t)de®®
a a (16.2)

BN b
= [fip(t)ele(t) +i/ e dp(t).

a

Hence

‘/abr(t)em(” dt‘ < lp(a)| + |p(b)] +/ab |dp(t)] < 4X.
0

It is instructive to view the above argument geometrically. When a <
t<blet Z(t) = f; 7r(u)e?™ du. These points describe a curve in the
complex plane, with tangent vector r(t)e?"). Thus Z(t) is moving with
speed |r(t)|, and the argument of the tangent vector is changing at a
rate 6'(t). Hence the curve has curvature k = |6’(t)/r(t)|. Consequently
the radius of curvature at time ¢ is |p(t)|, and C(t) = Z(t) +ip(t)e?®® is
the centre of the osculating circle. One may reach Z(b) from the origin
by following the path Z(t). Alternatively, to reach Z(b) one may first
move along the line segment from 0 to C(a), then follow the path C()
to C(b), and finally pass along the line segment from g(lilch‘%(%alZ (D).
These two alternatives are expressed in the identity . en p(t) is
differentiable we find that C'(t) = ip/(t)e?®®). Thus the tangent vector
C'(t) to the curve C(t) is at all times perpendicular to the tangent vector
Z'(t) to the curve Z(t), and C(t) moves with a speed equal to the rate
of change of the radius of curvature. Suppose for simplicity that p(t)
is positive and decreasing. Then the curve Z(t) spirals inward, in the
sense that the osculating circles are nested. To see this, observe that if
a§t1§t2§b,then

et — )| = |i [ 7 0 o) < / % o)) = pltr) — plt2).

In particular, the circle with centre C(a) and radius p(a) passes through

| E:Intre”ithetal




16.1 Ezponential integrals 3

the point Z(a) = 0, whilst Z(b) falls within the circle. Hence Z(b)| <
2p(a) in this case. ExoIntEsti

In many cases we do not need the full generality of Theorem @Wlﬁ
the following special case suffices.

Cor:EprntEst1a| Corollary 16.2 Let r(t) and 6(t) be real-valued functions on [a,b] for

which r(t) is continuous on [a,b], 6(t) is differentiable on [a,b] (where if
necessary we take the right and left hand derivatives at a and b respect-
iwely), 0'(t) is continuous on [a,b], and &' (t) # 0. Put p(t) = r(¢)/0(t). If
p is monotonic and A is a number such that —\ < p(t) < X fora <t <,
then

b
‘/ r(t)e® dt| < 4.

:ExpIntEstl
If 6’(t) vanishes at some point of the interval [a, b], then Theorem“ §i e
does not apply, but we can still obtain a bound when 6" (¢) exists and is
not too small.

Theorem 16.3  Suppose that r(t) and 0(t) are real valued and con-

tinuous on [a,b], that 0 < r(t) < M, that 6(t) is twice differentiable on
[a,b] (where if necessary we take the right and left hand derivatives at a
and b respectively), that 0'(t)/r(t) is monotonic and that 0 < p < 0" (¢)
when a <t <b. Then

b
, 8M
‘/ r(t)e® dt| < =—.
o Vi

The above often suffices in applications. If necessary, a more precise (2(x))Estl
approximation can be derived, say via the more elaborate Theoremii 6[ ]rg
below. However, generally the above bound is of the correct order of

magnitude. For example, in the case 7(t) = 1 and 6(t) = ct? with ¢ > 0
we have 6”(t) = 2c and

/ etct® gt — e(1/8)\/x/c. (16.3) |E:IntExp(ict‘2)

(A proof o:f[ I:c%igtigs outlined in Exercise 9.3.5.) If we were to apply The-

orem o the integral above, we would find that it is < 1/4/c, which
is to say we Woggl tobtain a bound of the correct order of magnitude.
In Figure we depict the curve Z(t) = ffoo ™" du, which spirals

tightly except near the inflection point at ¢ = 0.

Proof Let & > 0 be a parameter at our disposal. Since 6”(¢) > 0,
we know that 6'(t) is increasing, and hence if there are ¢ for which
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|6/ (t)| < dp, then such ¢ comprise an interval, say Io. If Iy is a proper
subinterval of [a,b], then the complement of I consists of one or two
intervals, say I11. The length of Iy is at most 24, since 0" (t) > u. Hence

‘/ r(t)e?® dt‘ < 2MG.
Iy

:ExpIntEstl
For ¢ € Iy; we have |6'(t)] > du. Thus, by Theorem @%ﬁ% =
Mp=16~1, we deduce that

4 AM
‘/ r(t)et?® dt‘ < —.
T4 5/"‘
Hence altogether
b
; 8M
‘/ r(t)eze(t) dt’ < 2M6 + E’

and the desired bound follows on taking § = 2u~ /2. O

0.8+
0.6 1

0.4 4

0.2 0.4 0.6 0.8

Figure 16.1 Graph of z(t) = fot e? du for —7 <t < 7.

F:EulerInt



16.2 Elementary estimates 5
S:ExpInt .
1 Exercises

1. Suppose that k > 2, that f : [a,b] — R is k times differentiable on
[a,b] and that there is a positive number A; such that for each z in
(a,b) we have f)(x) > \. Show that

b
‘/ e(f(a:))d:c’ < k2ba .
2. Suppose that aq, as,...ax are real and let
t
I(t; ) = / e(aqu + agu? + - - apu®) du.
0

Show that for any positive number ¢,
t
(1+ |oa |t + |aolt? + - - + | |tk) /R
3. (Talmage 2022) Suppose that k > 2 and 64,...,0;, 8 and ~ are real

numbers with 6,y # 0, (k+1)/(k+2) < 8 <1, and write p = S +17.
Suppose further that X is a real number with X > 1, and put

It o) <

X
I(Xie»/)) = / 6(01t 4+ gktk)tpfldt'
0

Show that
X8
(1+ X|01] + - - - + X¥|0p| + [7|)1/*E+D”

1(X;0,p) <

16.2 Elementary estimates

We now derive discrete analogues of the esltg%%ggs of the preceding sec-
tion. Corresponding to the estimate we have the following

Lemma 16.4 Let ||a| denote the distance from the real number a to

the nearest integer, ||| = minpez | — n|. Then

1
< min (N, 7) (16.4) |E:GeoSumEst
2||all

Proof The above sum has N summands, each of them unimodular,
so by the triangle inequality we see that N is an upper bound for the
modulus of the sum. Now suppose that « is not an integer. Then e(a) #

N

Z e(na)

n=1
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1, so by the formula for the sum of a geometric progression we see that
the left hand side above is

e((N 4+ 1)a) —e(a)
e(a) =1

H IntEstl
As an analogue of Theorem we have

Theorem 16.5 (Kusmin-Landau) Let aq,aq,...,an be real numbers
and for 1 <n < N put §, = apt1 — . Suppose that A is a positive

real number and that A < 6 <6 < ... <dny_1<1—-—A<1. Then

| i e(on)

Proof Let z, = e(an), Wn = znt1/2n = €(6n) and p, = 1/(1 — wy,).
Then

N—-1
Z an Z pn(zn - Zn+1) + ZN -
n=1 n=1

By partial summation the right hand side above is

= piz1 + Z —pn-1)zn + (1—pn_1)2n, (16.5)
so by the triangle inequality

N
‘ Ze(an)

If p=1/(1 —w) and w = e(d) with 0 < 6 < 1, then p = (1 + i cot wd)/2
and |p| =1 —p| =1/(2 sin7r5). Hence the above is

2 1 _ 1
~le(a) = 1] |sinmal = 2flaf

TA
< cot —.
2

< pl + D lpn =l + [1=pnal.

1

N—

1

fE t m6p—1 — cot md —_—
2 o CoLTOn—1 CO7Tn) + 25in7r5N_1

2sin 7151

- 1( 1 + 1 1 + 1 )
2 \sinwdy tan oy tanmon_1 sinmdn_1

< .1 n 1
— sinTA tan TA
tﬂ'A
= cot —
2 )

and the proof is complete. O
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The above argument can be interpreted geometrically as fol}owss.mlﬁe(;c
sp denote the n-th partial sum of the sum on the left of , and
for 1 < n < N, put ¢, = Sp, + Zpt1pn. Then ¢, = sp—1 + 2ppn =
Snt1 — 2nt1(1 = pn). Thus ¢, is the centre of the circle that passes
through the three points s,,—1, $p, Sn+1, and the radius of this circle is
|on|. Hence p _gorresponds to the function p(t) introduced in the proof
of Theorem @LOM&W construct a polygonal path from 0 to sy
whose vertices are the partial sums s,,. Alternatively, we may construct
such a path that goes from 0 to c;, then to co, and so on, and finally
from c¢y_1 to sy. This suggests writing sy as a telescoping sum

: SumId
Since ¢, — ¢n—1 = 2n(Pn — pn—1), this is precisely the identity @7
In most applications, the a,, are values of a function with continuous
derivatives, as follows.

Corollary 16.6 Let f(x) be a real valued function continuous on [a,b],

with a continuous deriwative on (a,b), and such that f'(x) is increasing.
Suppose further that My is a positive real number such that || f'(z)|| > M,
for all x € (a,b). Then

2
> )| < 7

a<n<b

Proof 1If there were an integer k such that for some = and y in (a, b) with
x # y we had f'(z) < k < f/(y) it would follow from the intermediate
value theorem that there is a z € (a,b) such that f/(z) = k and || f'(2)] =
0. Hence we may suppose that there is an integer k such that for every
x € (a,b) we have k < f/(z) < k+1landsok+M; < f'(z) < k+1—M;.
If we replace f(x) by f(x) — kz, then as kn € Z the sum is ung:harﬁggéi
and M; < f'(x) <1— My, which allows us to apply Theorem Wi
an = f(n) and A = M;. By the mean value theorem for derivatives we
know that if [n,n + 1] C [a,b], then there is a &, € (n,n + 1) such that

- Land
dn = f(n+1) — f(n) = f(&,). Thus the hypotheses of Theorem @L
are satisfied and it remains only to note that cotu < 1/u when 0 < u
< /2. O

H Land : SumEst1
The bounds provided in Theorem @Sa—nd' Corollary @me

sharp (see Exercise 16.2.1). The partial sums spiral tightly in intervals in
which || f'(x)] is large, but the terms tend to pull in one direction when
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207

(a)

Figure 16.2 (a) 352, e(n?/1600); (b) 323%° e((n/3)3/2) = 25.56+25.81i.

f'(z) is near an integer. For example, consider f(r) = x2/1600 with
a =0, b= 800. Then f'(a) = 0 and f'(b) = 1, but f'(z) is increasing
and || f'(x)]] > 1/50 when 16 < z < 784, so that

784 9
n 100
< = < 31.831.
‘2266(1600)‘ =

By combining this with the trivial bound for the contribution of the first
15 and last 16 terms we find that

800 9
‘Ze(1goo>’ < 62.831.
n=1

The exact value of this sum is 20 + 20¢, as we see from Corollary 9.16.

In general when f(b)— f'(a) is large but f”(x) is small we may obtain
a useful bound by treating separately the subintervals in which || f'(z)||
is small or large.

Theorem 16.7 Let N be a positive integer with a < b < a+ N and
suppose that f is twice differentiable on [a,b] and that 0 < My < f"(z) <
AMs when a < x <b. Then

Z e(f(n)) <a M21/2N+M2_1/2.

a<n<b

If instead we have —AMy < f”(x) < —Mjy, then the same bound
applies, as we see by taking complex conjugates. This remark also applies

F:PartSums2



16.2 Elementary estimates 9

. . . . H strt pPumEstThirdDeriv
later to the corresponding derivatives in Theorems[I6. .1Z[an .
H vsS

rl
and Corollary %j

If M5 > 1, then the bound given above is trivial, as it must be, since
f(x) may be increasing so rapidly that all the numbers f(n) are integers
(consider the case f(z) = x(x + 1)/2). If My < N~2, then again the
bound is trivial, because f(x) may be essentially constant throughout
the interval in question (here consider f(x) = (2/(2N))? on the interval
[a,b] = [0, N]). If N2 < My < N~1, then the bound proyided is likely
to be of the correct order of magnitude, unless Theorem 1s applic-
able. If N7! < M, < 1, then it muggsg’e possible to obtain a sharper
estimate by using Theorem e could estimate how the impli-
cit constant depends on A, but in practice one should cut the interval
into subintervals so that A is bounded in each application. For example,
suppose that we wish to estimate

jg:e((n/3fv2). (16.6)

We take f(z) = (2/3)%/2, and note that we ma Ltaa}llée M, =< a*/? and
A < 1 when a <z <b < 2a. Then Theorem %ﬁs the estimate

Z e((n/3)3/2) < a’/t,

a<n<b

|E:sune ((n/3)"3/2)

E:sume ((n/3)"3/2)

On summing over dyadic blocks, we deduce that the sum in (6.6 is
< N3/% which is best possible (see Exercise 16.3.3). In Figure

one may note that the 1rpaurtial sums resemble a number of copies of the

. . H erint .
curve in Figure one for each solution of f'(x) € Z. If if’(x,,) =
. N R etInt

v € Z, then we obtain a copy of the curve of Figure @lsﬁred by
a factor < f”(x,)"'/2, and rotated by 27 (f(x,) — vz,). In the case
under consideration we find that x, = 1202, and hence f(z,) — vz, =
—41% € Z, so that these contributions all pull in the same direction.
More typically in general the f(x,) are not integers and one is led to
consider a new exponential sum of the form > e(f(x,) — vz,). The
transformation from the original sum to this new sum is achieved by
means of an analytic technique that we develop in the next section.

Proof of Theorem %ave already noted that the bound is trivial
when My > 1. Thus we suppose that My < 1/4. Since f/'(b) — f'(a) =
(b—a)f"(€) < AMy(b—a) and f’ is increasing, we see that the interval
f'(la, b]) contains <« AM3(b — a) + 1 integers. Let A be a positive para-
meter at our disposal. Then the set of x € [a,b] such that || f'(z)]| > A

ums?2
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can be partitioned into at most << AM>(b—a)+1 intervals, and likewise
so can the set x € [a, b] such that || f'(z)]] < A and in the latter case each
interval is of length at most < AM, 1 By Corollary e contribu-
tion to the sum from the terms with n in a subinterval of the first kind
is < A7!, and trivially the contribution from such n in a subinterval of
the second kind is < AM; ! 4 1. Hence the sum in question is

<a (MoN + 1) (A + My ! + 1),
and the choice A = 1\421 /2 gives the stated bound. O

As a further application of Theorem @%sider the trigonomet-
ric polynomial
N
Pla) = Ze(nlogn+na). (16.7)

n=1

Take f(x SmemS}:CQ)gx + ax. Then we find that f”(z) = 1/z, and The-
orem gives the estimate

Z e(nlogn + na) < a/?
a<n<b

when a < b < 2a. On summing over dyadic blocks we deduce that
P(a) < N1/? (16.8)

This is best possible, at least for some «, since by Parseval’s identity we
have

/01 |P(a)]?da = N.

Thus P(«) is an example of a trigonometric polynomial with unimodular

coefficients and such that || P2 = || P SSiEst1
We have noted t}slglgEgC%rllary 1s useless when f/(z) is large, but
that Theorem [I6.7] provi ¢s asubstitute when 1 () is small. If f’(z) is

large, then Theorem “@? 1s useless, but we may still obtain non-trivial
estimates if f”/(x) (or some higher derivative) is small. To derive bounds

that depend on higher derivatives we introduce an important new idea.

E:TrigPolyl

|E:TrigPolyEst1
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Lemma 16.8 (van der Corput) Let z1, z2,...,2zn be arbitrary com-
plex numbers. Then for any integer H with 1 < H < N we have

N 2
HQ‘ ZZ"

N
SHN+H-1)) |z

n=1 n=1
H— N—h
2(N+H—1)Z(H h’Zzn+hzn
h=1 n=1

Proof To simplify the ranges of summation, we suppose that z, = 0
when n < 1 or n > N. Then

HZzn_ Z Z Zp—r = Z Z Zp—p-

0<r<H O0<n<N+H 0<n<N+H 0<r<H

Hence by Cauchy’s inequality we see that

H2‘Zzn (N+H-1) ‘Z o P

0<n<N+H 0<r<H
On multiplying out the square on the right, and inverting the order of

(16.9)

summation, we see that this is

=(N+H-1) > > 20 iZuss

0<r<H n

0<s<H
The inner sum depends only on r — s, and a given value h of r — s occurs
for H — |h| different pairs r, s. Thus the above is

N H-1
H(N+H-1)Y || +2(N+H-1)Re Y (H—h) Y zninZn, (16.10)
h=1 n

n=1

and the desired result now follows. O

In applications, it is likely that some cancellation has been discarded
when Cauchy’s mequaht%r is applied. That is, there ma; bgfgome loss
in the inequality 1m11ar1y, in passing from dﬁi%ﬁ_ﬁ the final
result by means of the triangle inequality, some further cancellation may
have been lost.

The van der Corput Lemma has an immediate application to Weyl’s
Criterion concerning the distribution of a sequence u, modulo 1, as

E:vdCDiff1

E:vdCDiff2
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IDmod 1
discussed in ﬁ@v‘% take z, = e(ku,) in the above, and thus find that

N 1 L Nen 1/2
Ze(kun) < NH_1/2+N1/2(ﬁZ‘ e(k(tuntn —un))D .
n=1 h=1 n=1

(16.11)
Suppose that the sequence uy,1p — u,, is uniformly dis‘priblf(t:lggltz for each
fixed positive h. Then by Weyl’s Criterion (Theorem € inner sum

over n on the right hand side above is o(N). Hence the entire term
containing this sum is o(N). Since H may be taken to be arbitrarily
large, it follows that

N
> e(kuy) = o(N)

as N — oo, for any fixed nonzero integer k. Thus by a second application
of Weyl’s Criterion we have

Theorem 16.9 (van der Corput) Let {u,} be a sequence of real num-
bers with the property that, for each positive integer h, the sequence
{Unt+n — un} is uniformly distributed. Then the sequence {u,} is uni-
formly distributed.

From the example u,, = nf with 6 irrational we see that the converse
of the above theorem is false.

Corollary 16.10 (Weyl) Let P(z) =" c;27 be a polynomial with real
coefficients. If there is a j > 0 for which the coefficient c; is irrational,
then the sequence {P(n)} is uniformly distributed modulo 1.

The constant term ¢y may be rational or irrational, since it only causes
the sequence to be translated. The converse is obvious, for if the coef-
ficients ¢; were to be rational for all j > 0, then the sequence {P(n)}
would be periodic and then the numbers P(n) would not even be dense
in T.

Proof We first prove the assertion by induction under the stronger hy-
pothesis that the leading coe;f'ﬁ*cailerllltaL 1}1% irrational. If deg P = 1, then the
result follows by Theorem eg P = d > 1 and the leading coef-
ficient ¢4 is irrational, then for any positive integer h the polynomial
P(z + h) — P(x) has an irrational leading coefficient hdcy. Hence the
numbers P(n + h) — P(n) are uniformly distributed by the inductive
hypothesis. This establishes the result when the leading coefficient is
irrational.

E:vdCDiff3
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Now suppose that P(x) has an irrational coefficient (other than the
constant term), which may or may not be the leading coefficient. Write
P(z) = Py(xz) + P-(x)/q where all the non-zero coefficients of P; are
irrational and all the coefficients of P, are integers. Then P;(x) has
positive degree. Moreover, for any integer a the polynomial P;(qz+a) has
positive degree and an irrational leading coefficient. Hence the sequence
P;(gn + a) s uniformly distributed. On the other hand, the sequence
P.(qn + a)/q is constant modulo 1. Hence the sequences P(gn + a) are
uniformly distributed. It follows at once from the definition of uniform
distribution that the sequence P(n) is also uniformly distributed. O

: orputDiff
We now use the van der Corput Lemma (Lemma ilgg to derive
bounds for the exponential sum Y e(f(n)) that depend on higher deriv-

atives of f.

Theorem 16.11 Let N be a positive integer and suppose that a < b <
a+ N and 0 < M5 < f"(x) < AM5 when a < x <b. Then

ST e(f(n) <a N(My/® + N7V 4 N7,
a<n<b
If M35 < N3 or My > 1, then the bound is trivial, for then the second
factor on the right is larger than 1. Of the three terms in parentheses
on the right, we see that the first one is largest when N—3/2 < M3 < 1,
the second is largest when N72< My < N_3/2, and the third is largest
when N73 < M3 < N~2.

Proof In view of the remarks above, we may suppose that N=3 <
Ms < 1. Suppose that 0 < h < b —a, and let fr(z) = f(x +h) — f(z)
for a < x < b— h. By the van der Corput Lemmawe see that

H 1/2
Z e(f(n)) <« NH™Y/2 4 N1/2 <; Z ’ Z e(fh(n))D . (16.12)
h=1

a<n<b n
Since f//(x) = f"(x + h) — f"(x) = hf" (&) =< hMs3, it follows from
SumEst2 : 1/271/2 1/2 7 7—1/2
Theorem at the inner sum is < 4 h'/ M'"N+h~ / M; 7. On

inserting this estimate, we see that the right hand side above is
<a NH Y2 4 M3 HYAN + My Y *H-V/ANY2,

If N=3/2 < M3 < 1, then we take H = [M;l/g], and the first two terms
are the same size and the third is smaller. If N=2 < M3 < N=3/2 then
we take H = [M; 'N~1], whence the second and third terms are the
same size and the first is smaller. In both these cases the chosen value

E:DiffExpSuml
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of H satisfies the requirement that 1 < H < N. Finally, if N3 < M3 <
N2, then we take H = N, and the third term is the largest. O

We note that if the innermost sum on the right in @%}%mated
trivially, then the bound obtained for the left hand side is trivial, but no
worse. Consequently, a non-trivial estimate for the inner sum on the right
will yield a non-trivial estimate for the sum on the left. Thus the Weyl-
van der Corput inequality is a very useful tool, although (as we have
already noted) it may be expected to involve some loss of quantitative
precision. One may attempt to avoid some of this loss by constructing
estimates for two-dimensional exponential sums, i.e. sums of the form
> e% g(lf%,fg)) Such estimates may then be applied to the double sum
in , thereby avoiding the appeal to the triangle inequality in the
last step of the proof of the Lemma.

If f(x) is large, then the estimate of Theorem @g’%ial, but if
f (4)(x) is small, then we may still obtain a,qsefu}lrr?Esstggnate by applying
the van der Corput Lemma and Theorem [I6.11] in the same way that

H umEst3 Est2
we derived Theorem rom Theorem |I6. on mum%&g—gﬁ%w
we obtain the following general result, of which Theorems an

are the first two cases.

T:SumEstrthderiv| Theorem 16.12 Let N be a positive integer, and let v be an integer

with v > 2. Suppose that a < b < a+ N and that 0 < M, < f(r)(a:) <
AM, when a <x <b. Put R=2". Then

5 () MO 4 5 a5
a<n<b

Proof Since we have already established this for r = 2 and r = 3, we
may suppose that r > 4, and that the estimate has been established
for r — 1. We may also suppose that N~" < M, < 1, for otherwise

the bound is trivial. We agply the van der Corput Lemma as in the
umEst3 " | . : fExpSuml . 1)
proof of Theorem 0 obtain the estimate Q\% CAsf T () =

fO D (z+h)— frD(z) = hf")(€) < hM,, we deduce from the induct-
ive hypothesis that

Y. elfn(n) €ap N((hM, )/ E=D 4 N=YE 4 (N7 hM,) =Y R),
a<n<b—h

-DiffExpSuml
Inserting this in @,—\gﬁnd that the sum in question is
<ap N(HY? 4 (HM,)YED L N=2/R (N HM, )~/ R).

If M, is not very small, say N—2t4/% < M, < 1, then we take H =
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[Mfz/(Rfl)] . Then the first two terms are the same size, and the remain-
ing terms are smaller. If M, is extremely small, say N~" < M, < N—"+1,
then we take H = N. Then the last term is largest. In the intermediate
range N~"t1 < M, < N—2*%/E we have some freedom in our choice of
H, because it suffices to choose H so that the first, second and fourth
terms are majorized by the third term. That is, we take H to be an
integer such that H > N¥B H <« M 'N-2t%/E H > M 'N?*",
and of course 1 < H < N. To complete the proof it suffices to verify
that the lower bounds for H are indeed smaller than the upper bounds
when M, is in the interval under consideration. O

We now consider what our estimates yield when the}gz are applied to
sums of the form ) _ _, n™*. By Corollary wi x) = t —logx
we see that if 7 < a < b < 2a, then

Y ont < % (16.13)

—at

SumEst2
Similarly, by Theorem@%ﬁ% that if 72/3 < a <7 and a <b < 2a,
then
> ot (16.14)
a<n<b
This bound also holds for 71/2 < ¢ < 72/3 la}nltsfor such smaller a we
obtain a better bound from Theorem TH3 < q < 72/3 and
a < b < 2a, then
> Tt < P8, (16.15)

a<n<2a

Further such estimates can be derived for smaller values of gJiPE%QC 1they
become successively weaker. Our very first estimate, , 1S the cor-
rect order of magnitude, but is flawed because we can derive a much
more precise statement about such sums, by using the following

Theorem 16.13  Suppose that 0 < 6 < 1/2, that f is continuous and
monotonic on [a,b], and that =1+ 6 < f'(z) < 1—-06 fora <z <b.
Then

b
> elfm) = [ esa))do+Os(1)
a<n<b a

H essB1
This is a precursor to the more elaborate Theorem @fﬂﬁfwe shall
prove in the next section. The above may be viewed as an instance of
a Riemann sum approximation to an integral, but with an error term

|E:Sumn"-itEst1

|E:Sumn"-itEst2

| E:Sumn~-itEst3
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that is much smaller than would normally be the case, due to the special
shape of the integrand.

Proof First assume that f’ is increasing. By Riemann—Stieltjes integ-
ration we see that the left hand side above is

/: e(f(z))d|x] = /ab e(f(z))dx — /: e(f(x)) d{z}.

Thus our only task is to bound this last integral, which is

b
— [ etr@naier - 1/2)
a , ,
— [etr@er - 12|~ [ (172 (o)) detf)
b
:Qm‘/ ({z} — 1/2)e(f () f'(x) dz + O(1). (16.16)

In @% define the sawtooth function s(x) to be s(x) = {z} — 1/2
when x ¢ Z, and s(z) = 0 when € Z (see also Lemma D.1). Thus
we can switch from {z} — 1/2 to s(x) in the above integral without
altering its value. In Appendix D we determined the Fourier Series of
s(z), showed that the Fourier Series is boundedly convergent to s(z),
and even established this in a sharp quantitative form:

s(x) = — Z 62(7]:;2) + O(min (1’K|1|x||)> (16.17)

0<|k|<K

We can now see why the integral above is so small: s(x) is essentially
a linear combination of functions of the form e(kz), each one of which
is turning quite quickly, while e(f(z)) is turning comparatively slowly.
Thus the product e(f(z))e(kz) is turning at approximately the same
speed as e(kx), and so we can estimate the contribution of this term by

appealing to Theorem @’Wgt%ke r(z) = f'(x), 0(x) = 2 (kx+ f(z)).

Thus
r(z) f'(z)

0'(x)  2n(k+ f'(2) (16.18)

au+b
cu+d

but if ¢ # 0 it has a simple pole at —d/c¢, and is monotonic on both
the intervals (—oo, —d/c), (—d/c, o0). Moreover, on both these intervals
the function is increasing, constant, or decreasing, according to the sign
of ad — bc. In the present case, the point —d/c = —k lies outside the

Now it is familiar that a function of the form is linear if ¢ = 0,
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interval [—1 + 4,1 — ¢] and ad — bc = 27k, so if k > 1 the expression is
increasing and lies in the interval

[ 146 1-9 ]
2r(k—1+96) 2m(k+1—-46)1"
Thus the expression @ has absolute value not exceeding
1-9 1 < 1
2m(k—146) “k—1+6 ~ k&’

H IntEstil
A similar argument applies when k < —1, so by Theorem @Eﬁ_ﬁﬂ'ﬁws
that

b
/a ek + F(@))'(x) do < @

for all nonzero integers k. Thus when t}%{e sawtooth function in (@

is replaced by the two terms in , the first term contributes an
amount < 61 Y 77 | k72 < 1/4. Clearly

1
1 log K
min (1, 7) dr € ——,

/o K| K

so the contribution to @% of the second term in ﬁf’s < (b+1-

a)(log K)/K, and this can be made arbitrarily small by taking K to be
large. Thus we have the result when f is increasing. If f’ is decreasing,
then — f’ is increasing, so we have the result for —f, and we obtain the
result for f by taking complex conjugates. O

By taking f(z) = 2_—7’: log z in the above, we see immediately that if
7 < x <y, then
1—it 1—it
—it _ Y -
=+ 0(1). 16.19
> o) (16.19)
z<n<ly

This allows us to establish a further useful result.

Lemma 16.14 Ifoc>0,s# 1, and 7 <z <y, then

—s xl_

o ont= yooa O(z77). (16.20)

1-s
z<n<y

: -it
Proof If o = 0, then this is just (@,iso we assume that ¢ > 0. In
what follows, we consider ¢ to be fixed. Put

Alu) = Z n=it, Bu)=2_"*

r<n<u
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We see easily that

1—s _ xl—s

/: u 7 dA(u) = Z n=?, /: u 7 dB(u) = %

r<n<y

Put R(ys) = A(u) — B(u). The difference between the two main terms in
1S

Y R(u)
s, du.

y

/ u 7 dR(u) = R(y)y % — R(x)z™7 + a/
By @%e know that R(u) < 1. Hence the above is < 77, and we
have the stated result. O

On future occasions, we may dismiss an argument of the above type
by saying simply, “By integration by parts it follows that ...”. However,
it is worth noting that the integration by parts is simpler if one first
removes the main term (as we did above) before integrating.

Theorem 16.15 Suppose that o > 0, that s # 1, and that x > 7.
Then

()= n*+ fl:s +0(z7). (16.21)

n<zx

It follows in particular, that if ¢ > 0, s # 1, and 7 < z < C7, then

()= _n"" + O(r ). (16.22)

n<z

Proof We quote Theorem 1.12, which asserts that

N YT e
C(S)_Tgy S e s/y{} du. (16.23)

We briefly outline the proof of this: We suppose first that o > 1, write
(o= [,
n<y y

add and subtract '~ /(s — 1) = fyoo u~ % du, and integrate the resulting
integral by parts. Then we O]EDSS$6Y§ that the resulting integral is analytic
for o > 0. This gives

01d
The integral in is < |s|/y°. Wgschoose y to be so large that
|s|/y~7 < 279. Then we subtract rom both sides to obtain the

result. O

E:ZetaEst2

E:ZetaEst3

E:ZetaEst01d
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We know (recall Corollary 1.17) that (1 + it) < log7 for |t| > 1.
We also know (recall Corollary 10.5) that [¢(it)| =< [¢(1 + it)|7'/? for
t > 1. It follows by convexity (recall Exercise 10.1.19(c)) that ((s) <
7(=9/2]og7 for 0 < ¢ < 1, and in particular that ¢(1/2 +it) <
/% log 7. We now derive a subconvex bound for ¢(1/2 + it).

Theorem 16.16 Let 7 = |t| + 4. Then for any real t,
C(1/2 +it) < /5 log 7.
Proof We first show that if 1 <a < b < 2a < 27, then
> Tt <al?rs, (16.24)

a<n<b

To do this, we consider @ in several ranges. First suppose that a < 71/3.
We argue trivially:

Z =it < q = /212 < g1/241/6,
a<n<b

-itEst3
Secondly, if 71/3 < a < 72/3, we use @—Whl—cﬁ ives premsely the

desired estimate. Finally, if 72/3 < a < 7, then by

Z n=it <« 712 = £1/3,1/6 < a1/27_1/6_

a<n<b
- tn-itsum
Thus @mblished. Next we show that if x < 7, then
> Tt < 20, (16.25)
n<x

To do this wgmglltsthe interval [1, z] into dyadic blocks, and apply the
bound 1|I§ ?%) to each block. The bounds grow exponentially, so the size

of the sum ofs%gnqgthem is the size of the largest term, which is z'/271/6.
From it follows by integrating by parts that

Z n=1/2=it  71/6 100 1

n<T

. Est3
The stated result now follows by combining this with @L O

xr (Z‘ S 7_1/3)’
Z nTt < Q2P0 (713 < g < 723,
n<e 2logr (723 <z <7T).

| E:shortn-itsum

E:Initsumn-

it

(16.26) | E:cumsumn-itEst




20 Ezponential sums I: van der Corput’s method

Thus we see that

St 2 log (1627

n<zx

whenever < 7. This bound is reminiscent of the Pélya—Vinogradov
inequality (Theorem 9.18), which asserts that if x is a nonprincipal char-
acter modulo ¢, then

M+N

> x(n) < ¢'*logg.
n=M+1

We now establish a hybrid bound that includes both of these estimates,
although only for initial sums, not sums over arbitrary intervals. To
ease the insertion of a contribution that occurs only when a character is
principal, we set

0 (otherwise).

1 =
Eo(x) ={ (=) (16.28)
Theorem 16.17 Let x be a Dirichlet character (mod ¢). Then

1—it
> xmn™ = Eo(x)@ - f ~+ O((gm)/?loggr).  (16.29) [E:hybridchin-itBnd
q —1

n<zx

Proo Subp]gose first that ¢ = 1. If x < 7, then it suffices to appeal to
- -itEst4 . - -itEst4
Itz > 7, then we treat the ran, e.from_iltto T using @W
the range from 7 to x by appealing to @7

We use the case ¢ = 1 to treat principal characters to moduli ¢ > 1.

Yoont=d 0Tt Y pd) =) pld) Y a7t

n<z n<x d|(n,q) d|q n<x
(n,9)=1 dn
— Zﬂ(d)d_it Z m—
d|q m<z/d
_ i (/D) 1/2
= Zu(d)d (1% +O(r"?logT)
dlq
pd)y "
- (dz T )T+ Ol@r ! og).
q

Here the sum over d is ¢(q)/q, and d(q) < 2¢'/?, so we have the result
for x, modulo g.
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Now suppose that x is a primitive character modulo ¢, ¢ > 1. From
Corollary 9.8 we know that

for all n. Here 7(x) = >.?_, x(a)e(a/q) is the Gauss sum of x, which is
not to be confused with our standard notation 7 = |t| + 4 which we also
employ here, and we know by Theorem 9.7 that |7(x)| = ¢'/2. Thus

> x(nn™ = i Zl (a) > elan/q)n". (16.30)

7(X)

n<zx n<x
We show below that if ¢ { a, then
, 1
Z e(an/g)n " <« 7'1/2(|| 1z + log q7> (16.31)
n<lx
:chin-jtID
This bound suffices, for then the right hand side of d@%
q—1
< q71/271/2 Z ( + log q7') < (qr)1/2<log qT + Z )
la/qll 1<azys2 @
< (q7)"*loggr.
: 7
To prove u%ﬁt f(u) = au/q — t(logu)/(2m). Then f'(u) = a/q —
t/(2mu). Let ug be determined by the equation
o =3l
2mug  2lgll

H SumEst1
If ug < x, then by Corollary ii%ﬁ we see that

To treat the sum over n in the interval 1 < n < min(z,ug), we divide
this interval into dyadic blocks. Since ||a/al| > 1/q, we know that ug <
q7, and hence the number of dEadlc blOCkb is < log gm. We note that

up<n<zx

f"(u) =t/(27u?). By Theorem ol ows that
Z elan/q)n™" < [t|V/2 + Ut| 712
U<n<2U

When this is summed over the dyadic blocks, the total is
||1/2
lla/qll

< [t *log T + uolt|7Y? < [tV log g7 +

E:chin-itID
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On corrullllil)ining these last two estimates we see that we have established
, 50 the desired result is proved for primitive nonprincipal char-
acters.
Finally, suppose that x is a nonprincipal character (mod ¢) that is
induced by a primitive character x* modulo d, for some d|q. Put r = ¢/d.
Then x(n) = x*(n) if (n,r) =1, and x(n) = 0 otherwise. Thus

Dox(mnT =" Tt =Y X (T Y ulk)

n<x n<wx n<x k|(n,r)
(n,r)=
_ X p(k X*(
=Sty Y = > HECE 5
k|r n<z k|r m<z/k
k|n

Here the outer sum has d(r) < 2r'/? summands, and the inner sum is <
(d7)*/?1og dr by what we have already proved for primitive characters.
Hence the above is < (¢7)'/?log q7, so the proof is complete. O

S:E1Est .
1 Exercises

1. Let M, K be positive integers with K < (M —1)/2 and take N = 2M,
A=(K+1/2)/M, o, =An, (1 <n< M), a,=(1-A)(n—M)+
AM (M < n < N). Further let §, = apt1 —an (1 <n < N) and
S =" e(ay,). Show that

A< <o <. <o S1-A,

that |S| = 2cot A, and that if M/K is large, then

TA
~ cot —.
|S| ~ co 5

2. Suppose that the sequence u,, is weakly increasing, that u, 1 — u, is

weakly decreasing to 0, and that lim, . n(u Sk o ﬁ()tUD (Note
that the sequence considered in Exercise satisties the ﬁrst two
of these hypotheses, but not the third.)

(a) Show that lim, . uy/logn = co.

(b) Use the Kusmin—Landau inequality to show that u,, is uniformly
distributed (mod 1).

(¢) (Fejér) Suppose that f(x) is a real-valued function defined on
the positive real numbers, such that f is weakly increasing, f’
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decreases weakly to 0, and that zf'(z) — oo as & — oo. Show
that the sequence f(n) is uniformly distributed (mod 1).

. Let P(a) = 25:1 e(n?/N + na).
(a) Show that P(a) < N'/2 uniformly in o
(b) Show that
1
/ |P(a)]? doe = N.
0

(¢) Deduce that there is an o such that |P(a)| > N/2.
. For arbitrary real ¢ > 0, prove that

2N
Z e(c/n?) < ANt 4 72N,
n=N
. Show that
2N 2
e(n—) <1
= 6N ’
but that

)| = N2
|2 eay)[ =
=N

n=

. Prove that if M3 < f"(x) < AM3 and f”(0) = 0, then
N

S e(f(n) <a My P+ N30y,
n=1

. Prove that if 1/N < ¢ < 2/N, then EnNzle(cn?’) < N5/6. Better
still, show that this bound can be replaced by N3/4+<.

. (a) By writing n = mp? + h, show that

S e(l) = elr) (M),

h=1

(b) Deduce that if p # 3, then the above is equal to p.
(¢) By writing n = 3m + h, show that
27 3 3 3 9 2
n h h*m
S () = el 3o o)

(d) Deduce that the above is = 9.
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9. In many applications, such as in treating the sum ZZZ N n', we find
that M, < MT/N._ Show that when this is the case, the best estim-

strthderiv .
ate from Theorem 1S obfained by taking r so that

N72HYE « M, <, N"1H2/R,
and that the estimate is then

&, NMYE=2),

10. Let f(z) be real valued with k4 1 continuous derivatives, and put

Show that for k > 1,

N
e(f(n)) < S*(1+ MN*1)
n=1
where
(k+1)
M = max M, S* = max e(P(n))
0<z<N (k+1)! X<N
n<X
11. Let z1,29,...,2ny be N arbitrary complex numbers, H be an integer
with 1 < H < N and define
N N+H
S(a) = Z zne(an), T(a)= Z e(am), K(a)= Ze(ah).
n=1 m=1 h=1
(a) Prove that
N 1
HY 2, = / S(a)K ()T (—a)da
n=1 0
(b) Prove that
1 H
/ 1S(0)P|K (a)Pda = H> |z.|*+2Re > (H—=h)_ zninZn-
0 n h=1 n

- orputDiff
(¢) Derive van der Corput’s Lemma (Lemma ilnﬁ-lgi from the above.
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16.3 van der Corput’s method

H orputDiff
By means of the van der Corput Lemma, Lemma @C\%Weduce the
problem of estimating one exponential sum to that of estimating some
other sums. We now use the Poisson summation formula to establish a
second, quite different, transformation of the initial sum.

Theorem 16.18 Let f(x) be real valued, and suppose that f'(x) is
continuous and increasing on the interval [a,b]. Put f'(a) = « and

f'(b) = B. Then

b
S ety = Y /e(f(z)—Vx)d:r+0(log(2+ﬂ—a)).

a<n<b a—1<v<p+1
(16.32)

Proof Let N be an integer such that |N —(a+£)/2| < 1/2. If we replace
f(z) by f(x)— Nz, then the terms in the sum on the left are unchanged,
f'(z) is still continuous and increasing, and the sum on the right is
unchanged, although the indexing of the terms has been translated, as o
has been replaced bt @’ = a— N, and 8 has been replaced by 5’ = §—N.
We note that o/ + 8 = a+8—2N, so that |o/ + 3’| < 1. Thus by making
a change of variable of this sort, we may suppose that |a + 8| < 1.

Let F(z) = e(f(x)) for a < z < b, and put F(x) = 0 otherwise.
Then F € [}(R) and F has bounded variation on R, so by the Poisson
summation formula (Theorem D.3),

1 ~
E —(F(n")+ F(n7)) = lim F(k).
2 K—oo
n k=—K
Since F(z) is continuous apart from possible jump discontinuities at_a or

b, the left hand side here is within Oeggglgf the left hand side in

The integral on the right in is simply F(v), so to complete the
proof it suffices to show that
> F(k)<log(2+ 8 —a) (16.33)
|k|I<K
k¢la—1,8+1]

for all sufficiently large K. Integrating by parts, we find that

= e(f(a) — ka e — b
F(k) = (f(27)m'k ka) _ (f(2b7)mk i + %/ fl(@)e(f(x) — kz) dz.

E:ProcessBId

essBId

|E:SumFHatTailEst

-ExpIntEstl
If k > B, then f'(x)/(f'(x) — k) is monotonic, so by Theoremi § this
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integral is < 8/(k — ). We note that

B
——— =< log(2 + f).
k;;l k(k —B)

- HatTailEst
We treat k < « similarly, and find that the left hand side of 1‘@%%) 1S

e(f(a)) e(—ka) e(f(b)) e(—kb)
—5 - ‘ ——— 1+ O(log(2+5-0)).
271 O<%:<K k 271 0<%:<K k

k¢[a—1,8+1] k¢la—1,8+1]

Since |a+ 8] < 1, we may pair each k in these sums with —k, except for
at most one k, whose contribution is bounded. Hence the above is

S Y TR ) Y T

B+1<k<K B+1<k<K
+ O(log(2 + B8 — «)).

That these sums are bounded can be seen from Theorem D.1, but we
find the following direct argument to be instructive. It suffices to bound
the first sum, which is an odd function of b with period 1. Hence it
suffices to bound this sum when 0 < b < 1/2. For those k (if there are
any) for which k& < 1/b, we use the inequality sinu < u to see that the
summand is < 2b. Since the number of such k is < 1/b, it follows that
the total _contsribution of such terms is < 1. By taking the imaginary

umEst
part of we see that

1
Z sin 27kb < —.

b
u<k<v

By summation by parts it follows that if v > 0, then

Z sin 2wkb < i
k ub’
u<k<v

Since uw > 1/b in our application, this contribution is also bounded, and
the proof is complete. O

T B1

Suppose we apply Theor.em;i § i ngegsa function f(z) such that f”(x) >
Ms > 0. By Theorem e integrals on the right hand side are
< M{l/Q. The number of terms in the sum on the right is f/(b) — f/(a)+

O(1). If we suppose that f”(x) < AMs, then the number of terms is < 4
. S 1/2 —1/2
(b—a)Ms+1, and thus the right hand side is <4 (b— a)MQ/ M. Su/mE'stz

This provides a second (more complicated) proof of Theorem
now we are in a position to determine whether there is any cancellation
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- essBId
in the sum on the right in @._To_this end Z%%B%USt first derive a
more precise estimate for the integrals in . Suppose that g(x) is

a real-valued function on [a, b], that there is a point g € [a, b] such that
g'(z0) = 0, and also that

0< My <g"(z) (16.34)

for € [a,b]. Let ¢(x) be the quadratic polynomial ¢(z) = g(xo) +

19" (z0)(z — 20)?. we expect that g(z) provides a good approximation

to g(x), at least when x is near . Conside 'ﬁrstE}t(h&‘icctlg2 ized situation
in which g(x) is exactly equal to ¢(z). By we see that

| ea@)dr = etgtan) + 1/8)9" o)

—0o0
As ¢'(x) ;s.inc%el@Eségcl% and ¢'(z) > Ms(b — xp) for > b, we see from
Theorem | a

/boo e(q(x)) dw < M3 (b — 20) ™"

This estim%te is_weak if xg is close to b, in which case we use The-
orem instead and obtain

/boo e(q(x)) dz < M; .

We may treat [“__e(g(z))dz similarly, and thus we find that

| etat@)ds = e(glan) +1/8)g" o)} +O(R) (1635)

where

Ry = min (M (w0 — a)™", My ) (16.36)

+min (My ' (b—z0) "1, M, 7).
In the general case g(x) is not a quadratic polynomial, but if the higher
derivatives of g are not too large, then the expression above provides a
good approximation to the integral in question.

Theorem 16.19 Let g(x) be a thrice continuously differentiable real-
valued function on [a.b]. Suppose that there is an xo € [a,b] such that
g’ (o) =0, and that holds throughout this interval. If |g"" (z)| <
Ms for x € [a,b], then

b
/e(g(m))dm:e(g(xo)+1/8)g“(x0)*1/2+0(R1)+0(R2) (16.37)

|E: Inte(q(x))Est1 |

|E:Inte(g(x))Est1
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: 1
where Ry is given by @ and
Ry = My ' M3/%. (16.38) [E:DefR2

If additionally g™ () ewists, is continuous and |g™*) (x)| < My for x €
[a,b], then we may take

Ry = (b—a)M; My + (b—a)M;°M3. (16.39)

o))

If instead of we have

) <~ <0, (1640

then we }Bgll_:sslt‘ghe the.or.em to —g(z) and take. comple?c conju agea{}%sﬂ
. This gives a similar result, but the main term in mus

be replaced by

e(g(xo) — 1/8)‘9”(330”_1/2. (16.41) |E:Inte(g(x))Est2

g’ 21D :ExpIntEst2 . . : (g(x))Est1
Proof By @and Theoremﬁ §§ we know that the integral in il@%( )

is <<M;1/ . Thus if a < zg <CL+M{U2 orb—M;U2 < z9 < b, then
there is nothing further to be done, in view of the error term R;. Thus
in continuing, we may assume that

at+ My <wg<b— My (16.42)
: (g(x))Estl
We multiply both sides of ; e ig(at:o)) to reduce to the case

g(xo) = 0. Similarly, we may translate the coordinates so that zo = 0.
We take ¢(z), as above, to be the Taylor approximation of order 2.
Then g(z) = q(z) + r(z) where the remainder term r(z) may be written
explicitly as
1 1
o) = 32° [ (= 0P (o) du, (16.43)
0

Similarly, ¢’(z) is the Taylor approximation of order 1 to ¢’(z), so the
remainder term r’(x) can be written as

1
r'(x) = m2/ (1 —u)g® (zu) du. (16.44) |E:r’ (x)formula|
0

. ) b
In view of (@ it suffices to show that

/b e(q(x))(e(r(z)) —1)dz < Ry + Ra. (16.45)

Let 0 be a parameter at our disposal, and let I = [c, d] denote the portion
of the interval [a,b] for which |z| < §, and let J = [a,b] \ I. The set .J
may be empty, but if it is not, then it consists of one or two intervals.
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b
B e see that |¢'(z)| > 0Ms for all « € J. Hence by Theorem
we find that

/Je(g(m)) dr < 6~ My?

Since ¢”(z) = ¢”'(0) > Ms, a similar argument applies to ¢(z), and so

/Je(q(x))(e(r(x)) —1)de < 6 ' My (16.46)

. Est
We now consider the integral (@?";Tssﬁicted to the interval I. Since
e(q(x))/(2wig”(0)) is an antiderivative of ze(q(z)), we integrate by parts
to see that the integral is

:meww>nd
2mig" (0)x . (16.47)
S (o (@) er@) -1
g”(O)/I (a( ))< x 2mix? )d '

Since d = min(b, ), it follows that 1/d < 1/b+ 1/6. Thus the upper
endpoint contributes an amount

KU MG 40T My < Ry + 6T My

|z|> M3, and by Wo I n that ' (r) < 22Ms3. Using the 1nequahty
le(u) — 1| < 27|u|, we deduce that the mtegrand is <« |z|Ms;, and hence
the second term in 1S << 2M 'Ms. On comparing this with

Inteq,rJEst 1/3

1b 10 we discover that the choice 6 = M5 '~ is optimal. This gives
4,rEst ! . . .
16.45) fWl’ch Ry given by . Our choice of § is plausible, since

A 1 .
16.43) allows us to show that (’/‘ng)l}zbs%?lau precisely when z € 1. dalt
It remains to derive Wi e refined error term . We
integrate by parts as above, but take I = [a,b]. Since d = b, the upper
endpoint now contributes an amount < b~' M, * < an T}%e lower end-

point is treated similarly. Write the integral in as T5 where

formula
The lower endpoint 1; treated snmlarly By 1'[6%3) we see that r(x

T, arises from the first term in brackets, and T from the second. Let
h(z) = r'(x)x~2 and j(x) = ¢’'(x)x~!. Then

= bh(x)e x))g (z) dx
7= [ Selow) () d

Z_/a (((;C)) (27(m))dx'

E:Inteq,rJEst

|E:eq,rIntParts
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. . . . r2 (x) formula .
Since h(x) is the integral in il@;% we see that h(z) < Ms. By differen-

tiating thls 1ntegral with respect to z, we find also that /'(z ) < M,. Sim-

ilarly j(x fo "(zu) du > My by and j'(x) = f ug” (zu) du
< Ms. Hence

d rh n h(zx)j’ M. M?

o (He)y W) b My M

de\j(z)/  j(x) j(x) My~ M

so that
Ty < My ' My + My My(b—a) + My 2M3Z(b— a).

To bound the integral 15 we follow the method used to derive the es-
timate - We let [ and J be defined as before. Put k(z) =r(z)z=3.
By we see that k(z) < Mjs, and that k/'(z) < My. Set m(x) =
(e(z) — 1)/x. Then m(x) < 1 and m/(z) < 1. The contribution of the
interval I to T is

d
/ e(g(@))em(r(z))k(z) dx
)

= [ o))

2mig"(0) ¢
d e(q(x)) , ! !
[ () @)k + () () da

< My My + My M2(d — ¢)® + My ' My(d — c).

In the second factor we use the inequality d — ¢ < §, but in the third
factor we use instead d — ¢ < b — a. Thus we find that

/e(q(m))(ie(g(:z)z ) do < Mz My + My MES 4+ My My(b — o).
I

As for the set J, we consider separately the integrals Jye(g(x))z?dx
and [, e ~2dx. Applying Theorem [I6.1] to the first of these in-
tegrals, we are lead to consider the function ¢’(x)x?. This quantity has
absolute value > M, and the expression is mongtonic since its derivat-
ive is g”(z)z%+2¢'(z)z > 0. Thus by Theorem Selgla))r 2 de <
M; 63 Similarly, as ¢'(z)2* = ¢g”(0)2® is monotonic, [, e(q(z))z~2 dx
< M56~3. On combining these estimates, we conclude that

Ty < My ' Mz + My ' M35 + My " My(b—a) + My 1673,

—~1/3

To optimise this estimate we again take § = M; ~/”. We combine this
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. . . . - IntParts
with our estimate for 77 to see that the integral in (ilﬁ%?) 1S

< Ry + M; Ty + Td)
< Ry + My 2 Ms + My 2My(b— a) + My > M3 (b — a).

Put U = M; (b —a)~'. The second term above is the geometric mean

of U and the fourth term. By we deduce that U < Ry, so the
second term is majorised by the maximum of the ﬁr%t f SiEgcgtllrth terms,
and thezraelﬁsore may be omitted. Thus we have dﬁ\gﬁ%ﬂﬁ error term

;and the proof is complete. O

Theorem 16.20 Let N be a positive integer and a < b < a + N,
suppose that f is thrice continuously differentiable on [a,b] and that

0< M2 < f”(l‘) < AMQ, |f/”(LL')| < M3.
Let o = f'(a), = f'(b) and for each integer v in [, 5] let x,, be defined
by f'(xz,) =v. Then

Z e(f(n)) = Z (/o) —va, +1/8) + Os(E1 + Eo) (16.48)

a<n<b a<v<p I (xy)

E; = log(2 + MyN) + M, /2
and
Es = MJ N. (16.49)

If, moreover, f(4_) ) exists, is continuous and satisfies |fD(z)] < My

on [a,b], then may be replaced by
My o M32 9
FEy=—N —= N*. 16.
2= T M2 (16.50)
If instead

0< My, <—f"(x) < AMs,

then the above holds with a = f/(b), 8 = f'(a), 1/8 replaced by —1/8
and the f”(x,) in the sum on the right replaced by — f" ().

Proof We may suppose that My > N~2 for otherwise the conclusion
is trivial since the number of tergézB?n the left is at most IV + 1 and
Ey > M;l/z. By Theorem

b
dooe(fm) = > / e(f(z) — va)dz + O(log(2 + B — ).

a<n<b a—1<v<pB+1

| E:ProcessBMain

E:DefE2alt
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:ExpIntEst2
By Theorem“ﬁ%ﬁ s

b
/ e(f(x) —vr)dr < M;% (16.51) |E:Inte(f—nux)Est |

uniformly in v, and

B—a=(b-a)f"(§) <a MN. (16.52) |E:beta—a1phaEst |

Hence

S oe(fn)= Y / ) — va) dz + Oa(En).

a<n<b a<u<[3

> (f-nux)Est
If B —«a <1, then by : wél:;gze;asgne Thus we may suppose that
B —a > 1, and then by e sum on the right is non-empty and

the number of terms is

> 1xa MN. (16.53)

av<p

(g(x))Est1
By Theoremi 6[ é we may replace each integral on the right by

e(f(zy) —va, +1/8)
f//(xy)

with an error
1 _
<My My + min (My (2, —a)~', M, /%)
+ min (M{l(b — xy)_l,M;1/2).

(16.54)

By (ﬁ the first term contributes a total amount <« MS%N = E».
To treat the second term we observe that v — a = f'(z,) — f'(a) =
(x, —a)f"(§) < AMy(z, — a) and so the second term is bounded by

A _
min (7,M2 1/2).
V—a«
Thus the total contribution from the second term is
~1/2 1
<A M — K Ey.
AM T Y <
a+1<v<p

Likewise the same upper bound holds for the contribution from the third
term. The first part of the theorem now follows.
For the second p(art of the theorem we appeal to the concomitant part
‘ %ﬁ ))Es rEsti
of Theorem [T6. . e term My 1M 1734 1S replaced by

(b—a)M; My + (b — a)M2—3M§
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and so by @ the total contribution is

My, M,
Lanzy SN
VAV

O

Corollary 16.21  Suppose that I is a sub-interval of [N,2N], f has
four continuous derivatives on I, and that there are positive real numbers
A, X\, 0 such that

0 < AN < f@(g) < ANNTO7L
[/ ()] < AANTO72,
[f@ ()] < AANTO7S

: essBMain
for x € I. Then the error term in (ilﬁi%) 1S

<alog (24 ANTY) + A/2NETD/2,

The proof is_immediate on observing that the contribution from FEs,
. - 2a1t . . . .

given by @,T < 1, which can be absorbed in the logarithmic term.

The conditions of the above Corollary are those which are very largely
met in applications.

We now have two essentially different lines of approach for dealing with
a given exponential sum. In each of these we begin by transforming the
sum into a new one. The first of these is via the Weyl-van der Corpu

ExpSumEst Thlrgaerlv

orputDiff
lemma (Lemma e second is wvia Theorem {16.20] (or, usually
riv.
more conveniently, via Corollary Vith either of these processes

the presumption is that the transformed sum is one about which we
already have information. The normal requirement is that the function
f behaves somewhat like that considered in the above Corollary. To this
end we define the following class of functions.

Definition 16.1 Let N, A, 0, € be positive real numbers, let r be a
positive integer and let I be a subinterval of [N,2N]. Let

Azt—?
o(x) = { i when 671, (16.55)

Alogx otherwise.

We define F(N, I, A, 0,7,¢) to be the set of functions f that are r-times
continuously differentiable on I and which for each s with 1 < s < r and
x € I satisfy

1O (@) — 6P (2)] < e|p® (). (16.56)

| E:DefvdCMethphi (x)

E:vdCrderivs
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We are now in a position to define precisely what we mean by exponent
pairs.

Definition 16.2 An exponent pair is a pair (k,l) of real numbers k
and [ satisfying

0<k<-<I<1 (16.57)

N =

and such that for every 6 > 0 there is an integer r = r(k,[,0) > 2 and
an € = g(k, [, 0) satisfying 0 < ¢ < 1/2 for which for every N > 0, A > 0,
I C[N,2N]and f € F(N,I, )\ 0,re) we have

S e(f(n) < (AN N4 ATIN. (16.58)
nel

We now make a number of observations concerning exponent pairs.

1. In establishing that a particular pair is an exponent pair we may
suppose that

AN"Y>1 (16.59)

for otherwise the inequality always holds. To see this we COPSid%E,, éu:x{({
cases. First of all if A\N~% < 1/2, then by the Corollary we have

at once
0

Ze(f(n)) < NT < 1.

nel
+ExpSumEst2
Secondly, if 1/2 < AN~ < 1, then by Theoremli@%?t We have

Y e(f(n)) < Nt < (AN~ N

nel

. - arIneql
since [ > 1/2. Henceforward we always assume that (ﬁ%ﬂ%

2. By examining some special funlctions f we can explain why we have
- e

imposed the conditions on the ordered pairs. Let M = |N|,
let A =1lem(1,2,...,2M) and let
A
flz) = T

, . _ [E:DefydCMethphi (x)
Thus f(z) is the function ¢(z) defined in Wl = 2, and

fn) € Z for 1 <n < 2N so that
> e(f(n)=M>N.

M+1<n<2M

Now A = exp(1)(2M)), and so A = exp ((2 4+ o(1)N) by the Prime

E:vdCklel

E:vdCGenEst

E:vdCParIneql
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Number Theorem. Since )\ is exponentially large, we deduce that if
the estimate

N < (AN72)*N!

is to hold, then k > 0, and if & = 0, then [ > 1. In particular, the
only exponent pair of the form (k,1) is (0, 1).

- arIneql
. Suppose we_have an exponent pair with [ > 1. In view of 1'I§u§1§%

enkst

the bound would then be worse than (k,1), and this in turn

would be worse than the trivial pair OELQ' This explains why we have
imposed the condition [ < 1 in .

. Consider the expression

2A 5
/ — )| dA

M+1

where M = | N|. The numbers 1/n with M +1 < n < 2M are spaced
at least § = 55— apart. Let S_(z) be the function of Theorem

lber FcnsQJVf@M""l) ; ;
iEf? Wlfﬁ a=A, B =2A and ¢ as above. Then the above integral is

/ S ‘Z ‘Zd)\

M+1

2M
> Z S_(1/m —1/n)

m=M+1n=M+1
= S_(0)M = (A — 2M (2M + 1)) M.
Thus we see that if A = 4M(2M + 1), then there is a A € [A, 2A] such

that
oM

DI OIES S

n=M+1

where f(z) = —A/x. Now f’(z) = Axz~2 and so if (k,[) is an exponent
pair we would have

NY2 <« (AN"2) N4 N2A! < N
since we have already seen that k£ > 0. Thus it is also necessary that

1 <l when (k,1) is an exponent pair.
2 SumEst2 . .
. By Theorem we see that (1/2,1/2) is an exponent pair and we

have already seen in 4. that of necessity % < [. Thus an wexponent
pair (k,l) with & > 1/2 would give a bound that is inferior to that
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provided by (1/2, 1 123 Thus we can happily restrict our attention to
k< %, as in )

. Next we show that if (k,1/2) is an exponent pair, then perforce k =

1/2. Let H be an arbitrary positive integer and define A to be the
positive number with A2 = lem{1,2,..., H}, so that v|\? for any
positive integer with v < H. Now let N = \2H 2 and f(z) = 22

and suppose that (k,1/2) is an_exponent pair, so that 0 < k& < 1/2.
clasdk Pair
Then, by Definitions an

Y e(f(n) < ANTVZ) N2 AN
N<n<2N

and AN~3 = H so that

> e(f(n) < H'N'?+ H™' < H'N'/2,
N<n<2N

By the Corollary %zvi—gshave
v) V_l 8
S oe(fm) = 3 d )_ ff, ”(”x) /%) (16.60)

a<n<b alv<p

+ 04 (log(2 + H) + NY/2H~1/?) (16.61)

where o = H/\/2, B=H, z, = \v 2,

—f"(z,) = %u?’)\_Q > HN™, (16.62)
f(z,) —ve, =Nv € Z (16.63)
Hence the sum on the right of Qﬁﬁp‘fsr&
> H(N/H)'/? = H'/?N'/?

and so

Z e(f(n))’ > HY?N/2,

N<n<2N
Thus of necessity
1 1
=5 = k=3 (16.64) |E:vdcPair(0,1)
The set of exponent pairs forms a convex set, since iwgggl an two
exponent pairs (k',1'), (k”,1") we have (assuming (]% , of course)

Y e(f(n)) < min ((AN‘Q)’“/Nl/7 (AN—")’“”NV’)
nel
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and for any n with 0 <7 <1 we can replace this by
()\N—e)lch

with k = k'n+k"(1—n), | = I'n+1"(1—n). In particular The ordered
pairs (3, 3) and (0,1) with n = 2k shows that each of the pairs

1
(k,1— k) with <0§k§ 2)

are exponent pairs. Moreover, given any pair above this line, there
will always be one on the line which gives superior bounds. Thus in
practice the main interest lies in finding suitable exponent pairs below
this line.

We now show that when we apply the van der Corput Lemma, the
parameters describing the functions arising in the transformed sums are
related to those of the original function.

Lemma 16.22 Suppose that f is in the class
F(N, [a,b], N\, 0,r,¢)

: lassF
of functions defined in Definition W—that
2eN )

1§h§min<b—a,—
r+6

Let § = [a,b—h] and fi(x) = f(x;h) = f(x) — f(x + h). Then
f1 € F(N,J,\0h, 0+ 1,7 —1,3¢).
Proof This is a simple verification. Let

¢1(z) = ¢1(w;h) = $(x) — $(a + h), ¥(z) = —A0ha "\

The latter of these two functions plays the same réle for f; that ¢ does
for f. For 1 < s <r —1 we have

x+h
ka—¢@u»=—/ (fE () — 0D (y) dy,

and in modulus this does not exceed

z+h
/' elo™ (y)] dy = |6 ().
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We also have h¢'(z) = —¢(x), so that

x+h
qz)gs) (z) — 1/}(5) (z) = 7/ (¢(5+1>(y) _ ¢(s+1)(z)) dy

- / o ( / "6+ (2) dz) ay,

and in modulus this does not exceed
160D @)] = LR ()] < )]
Combining inequalities we have
617 ()] < (L +€)[u(@)],

and

[17@) =¥ @] < (0”@ + PO @) < 22+ )0 @)

We now formulate the precise terms of “Process A”.

Theorem 16.23 (Process A) Suppose that (k,l) is an exponent pair.

Then so also is

(K1) = Ak

Proof We first check that 0< k

k+1l 1 _
2%k+2 — 2 and <3 + 2k+2 = 2k

that there ex1st 7/ > 2, ¢ with0 < ¢
N <a<b<2N,and

2k+2 <
5+ m < 1. We now show
1 such that if J = [a,b] with

= (a2
<
+

1

k
+
<!’ <1. We have 0 <
<
I <

feF(N,I N0, €,

then
D e(f(n)) < AN N

We observe that

o~
—_

1 1/2 2
5 25t51,5" 3
2 ' 2k+272 2.14273

- arIneql
As usual we may assume Qﬁ.—He—ﬂqﬁe we may suppose that

9] > N?/3 (16.65)
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for otherwise the copcl%%)ﬁtig immediate. When 1 < AN~? < N 7 we
have, by Theorem

D e(f(n)) < ANTOTHVAN 4 (AN« N2/,
ned

which is more than sufficient. Thus we may also suppose that

AN~ > N, (16.66) |E:lambdaN"-thetalb

Suppose that » > 1+ r(k,1), 0 <e < %s(k, l) and that
feF(N,a,b],\ 0,r¢).
Let
S=7e(f(n).

ned
- orputDiff
By the Weyl-van der Corput Lemma (Lemmai@féi we have

ISP < N’H '+ NH™' Y~ |Si(h)|
1<h<H

where we take J = [a, ] and

Sihy= Y elfi(n;h),

a<n<b—h

and we suppose that

(16.67)

Here H is otherwise at our disposal. Let J = [a,b — h]. Then by Lemma
H essApars

2eN
1§H§min<b—a c )

Tr 460

fr € F(N, G, \0h,0 + 1,7 —1,3¢)

and by the choices made for r and € above we see that the exponent pair
(k,1) applies to f;. Thus

52 < N2 H- 4+ NH™U ST (AN H N 4 pm AT TN
1<h<H

< N2H™' 4 NHIZROFDNR R L NOF2) =11 10g N, (16.68)

[E:lambdaN--thetalb | .
By (16.66) the Tast term is bounded by the first. The good choice for H

would be given by

HF Oy (16.69)
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provided that this does not violate @, and this leads to the bound

1

S < (AN"0) T N

- Choice -
as required. If @V—IOE’CCS (@), then we take

2eN
H = min (b—a, L)

r+6

- 18] ~2FEst
In this case the ﬁgst term on the left of @Wsﬂ% dominate the second.
Hence by we have

S <« NH™Y? « N2/3

and the theorem follows once more. O

We now come to “Process B”. This corresponds to applying the Pois-
son summation formula as embodied in Corollary %EF‘(’)% a suitable
function f we need to understand how the function f(z(y)) — yz(y)
behaves when x and y are related by

f'@(y) =y (16.70)
9(y) = ya(y) — f(z(y))- (16.71)

The function z(y) is the inverse function of f/ so we have

Let

2'(y) = 1/f"(2(y)) (16.72) |E:x’ (y)formula|
and
9'(y) = x(y) +ya'(y) — f'(z(y)a' (y) = z(y). (16.73) [E:g’ (y)formula |
In the special case that
f(z) = ¢(x)
we have
) =270 a(y) = A0y~
Let
AV hen 6 1,
v {)‘li)gly/e when 6 i 1. (16.74)

Then in general we can expect that if f is close to ¢, then g is close
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to ¥. We need to show that our concept of close in terms of the first r
derivatives of f and ¢ carries through to g and . We have

7 o 1
9 = Tty

and it is an easy induction on s to show that for 3 < s < r there are
coefficients ¢4 (t) which depend only s and ¢ such that

9Iy) = e 2332 Z @ F (g ) f2 (g (),

t1=2 ts_o=2
t1+-+ts_2=3s5s—6

(16.75) | E:g’’ (y)formula

(16.76) | E:gderivsformula

and with an obvious convention for an empty product of sums this also
holds when s = 2.

L:finFimpliesginF | Lemma 16.24 Suppose that

feF(N,[a,bl,\0,re)

and let o = f'(b), B = f'(a), and g, ¥ be defined as above. Then there
is a positive number C = C(0,r) such that

19 () — ¥ (y)| < Cel(y)]
whenever 1 < s <r and y € [a, f].

Proof We have a > (1 —)A(2N)~% and 8 < (1 + e)AN~Y. Also, for
€N, N} we have ¢'(z) < AN7Y and for y € [a, 5] we have, by
. ) /\1/6 -1/0 < < (1 _ 5)71/02]\7 and w/(y) > )\1/0671/6 >

(L4¢)Y/0
Yformula . . .
By and the facts that z(y) is the inverse function of f’ and ¢’

is the inverse function of ¢’ we have
&' (W) = f'(d W) =" (W) —y=8'(g'(y)) — &' (&' (),
and by the first mean value of the differential calculus this is
= (9'(y) = ¥'(y))8"(€)
for some ¢ between ¢’(y) and ¢’(y). Thus
|#"(€)] = OA(L — &) /0 (2N) 0!
and so

[0 (2(y)) = f'(2())] = 19/ (y) = &' (y)|OA(L = &) T/ 0 2N) =0
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Hence

19 (y) = ' ()| <OTATH(L =) TIRN) e (2(y))
< 071(1 . 6)7171/920+16N
<0711 1 ) e ()

This seit“,cg%gr‘rcnl&?aﬁrst derivative. To deal with higher derivatives we use
oth as stated and in the special case f' = ¢’ (and so ¢’ = ).
ansidiegsgllem ueﬂ;ect first of all on a single monomial term in the sum
of replacing f’ by ¢’. We have an expression of the general shape

—m
F(z1,...,2) =cz{ "29...2k.
Moreover

F(z1,y...y2k) — Fwy, ..., wg)

k
:Z(F(z1,...,zj,wj+1,...7wk)—F(zh...,zj,l,wj,...7wk))

Jj=1

and by the mean value theorem of the differential calculus, provided z;
and wj have the same sign, the general term here is of the form

(Zj — wj)Fj(zl, e »ijlagj;ijrla . ,U}k)

where ¢; lies between z; and w;. Thus in considering g (y) — ¢(*)(y)
the difference z; — w; becomes an expression of the form f®(¢'(y)) —
o (W' () = fOUd (1) =0V (g' () + 69 () — 6 (¢'(y)). The first
difference here is bounded by |¢™® (¢’ (y))| and to the second we may ap-
ply the mean value theorem once more to obtain (g (y) — 1’ (y)) ¢+ (€)
and to this we can apply the first derivative bound obtained above. Thus

£ ) = @' W) < el (o )] + el W) |6“ D ()]
A straightforward calculation now completes the argument. O
Theorem 16.25 (Process B)  Suppose that (k,l) is an exponent pair.
Then so is
(K',1'y = B(k,l) = (1 —1/2,k +1/2).

Proof Tt is immediate that if (k,1) is an exponent pair, then 0 < l—% <

1 <k+ 1. Also, we know that (0,1) and (3, 1) are exponent pairs and

that there are no others with [ = % Hence we may suppose that [ > 1/2.
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implies

Choose r ZiIglaX(S,r(k,l,l/Q) and let C = C(6,r) be as in Lemma
en choose &’ so small that

0 < ¢ <min(1,C0 e (k,1,1/0).

Let f € F(N,I,\ 60,r.¢). Choose a, b so that I = [a,b] and define
a = f'(b), B = f'(a). Now suppose that J = g\{’] C [a, B8] with
M’ < 2M. Then the function g deﬁedbjy]Il .—— Fcertainly includes
J in its support, and so by Lemma [16.24] g € T, I, Y0110, 7€),
Hence

S e(—g(n) < (\V/OMO) At 4 ATON1/0,

neJ

) _o . : arIneql
We have AN 7’ < o < f < AN7Y, and as usual we are assuming .
Summing over M = a, 2q,... we see that for any interval K = [a,~]

with o < v < g we have

> e(—g(n)) < NFANT) 4 N7
neX

- lel
Moreover, —f”(x(n)) < AN~'=% where z(y) is given by (ﬁﬁnd
since r > 3, f” is monotonic. Hence, by partial summation

3o 0 kN ENERE NN

nela,b] V —f”(ac(n))
< (AN"O)ma Nk 4\~

Thus, by the Corollary W

S e(f(n) < ANT)ITENETE 4 log(1+ ANTY) + ATENEHE,
nel

: Ineql
By (@%he fact that k£ > 0 the second term is easily seen to
be dominated by the first. Likewise, the third term is bounded by N'/2

which is also dominated by the first term. This completes the proof of
the theorem. O

+

[MEY

W=
W=

N

[MEY

We can now compute some exponent pairs. It is normal to start from
the trivial exponent pair (0,1). This is equivalent to taking the trivial
bound for an exponential sum at the final stage.
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PAIR OPERATION PAIR OPERATION
(0,1) (3.3) B

(5.3) AB (5.3) BAB
(11-11) A°B (3,7) BA’B

(é, %) ABA’B (%, %) BABA’B
(55-30) A°BA’B (32,35) BA’BA’B
(5.4) 4B (3.5) BAB
(£.%1) ABA’B (£,%) BABA’B
(i55.22) A’BA’B (32,22) BA’BA’B
(4,7) ABABA®B (1 51) BABABA®B
(&%) A'B (1.%) BA'B

Table 16.1 Some exponent pairs.

If one takes the rational points listed above, adjoins the further point
(1/2,1), and takes the convex hull, then we obtain a set all of whose
members are exponent pairs. However, the entries on the second and
third rows are in the interior of this convex polygon. As we form longer
words, the polygon becomes larger, and it is to be expected that most
of the pairs listed above will eventually lie in the interior. On the other
hand, a new pair constructed with a longer word does not necessarily
enlarge the polygon. For example, the operations ABA*B and BABA*B
produce points that lie in the interior of the present polygon. In many
applications one needs t(}),rrsninimise k + [. For that purpose, the best of
are (31, 37) and (&, 29).

We now return to the question of bounding the Riemann zeta function
on the %—line.

the pairs in Table

Theorem 16.26 Let 7 = [t| + 4 and let (k,1) be an exponent pair.
Then for any real t,

C(1/2 +it) < 7*+D/2=1/4 100 1

Proof The pattern has already been set in Theorem @E—%ﬁere in
retrospect we see that that conclusion follows from the exponent pair
(%, %) Following the proof there we see that it suffices to show that when
a<b<2aqanda< 72 we have

; 1
E n' < az71"
a<n<b
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1.04

0.9

0.8

0.67

0.5 T T T T T

Figure 16.3 Polygonal path determined by 386 exponent pairs. F:ExpPrs

where

k1 1
77*77(7971)*5‘?5—1

. . H stl | | A H SumEst1
Again as in Theorem is is immediate from Corollary when

T < a < 72. By the exponent pairs (k,!) and B(k,[) = (I — %,qu %), we
see that
Z n'* < min ((Ta_l)kal, (Ta_l)l_l/QakH/z) +77ta
a<n<b
< % min (al—k—1/27k7 ak—l+1/27_l—1/2) s

We replace the minimum of a!~#~1/27%F and a#~1/271=1/2 by their
geometric mean to obtain the desired conclusion. O

11 57).

The following corollary is immediate from the exponent pair (g5, g5

Corollary 16.27 Let 7 = |t| + 4. Then for any real t,

C(1/2 4 it) < 727164 Jog 7.

Many questions in analytic number theory can be re hsr(z;msed in terms
of the sawtooth function sfx:, which is defined in %ﬁd which we

have already used in above.
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It is natural to approximate this function by trigonometric polynomi-
als and thereby relate the original question to the theory of exponential
sums.

Theorem 16.28 Suppose that (k,l) is an exponent pair and that 0
> 0. Let r = r(k,1,0), ¢ = e(k,[,0), N >0, A\ >0, I C[N,2N], and
feF(N,I,NO re). Then

3 s(f(n) < (AN NG g A1 e,
nel

. : eFrd xsfx) . .
Proof By Exercise iEf%ﬁf for any given positive integer J there are

trigonometric polynomials

J
_ Y 7

with period 1 and degree at most J such that
T(2) < s(x) < T (x)
for all z, Ty (0) = +1/(2J +2), and T (j) < 1/|j| for j # 0. Hence

S < ot S ) Y el )
2J +2

nel O<|]|<J nel

N
=572 " = ’Z (G f(n ‘

nel

Similarly,

s (f) 2 5 - Y 33 ctirn]

nel nel

Moreover, for f € F(N,I,\,0,r ) we have |j|f € F(N,I,|j|\ 0,1, ¢)
and so the exponent pair (k,!) applies to each of the sums

> elif(n)).
neJ
Thus
J
Zs(f( < m +Z ])\N j_l)\_lNe)
nel 1

N
L (IAN"ONE £ AINY,
<5+ ) N+
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We take

b

J— [)\—Ic/(k-H)N(1+k0—l)(k+1)]

and this gives the desired conclusion when k£ # 0. When k = 0 we have
! =1 and the conclusion is trivial. O

One obvious application of the above is to the Dirichlet divisor prob-
lem.

Theorem 16.29 Let A(z) =3, d(n) — zlogx — (2Co — 1)z, and

suppose that (k,1) is an exponent pair. If (k1) # (%, %), then

k+1

A(r) < z2reez,

Proof From the initial steps of the proof of Theorem 2.3 we see that

Y dn)=2 Y %—2 3 st/n) - [va)® - V], (16.77)

n<e n<Va n<yvz
: (x)
where s(y) is as in @%ﬂ from the initial steps of the proof of (1.26)
we have

u2

lelogy—l—C’o—M—/ Mdu.
n y v

n<y

We observe that fyu s(v) dv < 1, and so by integrating the last term by
parts it follows that it is <« y~2. Hence

1
Z ~= logy + Co — s(yy) +0(1/y?).
n<y

We also have
2
- [Vz]” = [Vz] = 2Vzs(Vz) + O(1).
: .3Reca
On inserting these two expressions in ilé[ ? H gives

Afx) = =2 s(z/n) +O(1).
e

We now divide the interval of summation into subintervals of the for(ns
' (f(n))Est
i

[ £
[N, N'] with N < 2N and N < /z and appeal to Theorem i E?% with

6 = 2. The contribution from a typical such subinterval is

< (mN72)k/(k+1)N(k+l)(k+1) 4+ 2 N2 « phAD) N U=k (k+1) | =12
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Since (k,1) # (27 2) we have | > k. Hence on summing the contribution
from the different subintervals we obtain the bound

pFFDERH2) 4 o p (HD(2h42)

as required. O

For completeness we observe that in the case of the exponent pair

(%, %) the proof gives an extra factor of logx in the conclusion. More

interestingly one can observe that (k',1') = A(k,l) satisfies
k kE+1+1

E = ' =
2k +2° 2k+2

and so the exponent of x in the conclusion is k' +1'— % With the exponent
pairs obtained by the A and B operations there is symmetry in the line
l=k+ é between those in which the last operation is an A and those
in which the last operation is a B. Thus, just as in Theorem 20, we are
interested in exponent pairs (k’,1’) in which k¥’ +1" is minimal. Amongst
those listed above (k,l) = (35, &) (which gives (K',I') = (&, 3), of
course) gives the following corollary.

Corollary 16.30 Let A(x 'd,enoiér(}a)rtgzbe error term in the divisor prob-
lem, as defined in Theorem . Then

Alz) < 5.

S:vdCMethod
Exercises

1. Let I(a) = fol e(ax + logloge/x) dx. Show that

1
I(a) = Yy (e(a) — e(loglog @) + o(1/cx)
as a — oo. Note that this is larger than f”(xq)~'/2. Why?
2. Let I(a fo (ozm + loglog ﬁ) dz. Show that

1

I = —_——
()] = — Tea

as a — +00.
3. Show that if IV is a positive integer, then

Ze n/3 3/2 21/4373/2]\]3/4 4 O(N1/4)

n=1
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4. Let E(n) denote the number of words using the two letters A and B
with the property that the last letter is B, and the word does not
contain a pair of consecutive B’s. Among such words, let A(n) be
the number in which the leftmost letter is A, and B(n) the number
in which the leftmost letter is B. Thus E(n) = A(n) + B(n). Note
that A(1) = 0, B(1) = 1, A(2) = 1, B(2) = 0. Let F,, denote the

b Fibonacci number, as defined by the relations Fy = 0, F} = 1,
Fosr = Fy+ Fp_y.

(a) Show that if n is an integer such that both A(n)

B(n) = F,,_o, then A(n+1)=F,, and B(n+1) =

(b) Deduce that E(n) = F,, for all positive integers n.

(¢) Suppose that you start with (0,1), and use words of length from 1

to n to generate new exponent pairs. Show that in total you have

F, 42 exponent pairs (ignoring the fact that the pairs generated

= _1 and
F

are not guaranteed to be distinct. In fact they are not all distinct.
In Table We see that AB and BAB generate the same point.)

5. (a) Let x(d) = (5*) be the nonprincipal character modulo 4, and let

S(y) =Y x(n)

Show that -
-3+ (1) o (559,
and that
] % =2+ S(y?y_é +0(1)
(b) Let -
r(n) = 4%:x(d),
R(z) = Z r(n) — nx
- X (555)
Show that R

R() = T(VE:0,1) = T(V7:0,3)
+T(v1;3,0) — T(v/x;1,0) + O(1).
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(c) Suppose that (k,l) is an exponent pair other than (4, 1). Show
that

k41

R(z) < x2w+2,
and in particular that
27
8

R(z) < x5,

6. (a) Let Q(x,h) denote the number of squarefree numbers ¢ with z —
h < q < x. Suppose that 1 < h < § and that Vh < z < y/z. Show

that
6h
Qz,h) = —5 + O((R+ S)logz + V)
where
R =supsup sup Z 5 (%>
a<zb<2ax—h<y<z | 7, N
and

a<zz—2 b<2axz—h<y<z

1/2
Y
S= sup S(a), S(a)=sup sup s () .
a;ﬂgb i

(b) Show that
R < /3713 4 4273,
and that if (k,[) is an exponent pair, then
§ < k/(R+D) U=2K) /(1) 4 ;=18
(c) Show that there is a positive number C such that whenever

Cx?/?logx < h < x there is a squarefree number ¢ with z — h <
q <z

16.4 Notes

S:NotesExpSumI

Section 16.1. Exponential inte rgllrshgave been used and studied for cen-
turies. The plot in Figure %%S—E%ler’s Spiral. L. Euler (1707-1783)
encountered his spiral in 1744 while investigating a problem concerning
elasticity posed by Jakob Bernoulli. Euler noted then that the spiral

converges to a single point, but that it is difficult to name that poi ti:t‘2)
- X 1
In 1781 he found the limit, which is to say that he proved . The
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French physicist A.-J. Fresnel (1768-1827), in the course of his seminal
investigation of the diffraction of light, in 1818 defined the integrals

2 2

S(t) = /Ot sin (%) du, C(t) = /Ot cos (%) du.

These are now known as the Fresnel integrals. Here C(t) +iS(t) = 2(t)
as defined in the Caption of Figure %b—uFFresnel was unaware of

Euler’s prior work. He spent considerable effort to compute values of
his integrals, and later the French physicist M. A. Cornu (1841-1902)
computed detailed tables of z(t), also for purposes of optics. Today such
calculations are done for us, since common software provides the error
function,

fr— 2 / —u' g
erfz = — e u,
VT Jo

even with complex arguments, and

N i 1 i
z(t) = 7<ﬁ + ﬁ> erf((E - ﬁ>t>

Euler’s spiral (also known as Cornu’s spiral), was discovered independ-
ently a third time, in 1890, for the following reason: The point z(¢) moves
with velocity 2/(t) = e*’; thus |z'(t)| = 1, so the arc length of the curve
z(t) for 0 <t < T is exactly T. Moreover, the acceleration on the curve
is 2(t) = 2ite’’, which has absolute value 2t for t > 0. If a train were
to pass from a straight line directly onto a circular arc, its acceleration
would undergo a jump discontinuity, which is uncomfortable for passen-
gers and hard on the equipment. So railway beds are designed to pass
from a straight line onto (a suitably scaled copy of) Euler’s spiral. When
the acceleration has reached the desired level, the course then continues
on a circular arc, and finally transitions back on a segment of such a
spiral to a straight line. This technique is used also in the construction
of highways and roller coasters. For a detailed account of the history of
Euler’s spiral, see Levien| (2008).

Exercises 2 and 3 are USQ‘%I‘L Ein applications of the H%l‘rl(gy—Littlewood
method. See Lemma 10,1 of [Hua) (1965), Theorem 7.3 of [Vaughan (1997)
and Theorem 3.1 of [Talmage| (2022)).

Section 16.2; The methods developed here were first studied system-
atically in [van der Corput| (1921)) and van der Corput] (1922) with the
main intent of applying th%mﬁto the Dirichlet divisor problem. van der
Corput does acknowledge [Weyll (1916)) for approximations of the kind
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H RuleApprox . .
in Theorem “6“%‘ and one has to believe that he was greatly influ-
enced by Weyl’s paper. Landau, Hardy, Littlewood, and their colleagues

and students, beginning before WWI, had organised written accounts of
everything that was known concerning the Riemann zeta function and
the distribution of primes, and kept it up to dae as advances were made.
There is an intriguing footnote on page 316 of which states
“Vgl. H. Bohr und J. E. Littlewood, The Riemann Zeta-function and
the Theory of Prime Numbers (Cambridge Tracts in Mathematics and
Mathematical Physics; noch nicht erschienen)”! Presumably there was
already an intent to publish this material as a Cambridge Tract, but this
was interrupted by WWI and perhaps also by fast moving developments
‘inrrl%ensearch. The more important ‘£§1sg§rches appeared in papers such as
[Hardy & Littlewood| (1916a) and [Hardy & Littlewood| (1916b)). Some of
it was promised but never published. See the announcement [Littlewoo

which was overtaken, presumably, by developments elsewhere. A

little later the Bohr—Littlewood manuscript was divid Fe% {i]nto two and ap-
peared as Cambridge Tracts, byl%gﬁ| (1932) and [Titchmarsh| (1930)).
The latter was expanded into the celebrated text \ﬁ"fﬁ:hmarsm (1951)
(second edition [Titchmarsh| (1986])) and was the place that the authors
of this work initially learnt the material. Many of the estimates of this
section are also used extensively in harmlg)glliclanalysis. See ]SESt%lgr—ﬂ (1993).

The trigonometric polynomial @gﬂ% noted llgglgargy & ;ittle— it
, who es‘cablis‘}}ggl1 the estimate - Lemma [I6.8[is the -
Fundamental Inequality of jvan der Corput| (1931 ﬁn@rilg Theorem %ﬁsﬁ
a special case of Satz 1, ibidem. Theoremii §Il ?| 1s from I%%W
[Montgomery| (1976).

Section 16T(3“.T;herx%19 der Corput method, including exponent pairs,
originates in van der Corput| (1921, 1922), and was developed further by
P] 11Tip .
[Rankin optimized the choice of exponent pairs for the pur-
pose of estin‘la@*ting ¢ (% +it). For further expositions 9£qx£an der Corput’s
method, see|Graham & Kolesnik| (1991)) and §3.3 of l%lo—ntgomer}d (1994).
For a discussion of apg}ifcgaﬁtions of the van der Corput method to the zeta
function see §5.20 of [Titchmarsh| (1986]).

The Exponent Pair Conjecture is the conjecture that (k, & + k) is
an exponent pair for every k with 0 < k < %

There is a more recent history of small reductions which transcend the
methods described here and their two dimensional variants. Thege de-
pend on a method for treating exponential sums introduced in m

[RTR6h

[& Twanied (1986a) and [Bombieri & Iwanied| (1986b)), which was further
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TMR] HW]]
refined by [[waniec & Mozzochi (1988) and Huxley & Watf, (1988). Fur-
ther work by Huxley culminating in [Huxley| (2000) and [Huxley| (2003])
has established that

1
C(§ +it) < 797 R(z) < 2%F°,  A(z) < 29*¢

with

32 131
= — = 0.1560975609 ..., § = — = 0.3149038461 . ..
¢ 205 ’ 416

The values ¢ = 0 and 0 = i would follow from the Exponent Pair
Conjecture, and these conjectural values for ¢ and 6 are known to be
essentially best possible. That is, there is a limitation as to how small
the upper bounds can be for the Dirichlet divisor and Gauss lattice‘zcglognt
problems. In that regard tl‘r%{%%% is also long history beginning with Hardy
(1916)) and culminating in [Soundararajan| (2003)), which also contains an
overview of previous work in the area.
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Estimates for sums over primes

17.1 Principles of the method

Let
S=Y" f(n)A(n).

n<N

If f is monotonic, then we can estimate S by using the Prime Num-
ber Theorem and integration by parts. If f is multiplicative, then we
can gain information concerning S by studying the properties of the
associated Dirichlet series Y f(n)n~°. This has already been especially
successful when f is of the form f(n) = x(n)n™%. We now introduce
an entirely different method that is most successful when f is far from
being multiplicative. Let P = Hp<\/ﬁp. Vinogradov (1937a,b) had the
idea of writing

FO+ DY f)= Yo f) =) ut) Y frt).

VN<p<N 1<n<N t|P r<N/t
- (n,P)=1 t<N

If we can demonstrate that there is considerable cancellation the inner
sum on the right, then we can obtain a non-trivial estimate for the left
hand side. However, when ¢ is near NN in size, one expects to have little
cancellation in the inner sum on the right, and indeed when N/2 < ¢t < N
the sum has only one term, and hence no cancellation at all. Thus the
terms on the right must be rearranged before satisfactory estimates can
be derived. This approach, known as Vinogradov’s method for prime
number sums, is rather complicated. The general aim is to express S as
a linear combination of sums of the following two sorts:

> alt) Yo fr), (17.1)

t<T r<N/t

o7
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and

> b(m)e(k) f(mk) (17.2)

mk<N
m>U
k>V

where a(t), b(m), and c(k) are certain fixed arithmetic functions (inde-
pendent of f), and T, U, and V are parameters. Such sums are said to
be of Type I and Type II, respectively. In the Type I sum we choose T to
be small compared with IV, so that we have a hope of showing that the
inner sum enjoys some cancellation. Although b(m) and c¢(k) are fixed,
we generally treat a Type II sum as if it were a general bilinear form. In
any case, it is essential that we can avoid small values of m and small
values of k. Within this framework, Vaughan (1977) devised a variant
known as Vaughan’s version of Vinogradov’s method (V3M), which we
now describe.

We start by expressing A(n) as a linear combination of several other
arithmetic functions. Put

F(s)=Y Ad)d™,  G(s)=>_ pk)k™". (17.3)

d<U K<V
Clearly
- £6) = Fl8) ~ COPEIG() — 560
1 (17.4) |E:DecomposeLogDeriv
(= C6) = F6)eeD) (55 ~ 66
for o > 1. We write
() =3"r  —C(s)= 3 (logm)m=",

and calculate the coefficients of the four Dirichlet series on the right in
- omposeLogDeriv

. Thus Vaughan’s identity asserts that

A(n) = c1(n) + ca(n) + c3(n) + ca(n). (17.5)

_JA(n) ifn <,
c1(n) = {0

Here

if n > U,

ea(n) == > Ad)u(k),
rgé?]n
k<V
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and

es(m)= 3" (k) logm.

mk=n
<V

99

To calculate c4(n) we observe that in the first factor of the final product
- omposeLo, eriv
in , the coefficient of m™7 is

logm — > A(d) =Y Ad).
d| d|

d<U d>U
Thus

am= % (;;A(d))u(k).

mk=n
m>U, k>V  gsu

-VanghanId
We multiply @%gh by f(n) and sum to see that

S=51+85+ 53+ 85,

where

Si= Y f(n)ei(n).

n<N
Thus
S1="Y" f(n)A(n);

n<U
this sum we generally estimate trivially. Let

a(t) = - 3 Ald)u(k).
dk=t

d<U
k<V

Then cy(n) = 3, a(t), and hence

So=3 alt) o fir),

t<UV r<N/t

(17.5)

(7

which is a Type I sum. Since [a(t)| < >, A(d) = logt < logUV/, it

follows that

S2 < (10gUV) > | 32 firt)|.

t<UV  r<N/t

As for S3, we find that

So= 3 plk) Y flkm)logm.

k<v m<N/k

(175)
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This is not quite a Type I sum, but logm is smoothly increasing, so
we write logm = flm dw/w and invert the order of integration and
summation to see that

N
Si= [ S X fem)

<V w<m<N/k

< (log N) Y max ] 3 f(k:m)‘. (17.9)
k<V w<m<N/k
This is still not quite a Type I sum, but is instead the maximum over a
family of Type I sums. However, in most cases our estimate for the sum
over m is uniform in w, so for practical purposes we have a Type I sum.
Let

b(m) = A(d).

dlm
a>U
Then
ca(n) = Y b(m)u(k),
e
kSV
and so
So= 3 bmuk)fmky = S bm) S ulk)f(mh).
n:f;(]j\f U<m<N/V V<k<N/m
E>V

This is a Type I sum. Suppose that A(M) = A(M, N, f) is defined so

that
Y b Y (i)

M<m<2M k<N/m

<aon( Y ) (X )’

M<m<2M k<N/M

(17.10)

for arbitrary complex numbers b, and ci. By cutting the interval U <
m < N/V into < log N subintervals of the form M < m < 2M, we
deduce that

Sy K (10gN)U max A(M)( Z b(m)2)1/2( Z |M(k)|2)

<M<N/V
M<m<2M k<N/M

1/2

Since |b(m)| < logm, the sum over m is < M (log2M)?2. The sum over

| E:BilinIneqV3M




17.1 Principles of the method 61
kis < N/M, so

1/2 2

Sy < NY2%(log N) p B A(M). (17.11)
We interrupt our development at this point in order to assess the
situation. For purposes of discussion, in this paragraph only, we assume
that |f(n)] < 1 for all n. The bound S <« N is trivial, and if f is
oscillatory we hope to show that S = o(N). Triyiallggc S; <« U, s0 5
poses no problem provided that U = o(N). In e trivial bound

would be that

Sy < (logUV) > g < N(logUV)?
t<UV

Thus in order to get a bound that is o(N') we only need to desrilonstrate
a modest amount of cancellation in the sum over r in , and even
this only on average over t. We note, however, that there will be little or
no cancellation if the inner sum has very few terms (a single term is the
worst case). For this reason it will be necessary to choose the parameters
U and V so that UV is considerably smaller than N. Similar remarks
apply to where the situation is even more favorable since the range
of kin s shorter than that of  in (T7.8). To obtain a trivial bound
for A(M) we first observe that

Soba Y k)< S bl Y el

M<m<2M  k<N/m M<m<2M k<N/M

By two applications of Cauchy’s inequality, this in turn is

<N (S ) (Y lal)

M<m<2M k<N/M

Thus the bound A(M) < N'/2 is trivial. By inserting this in ﬁ
we deduce that Sy < N(log N)? trivially. That is, we will be able to
show that Sy = o(NN) if we can obtain a bound for A(M) that is only
a power of a logarithm smaller than trivial. In summary, it seems that
we have not dug ourselves into too deep a hole, and that we can expect
to show that S = o(IN) whenever we can derive estimates that are only
moderately better than trivial. We note, however, that if f were to be
unimodular and totally multiplicative, then we might obtain nontrivial
estimates for Ss and S5, but no nontrivial estimate for A(M) can hold
because of the possibility that b, = g Q anA(}ljsck = f(k). Despite this
observation, we shall find in Chapters af we can still use our present
approach when we average over several multiplicative functions f;.
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In order to estimate A(M), Wr?lgigs&s(l\)qbserve that by Cauchy’s inequal-
ity the left hand side of 1S

<(( 3 w3 |3 ammf)"

M<m<2M M<m<2M k<N/m

Here the second sum over m is

- Y o Y a ¥ fmpfen (r
JSN/M  k<N/M  M<m<2M
m<N/j
m<N/k
By the arithmetic-geometric mean inequality we know that |cjc,| <
11¢j|? + 3|cx|*. Thus the above is

< el | S femifmh | (17.13)

E<N/M J<N/M M<m<2M
m<N/j
m<N/k

g( > |Ck|2)<k§}?fM > ) > f(my)f(mk) D

J<N/M M<m<2M
m<N/j
m<N/k

sons(me X | X soafem|) . ori [Eemes

E<N/M
J<N/M M<m<2M
m<N/j
m<N/k

and so by @ we conclude that

Sy < NY%(log N)?  max max
U<M<N/V k<N/M

1/2
( S| sk D . (17.15)
J<N/M M<m<2M
m<N/j
m<N/k
Clearly our bound . St01r Ss becomes better when UV is reduced.

On the other hand, our bound above for S; becomes better when U and
V are increased. In practice, we choose the parameters to balance these
bounds.

Our strategy for bounding S; may be inferior, for two reasons. In the
first place, we need to bound the double sum on the left hand side of
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:BilinIneqV3M
not for arbitrary b,, and c; but only in the special case that
by, = b(m) and _¢; = Mu(k:) Secondly, the double sum on the left hand
nIneqV3l

side of is a linear function of the b,,, and is also linear in the
ckB%uth an expression is known as a bilinear form, and in Appendix
L,D1llinrorms
ii; we develop a general theory concerning boun.dsI for blhneEart forms.
- nine

Indeed, we could have as_s%(gr(&]iag%c?tly from §) asfmply by
appealing to Corollary%_xﬁ_mgh we have taken a more ele

menta_r?lf .
L. .BilihDualit
route, the general theory offers some, insights. From Theorem we

- nlne rmEst1

see that from . 0 } we have thrown no,thin% away if the
- rmEstl

bounds are to hold for arbitrary b,, and c. In we again have

a bilinear form, but this time the coefficient matrix is not only square
:NormNdrmal
ié;i the

but Hermitian as well, and hence normal. Thus by Corollary

problem is to determine ngé)sr egtim%g%)sttzlle spectral radius of this matrix.
In passing from 0 we have in effect derived a bound for
this spectral radius, but our bound may be considerably larger than the
truth.

In Sy, which is a Type I sum, when ¢ is large the inner sum is over a
shorter interval, with the result that there may be less cancellation. In
such a situation, sometimes a better estimate can be obtained by writing

So=> "+ > =s5+5P, (17.16)

t<U U<t<UV

say. Then we treat Sél) in as we did S, i.e. as a Type I sum, and estimate
Séz) we did Sy, i.e. as a Type II sum.

S:V3M .
1 Exercises

1. (Linnik 1961)

(a) Show that |((s) — 1] < 1if o > 2.
(b) Show that if o > 2, then

— (—Dk! k
log ¢(s) =) ~———(¢(s) = 1)".
k=2
(c) For positive integers k, let dj.(n) = card{(n1,...,nk) : n1ng - - - ny

=n, n; > 1}. Show that

(C(s) =1)F =D di(mn
n=2

E:S2Decomp
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for o > 1.
(d) Deduce that

for o > 2.
(e) Conclude that

An) -~ (=D
logn B Z k di,(n)

k=1

for all n > 1.
(f) Show that d} (n) = 0 if n < 2*.
(g) Show that if K > (logn)/log2, then
K _
A(n) (_1)k ! U

= L L(n).
k=1

logn

2. (a) Show that

(b) Observe that
Aw) = S A@uR) + 3 Adyu(k)
.k dk

dk’|n dl€7|n
d<U k<V
= > Adu(k) + Y Ad)u(k)
d.k d.k
dk|n dk|n
d<U d>U
k<V SV

= C’l(n) + OQ(TL) + Cg(n) + 04(71),

say.

-VapghanId
(c¢) In the notation of Vaughan’s identity dﬁ,&gﬁlﬁv that Ci(n) =
c¢i(n) fori=1,2,3,4.

3. Suppose that A'(M) = A’(M,N,V, f) is defined so that

S b Y afmh)

M<m<2M V<k<N/m

sxon( Y wal) (X k)"

M<m<2M V<k<N/M

(1717

/2
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for arbitrary complex numbers b, and cg.

(a) Show that

Sy < N'%(logN)?  max A'(M). (17.18)

U<M<N/V

(b) Deduce that

N2
A’(M)<<( max ‘ S f(mg) Flmk) D .

V<k<N/M

V<j<N/M M<m<2M
m<N/j
m<N/k
ano
(¢) Conclude that
Sy < NY2%(log N)?  max max

U<SM<N/V V<k<N/M

1/2
( S| X rempitm) D . (17.20) [E:s4Esv ]
V<i<N/M M<m<2M
m<N/j
m<N/k

: I
4. Let S’gclome defined as in ﬁ%d write Sy = Sél) + 552), as in
. Show that

2
S5 <« N'2(1og N)*  max  A(M), (17.21)

<M<UV

5. Let 'A‘(nM ) denote the best constant in the bilinear form inequaliti{
- IneqV3M -BilinForms

. By appealing to an appropriate result from Appendix i?;t or
otherwise, show also that if |f(n)| > 1 for all n, then

A(M) > max(MY?, (N/M)Y?).

(Hence our method, as presently constituted, never gives an upper
bound better than N3/% when f is unimodular. Also, our bound

will be trivial if M is allowed to be as small as (log N)* or
as large as N/(log N)*). Thus U and V must be at least moderately
large.)

6. (Heath-Brown 1982)

(a) Show that if s # 1 and ((s) # 0, then

—C—/s—K—kK s)F1¢ (s k—C—IS —C(s)M)"
£ =0 (et - T g
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The above holds for any complex M, but as usual we take

n<Y
We set
wd) (n>Y),
b(n) = d"g,
0 n<Y).

Thus Y07, b(n)n=% = ((s)M(s) — 1 for ¢ > 1. Show that

A(n) = é—m’f-l(fg)ak(n) + s)

=1

for all n, where

ar(n) = Y k) plrag) log
T1 " T2p="N
i>k = ;<Y

and

s(n) = (-1 >~ A(do)b(dy) - - - b(dk).

do--dg=n

Note that s(n) = 0 if n < Y so we obtain only Type I sums in
this range.

F,G

7. (Montgomery & Vaughan 1981) Let G(s) be defined as in w

From the identity
ﬁ = 2G(s) — G(5)*¢(s) + (c(ls) — G(s)> (1—¢(s)G(s)), (17.22)

or otherwise, show that

p(n) = ao(n) + ar(n) + as(n)



Exer :muSumDecomp

17.1 Principles of the method

where

2u(n) n<V,
aoln) = 0 n>V,

ax(n) = = Y ud)( Y wle)).

%’C:‘;L elk
>
E>V esV

8. Show that if 1 <V < N, then

N
p(n)f(n) =To+ Ty + T3

3
—

where

with

and

)N

V<m<N/V V<k<N/m

p(m)ey f(mk)

with

Ck = Z u(d).

dlk
d<v

9. With the T; defined as above, show that
T < 3 1f)l,

n<V

)

n< Y d(m)‘ S f(mk)

m<V?2 E<N/m

67

(17.23)

(1724

(1729

(1720
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and

Ty < N'Y2(log N)*/? max/ ma/x
V<M<N/V j<N/M

(Z\ > f<mj>f<mk>\)”2. (17.27) [Emut2Est]

k<N/M M<m<2M
m<N/k
m<N/j

10. Let Ax(n) = A(n)logn+3,._,, A(b)A(c), as in Theorem 8.3.
(a) Show that

T =(50) + (F)

(b) Show that

for o > 1.
-DefF,Q

(¢) Let G(s) be defined as in @Tﬁnd put H(s) = >, .y Aa(n).

Observe that

C//

R (s) = H(s) = ((5)G(s)H (s) + (" (5)G(s)

+ (in(s) — H(s)) (1 =C(s)G(s)).

(d) Define arithmetic functions a;(n) so that As(n) = a1(n) + az(n)
+as(n) + aq(n).

17.2 An exponential sum formed with primes

S:Sum_e(p*alpha) |

Vinogradov applied his method to the generating function Zp <w e(pa),
and thus showed that the generating function is small when « is not near
a rational number with small denominator. This ‘minor arc estimate’
enabled him to show (as we shall in Theorem 3.1} that all sufficiently
large odd numbers can be written as a sum of three primes. We find it

simpler to work with the generating function

N
S(a) =Y A(n)e(na) (17.28)

:Vanghanld
because A(n) has the decomposition ﬁfmh gives rise to sums for
which (in many cases) we can derive nontrivial estimates.
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Theorem 17.1 Let S(a) be as above. If (a,q) = 1 and | — a/q|

<1/q?, then

S(a) < (Ng~'/2 + N5 + NY2¢1/2)(log N)*/2. (17.29)
- SumE
Proof By @%e that
N 1

5w X et 3w (Fopy) 0790 [Epemen]

w<r<N/t 0<t<T

To estimate the right hand side, we write t = hq + r and sum over
0<h<T/qgand 1 <r < gq. Let § = o — a/q. We consider first the
case in which h = 0 and 1 < r < ¢/2. Since |6] < 1/¢?%, ||ra| differs
from ||ra/q| by at most 1/(2q). But ||ra/q| > 1/q for these r, and hence
||red]] < [Jra/ql|- Consequently

> Wémw< > L > g<<qu2q

1<r<q/2 1<r<q/2 Ira/al 1<r<q/2

For all other terms we have hq+r > (h+1)g. Thus it suffices to estimate

N N 1
Z me((h—i—l)q’ ||hqa+ra/q+7‘6||>' (17.31)

0<h<T/qr=1

For any given h, the ¢ points hqa+ra/q+rd are uniformly within 1/q of
the equally-spaced points hqa + ra/q. Thus if ||hqa +ra/q+ré|| < 1/g,
then ||hga+ra/q|| < 2/q, and this holds for at most 4 values of r. For all

other 7, the numbers ||hga +ra/q+ 76| are com arable to the numbers
lr/q]| for 0 < r < q. Hence the double sum @Ts

N N

< E <7+qlog2q> < —log2T/q + Tlog2q + qlog 2q.
0<h<T/ (h+1)g 4

<h<T/q

That is, we have shown that

N 1
3 min (?’W) < (N/qg+T + q)log2Tq. (17.32)

0<t<T

-SOFEst
By ﬁswe deduce that

Sy < (N/q+ UV + q)(log 2qUV)?.
Similarly, from . sx}fve see that

S3 < (N/q+V +q)(log2¢V N)>.
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: inalEst [E- SumEst
By (T7-15) and (169 we find that

1/2
1
N/2(log N)? <M7> .
S NN, e s\ 22 i O g

Here the sum over j is
1 N 1
<M+ ) min (M—) <M+ Y min (——)
it el : 7 el
J<N/M 0<j<N/M

- TypeTEst2
since M < N/j for j < N/M. Thus by a further application of W
we deduce that

Sy < (Ng~V2 4 NUY2 + NV=Y2 4 NY2¢1/2) (log 2qN)*/2.
By taking U = V = N2/ we deduce that
S(O{) < (Nq—1/2 +N4/5 +N1/2q1/2)(10g2qN)5/2

To complete the argument it suffices to'ngte EgaEts e may assume that

q < N, since otherwise the estimate is weaker than the trivial
estimate S(a) < N. O

S:Sum_e (p*alpha) .
ii 7.211 ﬁxer(:lses

Exer:muSumEstl| 1. Show that if |« —a/g| < 1/¢* and (a,q) = 1, then

Z u(n)e(na) < (Nq_l/2 + N4/5+e 4 N1/2q1/2)(10g N)3. (17.33)

n<N

2. Show that if ¢ is a positive integer, then for any integer c,

(/) =Y —— 3 r@xlc/d).
d| X

P(q/d)

dle (mod q/d)
3. Let
M(x;x,8) = > x(n)u(n)e(nd)

n<lz

where  is a Dirichlet character, x is real, and § € T. Let A and B be
given positive real numbers. Show that if « = a/q+ ¢ with (a,q) =1,

then
Z p(n)e(na) = Z Jé%) Z TOOx (@) M (2/d; XXy 0)
n<x d|q X

(mod q/d)
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where Xo(d denotes the principal character modulo d.

4. Let M(x;x,d) be defined as in the preceding problem. Show that if
X is a character modulo ¢ and ¢ < (logz)4, then

M(z;x,0) < (14 z||6|))z(log z) 5.
5. (Davenport 1937a,b) Show that if | — a/q| < 1/4¢?, (a,q) = 1, and
q < (logz)4, then

Z p(n)e(na) < z(logx) ™. (17.34)

n<x

.. . . . er :muSumEst1
By combining this with the result of Exercise ilﬁ show that the above
estimate holds uniformly in a.

6. (Bateman & Chowla 1963)

(a) Let A(n) denote the Liouville lambda function, which is to say

that A\(n) = (—1)%(") where Q(n) = 2_pe|n @- Show that
Z p(n/d?) = A(n)

d?|n

for all positive integers n.
(b) Deduce that

Z A(n)e(na) = Z Z p(m)e(d*ma)
n<x d<z1/2 m<z/d?

for all z > 1 and all real «.
(¢) Conclude that

Z A(n)e(na) < z(logz)™ B

uniformly in a. .
(d) Let
fla) = Z ,uibn)e(na)’ gla) = Z A(n)e(na). (17.35)
n=1 n=1

Show that these series are uniformly convergent, and hence define
a continuous functions on T.

(e) Show that

q q

> fla/g) =0, > glafq) =0 (17.36)

a=1 a=1

for all positive integers q.
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(f) By using the result of Exercise 9.2.1.1(a), or otherwise, show that
if (a,q) =, then

3 A(n)e an *L xX(a)T 711(27?2)
> el /9= 5 %Ox( )T(X) =t

— L(1,X)
(n,q)=1

(g) Show that if x is an even primitive character modulo ¢, ¢ > 1,

then
q—1
L(2,X) ZX a(q — a)
a:l
(h) Show that
72
Reg(1/5) = ——————— = 2.05098958.. . ..

101og (157)

(i) Suppose that p; and py are distinct primes, and that (a,pip2)

= 1. Show that
g<plc;2> = —g(a/p2)/p1 = g(a/p1)/p2 + i /\(nn)e(pTZz)

(n,p1p2)=1

(j) Show that Reg(1/10) = 0.

Suppose that

= f(d)
d|n

for all n, and let (s ) denote the sawtooth function with period 1, as

defined ini . y the Fourier series expansion of Lemma D.1 (see
also , we see that possibly
> f(d B 2. f(d) X sin 2rmda
> L) -3 100 5 2 a737)
d=1 d=1 m=1
o0
= Z sln 2nna, (17.38)

by grouping together those pairs m, d for which md = n. This is merely a
formal argument, §inces%e ave 1 not }ustlﬁed the reorganization of terms
in passing from (ﬁ% -38). 11 the next several exercises, we treat

this issue in the interesting case ‘that f(d) = p(d).

E:sumfs/d
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)

0 | i Il l 1J il

0.2 0.4 0.6 0.8 1

—24

H f
Figure 17.1 Graph of Re g(z) with g defined as in @_&

7. Let

Sp(a) = Z M(d)s(da). (17.39) |E:DefS_D(alpha)

d
d<D

(a) Let N be a parameter to be chosen later such that N > D, and
let Ex(x) be defined as in Lemma D.1. Show that

Sp(a) = -1 sin2ra + 11 («) + To(«)

T
where
1 w(d) sin 2rnda
T == e amoThea
L Z d m™m
D<d<N n<N/d
d
Ty = %EN/CI(O‘)
d<D

(b) Show that

T = Z % Z ,u(dd) sin 2mndo

n<N/D D<d<N/n
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Est2
(c) Use @ﬂtg—tshow that Ty < (log D)~ B(log N/D)?.

(d) Explain why Fx(0) = 0.

(e) Show that if (a,q) = 1 and ¢ < D, then Ty(a/q) < DN ~*log2q.
(f) Take N = D(log D)#, and deduce that

-1
Sp(a) = — sin2ra + O((log D)~ P) (17.40) |E:SD(alpha)Est

when a = a/q, (a,q) =1, and ¢ < D.

: _D(alpha)
8. Let Sp(«a) be defined as in @—L

(a) Show that Sp(«) is piecewise linear with slope

M(D)=) u(d)

d<D

and jump discontinuities at the Farey fractions of order D.

(b) Write
n
S M S el Y we/m)
n<xz n<x n<x
(n,9)=1 (n,g)=1 (n,9)=1
:El+22,

say. Show that ¥; is the number of integers not exceeding = that
are composed entirely of prime numbers that divide g. Hence
deduce that |%| < x.

(¢) Explain why [3o| < z.
(d) Deduce that

|z e

n<x
(n,q)=1
uniformly in x and gq.
(e) Let a/q denote a Farey fraction of order D. Show that the jump
discontinuity of Sp(a) at o = a/q is

_ - d)

(f) Show that the above expression has absolute value not exceed-
ing 2/q.
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(g) Let R denote the set of numbers composed entirely of primes
dividing ¢. Show that

E:MUM@::{MWJ if (n,q) =1,

P 0 otherwise.
|n
deR

(h) Deduce that

n<z
(n,q)=1

n 1 m
NPT
déﬁg e

(i) By adapting the techniques developed in §7.1, show that if ¢ < 22,
then the number of members of R not exceeding x is < z°.
(j) Deduce that if ¢ < x, then

Z uln) <<exp( cy/loga).

n<lz
(n,9)=1

1pha)E
(k) (Davenport 1937a,b) Conclude that (@"ﬁﬂﬁmfmmly in a.

. Let d, denote the multiplicative function defined by

) = (37) -1
and let f —: N — C be such that ) [f(n)| < oo.

(a) Prove that 0 <di(n) <land 0<|d_i(n) <1.
(b) Prove that

1 n=1
di (n/m ’
7;; /m) = {O n> 1.

(c) Let w, v € R, u, v > 1 and w = min(u,v). By considering the
formal identity

1 1 1 1 1. 1
2 =F—_F? —GC—(¢C2=F)(=¢2 —FG -1
¢ JFG+ GC (¢ )(2< G+ FG )

or otherwise, prove that

Zd =51 — 15 + 553 — Sy

where

d

u

IN
l\J\)—l

ns
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Sy =YY" > di()ds(m)d_y(n)f(Imn),

I<u m<un<v

o= 55" d_y (m) f(mn),

m<v n

Si= 3" 3 ds (m)b(n) f(mn),

m>un>w

where b(1) =1 and for n > 1

b(n) = Z 1d7%(7”l”b)cl%(n/rn) + Z %d,%(m)d%(n/m).
e L

(d) Suppose that o € R and there are a € Z, ¢ € N with (a,q) = 1
such that |a — a/q| < ¢~2. Prove that

> dy(n)e(an) < (wq~? + 27 +37¢>)(logz)*.

n<z

17.3 Further applications

Before considering specific applications, we make two technical remarks.
Firstly, we sometimes obtain sharper results not by treating 1 <n < N
directly, but rather by treating N < n < 2N, and then summing the
bounds obtained to treat 1 < n < N. The point is that the parameters
chosen to treat N < n < 2N may nagt gy_cguelgz% ws/ I}yg}l for smaller n. An
example of this is seen in ExerciseQﬁLWleefimfimate for the sum
over My < m < Ms would not apply if the sum were over 0 < m < M.

Our second observation concerns our treatment of Type II sums, say

S= > > bmeef(mk).

M<m<4M K<k<4K
N<mk<2N

Our existing treatment of this gives rise to the problem of bounding

>

K<j<4K

> f(mj)f(mk)‘-

M<m<4M

If the bound we can derive for the above sum over m is smaller when 0 <
|7 — k| = o(K), then we may obtain a better final result by partitioning
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the interval (K, 4K] into R subintervals K, of equal length. By Cauchy’s
inequality,

R
S> < RY_IS,)?
r=1

where

Se=" Y. Y bmerf(mk).

M<m<4M keX,
N<mk<2N

By a second application of Cauchy’s inequality we see that

s ml)( X | X afmw

M<m<4M M<m<4M kEX,
N<mk<2N

\

Here the second factor above is

=D > @ Y. f(my)f(mk).

JjEX, keX, M<m<4M
N<mj<2N
N<mk<2N

Since |¢;c| < lc;]? + |cxl?, it follows that the above is

<D lal 3

kEX, JEX,

T f(mj)f(mm].
M<m<4M
N<mj<2N
N<mk<2N
Thus

stear( 3w X ja?)

M<m<4M K<k<4K

for arbitrary b, and c; with

A? = R max max
1<r<RkeX, .
JEX,

> s fmR|. )

M<m<4M
N<mj<2N
N<mk<2N

When R = 1, this reduces to our former treatment. Let X denote the
usual order of magnitude of the above sum over m when j and k& range
independently over the interval (K,4K] . The variable j takes < K/R
values above, which gives an overall order of magnitude K X, which is
the same as when R = 1. But if the sum over m is smaller when j and
k are constrained to lie in the same subinterval X,., then the estimate
is improved. However, for each k there is a value of j, namely j = k,
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for which there is no cancellation in the sum over m. If |f| < 1, then
that contribution is < RM. If the diagonal terms dominate our estimate
of the contributions of the nondiagonal terms when R = 1, then taking
R > 1 yields a weaker estimate. Thus we obtain an improvement over
our original treatment if (i) Our estimate of > ., |>-,, - | is large
compared with M, and (ii) our estimate of |  ---| is better when
0<|j—kl=oK).

One of the foremost unsolved problems of prime number theory is to
show that n? 4 1 is prime for infinitely many integers n. In fact it is
conjectured not just that there are infinitely many such n, but that the
number of them with n < x is asymptotic to C'li(z) as  — oo where

C = % 11 <1 - g) (17.42)

p>2

While finding primes in sparse sequences is generally challenging, for
sequences of the special form Ln“J we have some success if a is not too
large.

Theorem 17.2 (Piatetski-Shapiro 1953)  For a real number a > 1, let
7o () denote the number of integers n < x such that Ln“J s prime and
put a = 1/a. If 1 < a < 12/11, then

7. (2) = a Z p 4 O(acll%14 logx).
p<ae

By a quantitative form of the Prime Number Theorem and integration
by parts we see that the main term above is

z% | a—1
:a/ 4 du+ O(zexp (—cy/logz)).
2

log u

By the change of variable v = u® we see further that the main term
above is = ali(z) + O(1). Thus in particular,
x

ma(@) ~ alogzx

as & — oo, provided that 1 < a < 12/11.

The prime number distribution model of Cramér asserts that a large
integer n is prime with ‘probability’ 1/logn. This predicts that m,(z)
should be approximately

1 1 1 .
Z log[na] ~ 1@29 alogn+o( Z W) = ali(z)+0(1).

1<n<z 1<n<z
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Thus we interpret the Piatetski-Shapiro Theorem as asserting that the
sequence |n®] collects its fair share of primes, when 1 < a < 12/11.

The bound 12/11 can be relaxed somewhat, but it is not clear by how
much. We note that the sequence LnQJ contains no prime. To prepare for
the proof of the Theorem we first establish the basic estimate on which
the proof will depend.

Lemma 17.3 Let o be fizxed, with 0 < a < 1, and suppose that 1 <
M < M' <2M. Then

Z e(cma) < |C‘1/2Ma/2—|— |C‘_1/2M1_a/2
M<m<M'

uniformly for nonzero real numbers c.

Proof We may assume that ¢ < 0, for if ¢ > 0, then the sum is the
complex conjugate of the value it Wouldug%;/%if c is negative. In the van

der Corput estimate of Theorem ake f(z) = cx®. Then f"(z) =
cala —1)z*"2 < —cM~2. The stated estimate is immediate. O

Proof of Theorem ﬁ Suppose that instead of counting integers n < x
such that Ln“J is prime, we count primes p < x® such that p = Ln“J for
some n. If n <z and Ln“J = p, then p < n® < x?. Conversely, if p < z¢
and Ln“J = p, then

n® < p+l<a+1< 242" =2(1+1/z) < 2*(1+1/2)* = (z+1)°,

so that n < z + 1. Thus when we sum over p < z® such that p = [n?]
for some n we obtain all the terms that arise when we sum over n < z,
plus at most one additional term. To say that there is an integer n such
that {naJ = p is equivalent to saying that p < n® < p + 1, which in
turn is equivalent to p® < n < (p + 1)* where a@ = 1/a, which is to
say that there is an integer in the interval [po‘, (p+ 1)0‘). This in turn
ie equivalent to saying that L — pO‘J — L— (p+ 1)O‘J = 1. Otherwise, this
difference is 0. Thus

ma(2)= Y ([ =p"] = [~ (+1*]) +Oq).

p<z®
If the above sum is formed without taking integer parts, it becomes
S ()= St o £
p<a@ p<a® p<lae

Since « < 1, the error term above is O(loglog ) uniformly in a.



80 Estimates for sums over primes

Recall that {x} = = — |z denotes the fractional part of . Thus to
complete the proof it will suffice to show that

St {-p+D} <25 loga (17.43)

p<z®

for 1jaj12/11.

In §D.1 we defined the sawtooth function s(x) to be s(x) = {a} if = is
not an integer, and s(z) = 0 if z is an integer, in Lemma D.1 we found
that

s(z) = isin%rhx +O<min(1 1 ))

— ok "H|z||/ /"
This same formula holds for {z}, since {«} differs from s(z) only when
z is an inte eﬁhc%gg Etshce error term is O(1) in that case. Moreover, in
Theorem @W@%deﬁned a trigonometrical polynomial g, (x) =

Zf:_H Gy (h)e(hx) such that

and such that

Thus if N < N’ < 2N and H is a parameter to be chosen later, then

Y. Am({ -+ - {-n})

N<n<N'
- 3 a3 ASH ol ra) (]
N<n<N’ 0<|h|<H
1 1
+O( A(n)( min (1, —/———) + min (1, —— )
N<;N, ( ( HH(n—l—l)aH) ( HHnaH))

Here the error term is

<(logN) > gy(n%)

N<n<N’'+1
H
= (log N) Z gg(h) Z e(hna). (17.45) |E:ErrorTermEst1
h=H N<n<N'+1

:PSvdC
If h # 0, then from Lemma ﬁVWe see that

Z e(hna) < Na/2|h|1/2+N1_a/2|h|_1/2.
N<n<N’
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When hT: OEtPf)re is no cancellation in the sum over n, so the expression
- rlermns

1S

N(logN)log3H logN
< H + H

H

Z (Na/2h1/2 + Nl—a/Qh—l/Q) log g
h=1 h
< (log N)(NH 'log3H + N®/2{'/?  N1=o/2[1=1/2), (17.46)

When N is near %, this will require taking H to be somewhat larger than

2%~1. We postpone choosing H until further arguments are complete, so

that we can choose H to minimize the sum of all error terms.
Concerning the main term *We note that

e(—hn+1)%) —e(n®) oy [Tt
5l = —e(—hn®) /0 e(—hB)dp.

Thus the expression ﬁ%
(n+1)%—n®
== > > Ame(- hn"‘)/ e(—hp) dgp.
0

0<|h|<H N<n<N’

Let 6(v) = (v + 1)® — v®. This is an increasing function of the real
variable v, so the inequality 8 < §(n) is equivalent to n > §~1(3).
Hence the above is

(2N+1)% —(2N)®
. /0 e(-hB) 3 Aln)e( - hn®)ds

0<|h|<H N<n<N’
n>6"1(3)

which by the triangle inequality is

(2N+1)*—(2N)®
< Z / Z A(n)e( — hn®)|dB.
o<|n|<H 0 N<n<N’
n>61(8)

Since (2N +1)® — (2N)* < N®~! and h makes the same contribution
as —h, the above is

< Nt E max ‘ E A(n)e( — hn®)
N1,N2
0<|h|<H N<N;<Ny<2N Ni<n<N

. (17.47)

To estimate the above sum over n we invoke the usual decomposition

| E:ErrorTermEst2

E:PSMain2
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with U =V = [N'Y/3]. Thus S; = 0, and

Sa=Y a(t) Y e(h(rt)?)

t<U?2 N/t<r<N'/t
|0+ F a3
t<U r U<t<U?2 r
=53V + 8. (17.48)

:PSydC
By Lemma ﬁL

Sél) < Z(lOg 2t)((hto‘)1/2(N/t)a/2 + (ht0t>_1/2(N/t)1—a/2)
t<U

— Z (hl/QNa/Q + h—l/QNl—a/Qt—l) 10g2t
t<U

< W2NY2Ulog N + h™ /2 N1=/2(log N)2.
Hence

N1 Z \Sél)(h)| < (H3/2N30‘/2’2/3+H1/2Na/2)(logN)2.
0<h<H

Here the seond term is majorized by the first when o > 2/3, so with this
restrection the above is

< (H32N32/2=2/3(10g N)2. (17.49)
Also,
S3 = Z w(k) Z e(h(km)®) logm,

k<U N/k<m<N'/k
:S3Fst
which by @S—IS

< (log N) Z max

E<U
:PSydC . |
By Lemma is is

< (log N) Z (RY/2N/2 4 =12 N /2
k<U

< (hl/QNoz/2+l/3 + h71/2N17Q/2)(10gN)2.

> e(h(km))).

N/k<m<N'/k
m>w
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Hence

Nt N [Ss(h)| < (HP/2NB3/272/3 4 g2 N/2) (log N)?.

0<h<H
(17.50)

Here the second term is majorized by the first when o > 2/3, so with
this restriction the above is

< H3?N3e/2(log N)2. (17.51)
: IIRef
We now consider Type II sums. From @Wesee that

2
‘ Z Z bmcge(h(mk)®)
M<m<4AM K <k<AK

Ny <mk<No (17.52)
(Y (X el

M<m<4M K<k<4K

with

A? = R max max
1<r<RkeX,
JEX,

Z e(h(ja — ko‘)mo‘) .

M<m<4M
N1<mj<Ns
N1 <mk<Ns

If MK > 2N or 16MK < N, then the bilinear form is empty, ancziLta(l)
A = 0. Thus we may suppose that MK =< N. Whe % = k in )

0
: PSvd

the sum over m is < M. When j # k, by Lemma e sum over m

is

(1753

< hl/Q‘ja - ka’Ma/Q + h—l/Q‘ja . k""_l/QMl_a/Q.
Since |j* — k*| < K*~![j — k|, the above is

< h1/2K(a71)/2|j _ k|1/2Mo¢/2 i h71/2K(17a)/2|j _ k|71/2‘M170¢/2.
Hence

2| X ela —km?)
JjeEX, | M<m<4M
N1<mj<Na
Ni<mk<Ny
<<M_|_hl/QK(Ozfl)/Q(K/R)L’)/QMa/Q +K(170¢)/2(K/(hR))

< M +h'2NPKR™2 4 pm2PNRTV2,

1/2M17a/2
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Thus
A? < RM + h'/2N°PKR™V? 4 p= /2N =e/2R12,
We now choose R so that RM ~ h'/2N®/2K R~1/2_ That is, we set
R = th/gNa/3M72/3K2/3J,
which gives
A < RYSNQ+a)/6[1/6 | =1/6 Nr1/2—a/4p1/12 Nra/12 3 r—1/6 Fr1/6.
Here M~1/6 < K1/6N=1/6 50 the above is
< RYO N+ /6 [r1/6 | p=1/6 Nr1/3—a/6 p1/3,

We note that if & > 3/4 and K < N1/27 then the second term above
is majorized by the first. Since MK =< N, if K > N2 we simply
interchange M and K. Thus for N'/3 <« K <« N'/2 we have

A < h1/6N1/4+a/6.
From ‘ tit follows that
Su(h) < HYSN3/4+a/6(10g N)2,

Hence

Nt N |Sy(h)| < HT/ONT/671 /4 (log N)2.
0<h<H

Since |a(t)| < logt in @, it follows similarly that

No-1 Z |S§2)\ < H7/6N7a/671/4(10gN)2.
0<h<H

(1)Est
On combining these estlmates with dﬁﬁa—nsﬁ @—lt follows that

the expression in
< (H7/6N7a/671/4 + H3/2N3a/272/3)(10g N)2

We choose H so that the first expression inside the parentheses is ap-
proximately N/H. That is, we take H = |N26-13%|. The common or-
der of magnitude is N/H ~ N 3715, Other terms are smaller, when
11/12 < a < 1. On combining our estimates we find that

Z AR){-m+1)*}-{-n"}) < Nuzéw(log]\f)z.
N<n<N’

:FinalPSEst
The desired estimate (@_ﬁ_ﬂ'ﬁns from this by partial summation, so
the proof is complete. O
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S:AppsVinMeth .
1 xercises

Exer:muSumEsts | 1. (a) In §13.2 we showed that the estimate M (z) <. z'/2*¢ is a con-

sequence of RH. (More precise conditional estimates were also
derived.) Use those methods to show that if RH is true, then

Z pn)n™" <. z/2tere,

n<z

(b) Use integration by parts to show that if RH is true, and o > 1/2
and € > 0 are fixed, then

Z :U'(Zi) < y1/2—0+a7_5.
d>y Yy

2. (a) Show that if n is a positive integer, then

Z (d) = 1 if n is squarefree,
d2|n‘u 0 otherwise.

(b) As usual, let Q(z) denote the number of squarefree integers not
exceeding x. Show that

d,m
d>m<z
Let y be a parameter to be chosen later such that 1 < y < z/2,
and write the above as ngy —|—Zy<d =3 + Xo.
(¢) Show that

2=a 3 2D i) - sty

d<y

where

S(x,y) = Zu(d)B1({x/d2}). (17.54)
d<y
Here B is the first Bernoulli polynomial, By(z) = z — 1/2, and
{u} denotes the fractional part of u, {u} = u—|u]. Thus By ({u})
is the same as the sawtooth function s(u) except when w is an
integer.
(d) Suppose that ¢ > 1. Explain why

Yo

1 c+ioo C(5)< ,L;(i) ) z° ds.

211 S
d>y

c—100



86 Estimates for sums over primes

(e) Let € denote the rectilinear contour with vertices 1 + —loéw — 100,
It g — i, /24 e iz, 1/2+e+ia, 1+ g +iw, 14 5o +ico.
Explain why

Yo=u %—F ! /@C(s)( u(d)>xsds.

2mi d%s /) s
d>y d>y

Note that both these formulee for 39 hold unSCOIEldgtionally.
er :musumksts
(f) Now assume RH, recall the result of , an at RH implies
LH. Show that the term above involving the contour € is <.
gl/2ey=1/2,

(g) By combining results, show that if RH holds, then
6
Q@) = Lo +0(/2%) + O(a/2+71/%) + O(S(a. ).

Note that y/2te < gl/4te < z1/2+ey=1/2 Hence the first error
term above is majorized by the second. It is trivial that S(z,y) <
y. On taking y = z'/3 it follows that the error term above is
< z1/3+¢ This was achieved already in Exercise 13.3.1,16, but

. . K er :muDecom
in the exercises that follow we use the results of Exercises
ﬁ1 @er :muSumDecomp - IIRef

an e estimate with van der Corput’s method

allows us to derive a nontrivial estimate for S(z,y) when y is a
little larger than z'/3.

. . . . . H St
Exer:sum e(W/n"2) | 3. By quoting an appropriate estimate established in @E_show that

if M < M; < My < 4M, then

S e(Vim?) < VVEM 4+ VTVAME
My <m<Ms,

- er :muSumDecom
4. (a) By Exercise ﬁﬁlﬁﬁ show that I N and V are positive real

numbers with N > V2, then
T:= Z p(n)e(W/n?) =Ty +Ts
N<n<2N
where

Ti=— > bn Y e(Wm?k?),

m<V2?  N/m<k<2N/m

T, =— Z Z p(m)ere(Wm™2k=?)

m>V k>V
N<mk<2N

. . "
and b,, is defined in @ and ¢y is defined in ﬁ
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(b) Show that if K < j < k < 4K, then

1 LNl s ld— K
’W(F_EN“W K3
(c) Deduce that if M < My < My < 4M, then

> (W (G~ )

Mi<m< M,
< W1/2K73/2M71|j o k|1/2 4 W71/2K3/2M2|j o k|71/2.

(d) Deduce that if & € K, then
1 1
2 (WG ma)
o S, (jm)*  (km)
<<M+W1/2R_3/2M_1+W_1/2K2M2R_1/2.
-TypeTIRef
(e) Let A be defined as in (@.—Seﬁppose that W > M*. By

taking R = |W'Y3/M*/3], show that if A = A(W,M,K) =
W/6pN[=1/6 4 W—1/6012/3K then

Z Z bmcke(W/(mk)2)

M<m<4M K<k<4K

N<mk<2N

1/2 1/2

<o X me) (X laP)
M<m<4M K<k<4K

(f) Show that if K > M, then A(W,M,K) > A(W, K, M). Thus,
whenever K > M, the above bilinear form inequality will be
applied with the roles of K and M reversed.

(g) By setting some variables to 0, show that if W > M* M < M’ <
4M, and K < K’ < 4K, then

Z Z bmcke(W/(mk)z)

M<m<M' K<k<K’
N<mk<2N

<<A< > |bm|2)1/2( > |ck|2>1/2.

M<m<M' K<k<K’

(h) Show that m < 2N/V for all m that occur in the definition of T5.
Deduce that as M runs from N'/2 to N/V, the blocks (M,4M]
cover all m in the interval N'/2 < m < 2N/V. Note further that
if V> N/WY4 then W > M* for all these M.
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(i) By considering dyadic blocks, show that if V' > NW =14 then

Z Z bmcke(Wmfzkfz)

m>V k>V
N<mk<2N

< (N’1/12W1/6 JrNS/GWUG)( ZZ |bm6k|2>-
m k
N/2<mk<4N
(j) Take V.= NW~1/4 and show that

T2<< (W1/6N5/12+W_1/6N4/3)(10g2N)2.

(k) Write

n=>+ Y =1"+1?.

m<V  V<m<V?2

Show that if N < W3/8, then V2 < N/V. Treat T1(2) as a Type
II sum to show that

TP <« (WYON?/12 L Ww=1/6NA/3) (10g 2N)2.

. [Exer:sum e(W/n~2)
(1) Use the bound from Exercise |3 above To show that

TV < N dm)(WYANT 4 NP2 M),
m<V

and show that the above is

< WYAN"IV (log2V) + N2W~1/2(log 2V)2.
Show that if W/5 < N < W3/8, then the above is

< NO/12Wt/610g 2N.

(m) Conclude that if W5 < N < W3/® then T < (N°/12W1/6 +
NABW=1/6)(log 2N)2.

Exer:QRH| 5. (a) By quoting Lemma D.1, or otherwise, show that
e(ha) ) 1
=~ 0 4 o gt
1{ed) D g + Omin Hla|
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(b) Deduce that S = > n_, <oy n(n)By ({Xn=2}) = M + O(R)
where
1

M=- Z ik Z p(n)e(hXn™?),

0<|h|<H N<n<2N

R= Z min (1,%).

N<n<2N

. TrigE
c) Let g, (x) be defined as in Theorem ungcglalrftwhy
H

N 1 & 3H
R < H10g2H+HZ(logh>’ Z e(hX/n?)
h=1 N<n<2N

(d) Deduce that
R< NH 'log2H + HY?X'2N~1 4 H=1/2Xx~1/2N2,

Explain why

M<K Z ;L‘ Z p(n)e(hXn=?)|.

h=1 N<n<2N

(e) Assuming that (hX)Y/? < N < (hX)%/8 for 1 < h < H, deduce
that

M < (NVEXVOEYS 4 N*/3 X 71/6)(log 2N)2.

(f) Assuming that the above bound for M is valid, in estimating
M + R the terms N> X6 H1/6(1og 2N)? and NH~"log 2H are
inescapable. Apart from the logarithms, the combined contribu-
tions of these terms is minimized by taking H = |[NY/2X~1/7].
Thus we may be able to achieve a bound S <« NY/2X/7(log N)?,
but certainly nothing better.

(g) Note that the estimate S <« N is trivial. Thus the proposed
bound for S is useful only for N > X2/7.

(h) In connection with squarefree numbers, note that Y'/2X1/7 >
X122y -1/2ify > X5/14,

(i) Show that (hX)Y® < N < (hX)3/® for 1 < h < NY2X~Y7
X2/7 <N< X5/14.

(j) Show that the other term in the upper bound for M, and the
other two terms in the upper bound for R are smaller than
NY7X1/7(1og N)? for X2/7 < N < X5/14,
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(k) Conclude that from RH it follows that

Qz) = %x + O (2/25F9).

17.4 Digit sums of primes

S:DigitSums

Let n =73, d;2" be the binary expansion of n, so that each d; is either

0 or 1. Then s(n) = >, d; is the sum of the binary digits of n. Since

s(2n +1) = s(2n) + 1, it follows that | Y., <y (—=1)*"™| <1 for all N.

Our object now is to show that
S0 = ofx(z) (1755
p<z

as © — 0o. We begin by establishing a simple estimate that makes our

work shorter.

Lemma 17.4 Let M and N be integers with N > 2. Then for each

integer n there exists a weight w(n) such that w(n) > 1 for M +1 <
n <M+ N, w(n) >0 for all other n, and

oo

W(a) = Z w(n)e(na)
has the properties that max, [W(a)] = W(0) < N and W(a) = 0 if

el = 1/N.
Suppose that M +1 <n < M + N. Then

1
1<w(n)= /0 W(a)e(—na) da

1/N 9
= W(a)e(—na) da < — max |[W(a)|.
—~1/N N «
Thus our bound for max |W(a)| is optimal, apart from constants, If0
sharp constants were required, then we would appeal to Theorem
but for our present purposes we have no need for such sophistication.

Proof We recall that if f(z) = max(0,1 — |z|), then f(t) = (%)2 If
N is even, put K = M 4+ N/2. If N is odd, put K = M + (N + 1)/2.
Thus in either case, K is an integer. After several changes of variable we

deduce that if g(x) = N max(0,1 — N|z + a|)e(K (x + «)), then

o (sinm(t — K)/N\2
() = ( (i —K)/N ) elte)

Wpm
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By the Poisson summation formula in the form of Theorem D.3, we find
that >~ g(n) =3, Q\(k‘) Thus

_ 4 Z (Slnﬂ' n— )/)JCN>2€("0¢)

= %Nmax(O, 1 — Nlla|)e(Ka)
has the required properties. O

The function (—1)3(") has a power series generating function

P(z) =Y (-1™zn =T (1-2%) (17.56)
n=0 j=0

: ivl
for |z| < 1, but in our quest to prove @T\Ie find it easier to work
on the unit circle with a truncated sum, so we set

T = Y (-1 ™e H (1 - e(20)) (17.57)

0<n<27

We now derive a uniform upper bound for |T;(6)].

Lemma 17.5 Let T;(0) be defined as above. Then
max |5 (6)] = e

Since T;(0) is a sum of 2/ unimodular terms, it is trivial that |T;(6)]
< 27 for all 4. Put

log 3
a=1- ogd = 0.20752. (17.58)

Our lemma asserts that

T = o(1-a)J 17. E:Max|T
max 7,0) 1750

Thus o measures the extent to which the maximum of |T| is smaller
than the trivial upper bound 27.

Proof From the identity 1 —e(8) = —e(8/2)(e(8/2) — e(—3/2)) we see

that
J—1

T,(0)] = ] 12sin7270).
j=0

When 0 = 1/3, each factor on the right has the value v/3; thus |T;(1/3)]
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= \/?:J, so |T7(0)| achieves the indicated size, and it remains to derive a
uniform upper bound for |T;(0)|.
Let f(0) = sin® 76 sin® 276 sin 476. We first show that

|f(0)] < 27/64 (17.60)

for all . By use of the double angle formulas for sine and cosine we find
that

£(0) = 32(sin70)°(1 — sin® 70) (1 — 2sin® 7).

Let p(u) = 32u3(1 — u)?(1 — 2u). Thus p(u) > 0 for 0 < u < 1/2,
p(u) <0 for 1/2 < w < 1, and it suffices to show that |p(u)| < 27/64
for 0 < u < 1. Now p'(u) = —32u?(u — 1)(3u — 1)(4u — 3), so p(u) is
increasing for 0 < u < 1/3, decreasing for 1/3 < u < 3/4, and increasing
for 3/4 < u < 1. Hence maxo<y<1p(u) = p(1/3) = 1%8%729(611 0.1756
and ming<,<1 p(u) = p(3/4) = —27/64 = —0.4219, so olds.
If2K=J—1or J—2, then
J—1
T5(0)]* = [ 12sin 2770/
§=0
2K -1
<<|251n779|2< H |2$in2k7r9|3>|2sin22K7r9
k=1
K—1
= [ I64£(4%0)| < 277 < 337/,
k=0

so we have the desired upper bound. O]

Since the functions log |1 —e(276)| move on widely different periods, we
expect them to be nearly independent, and so we expect that log |T';(6)]
should be distributed as if it were a sum of J independent random vari-
ables. As

1
/ log |1 —e(6)|d6 =0 (17.61)
0

and

1
/ (1051~ e(@)))* o = T, (17.62)
0

we expect that

exp(—C\/j) <|T;(0)| < exp (C’\/j) (17.63)
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for most 6, if C' is a large positive constant. On the other hand, by
Parseval’s identity it is trivial that

1
[ 1zsopdo =2, (17.64)
0
which is to say that Tﬂ[lgze: 27/2 This is much larger than the order

of magnitude in , so we infer that the large value of the 2-norm
is due to a small set of 0 for which |T);()| is exceptionally large. If this
is the case, then we would expect ||Ts||; to be smaller than the root-
mean-square, || Ty||2. The next lemma helps us to show that this is the
case.

Lemma 17.6 Let g(0) = sinwfsin 276, and put

h(8) = 19(0)] +19(6 +1/4)[ + |9(0 + 1/2)| + |g(6 + 3/4)|-

Then
max h(0) = h(1/8) = \/2 V2.

Proof Clearly h(f) has period 1/4. Since g(6) is even, it follows that
h(0) is also even. Hence we may restrict our attention to 0 < 4 < 1/8. In
this interval, g(6) > 0, g(0+1/4) > 0, g(0+1/2) <0, and g(6+3/4) < 0,
0

1 1 1
h(8) = 5(2 — \[2) sin? 760 cos 6 + 3 sin 70 cos® 76 — 1\/§COSB w0

1 1 1 1
= 5(1 +v/2) cos 76 + 3 sin 7 + 5(\/5 — 1) cos 30 + 3 sin 376.
(17.65) |E:h(alpha)Id

Consequently,

h'(0) = — g(l +V/2) sin7h + gcosm9

- 3?77(\/5 —1)sin 376 + 3% cos 314,
2 2

_%(1+\/§)cos7r6’— %sinﬂﬁ
972 97
_ %(\/5 — 1) cos 3w — % sin 376.

h//(a) —
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In this last formula all terms are < 0, so it is clear that h”(6) < 0. But

W (1/8) = 1+\f\/ 1/\[ \/Hl/f
V3o 1) /1+1/\f 371' /1—1/{

:4(2—[)\/2—f+ (4— 3\f) 2+2

=0
because /2 — /2 = (\f 1)v2 ++v2and 4—-3v2=(1— h )
Hence the maximum is attained at § = 1/8, and from we see

that

R e
O

It is convenient to observe that

T5(0) = Ty_;(0)T;(27776). (17.66)
m Lemma 17.7 Let B = 0.057111674 ... be determined by the relation
4% =2/\/2 4+ /2. Then
2J

D T (0 + af27)| < 263/275)7
a=1

uniformly in 6.

By integrating this bound over 0 < # < 1/27, it is immediate that

1
| 12s0)1d0 < 2072902 (17.67)
0

Thus 3 reflects the margin by which we can say that | T||; is smaller
than ||TJH2
Progf Let SJ(6‘) denote the sum to be bounded. By taking j = J — 2
in We find that

2]

S5(0) =" ITa(0 + a/2”)||Ty—2(460 + a/2772).
a=1
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Here the second factor has period 272 with respect to a, so the above

18
97 =2

=43 |Ty_2(40 + a/2"7%)|h(0 + a/2”)

a=1

:Trigineq2
in the notation of Lemma @‘I’gﬂﬁ%e by that lemma it is immediate

that
S7(0) <4\ 2+ V285 5(46).

We apply this K = [J/2] times to see that

S5(0) < (4\/2 + ﬂ)KSJ,zK(22Ke).

But Sp(A) < 1, S1(0) < 1, and 2(2 + v/2)'/* = 23/2-8 50 we have the
stated result. O

. -T_JL1Est1
By applying @%d then Lemma @Iw—lﬁh replaced by J — j,

we deduce that
277
D L0+ ¢/2777)| < |T;(27770) (2072~ =), (17.68)
c=1
In Theorem @%%%own that if 0 is irrational, then the numbers nf
are uniformly distributed modulo 1; this is af:hieéﬁndﬁ Sl%y combining the
simple exponential sum estimate of Lemma Wi eyl’s Criterion.
In general, as we let n run from 1 to N, we expect that nf will fall
into a short interval I approximately the expected number of times.
However, it can sometimes happen that a short interval is hit far more
times than expected. We now show that this can only happen when 6
has a rational approximation a/q that is exceptionally good, and with ¢
unusually small.

Lemma 17.8 Let 0 be a given real number. Suppose that §; < d2/12,

that N > 3/62, and that nf € I = [¢p—d1,¢+01] (mod 1) for at least 62N

of the integers n € [1, N]. Then there is an integer ¢ with 1 < g < 9/02,

such that
36,

o < —. 17.69

ool < (17.69)

By Dirichlet’s theorem we know that there is a ¢ < N such that

llgf]] < 1/N, but the g described above gives a better approximation,
and with a g that is quite small.

E:T_JL1Est3

|E:thetaWellApprox1
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Proof Among the positive integers ¢ < N, let ¢ be the one for which
lgf|| is minimal. For 0 < n < N, arrange the numbers {n#} in increasing
order, and consider the minimal gap between consecutive terms, say
{n10} < {n26}. Then |[(n1 — n2)f|| is the length of this gap. But 0 <
|n1—ns| < N, and ||gf|| is minimal, so we see that of all the gaps between
the numbers {n#}, the gap between {¢f} and 0 (or 1) is minimal. With
nf € I for at least §2/V values of N, we have > 6o IN — 1 gaps, each O£We11A ot
length at least ||g0||. Hence ||g0]|(62N — 1) < 26;. This implies W
since 99N > 3.
We divide the interval [1, N] into < N/q + 1 intervals of length < q.
For a given ng, we consider those n, ng < n < ng + ¢ such that nf € I
(mod 1). We put 6 =60 — a/q, so that

nf = nob + (n — ng)a/q+ (n — np)d.
: aWellApprox1

By we know that || < 361/(d2¢N). Hence
341 1
— < —— < ——
(n=nodl < 5% < I

since 01 < d2/12. Thus if nf € I, then (n — ng)a/q € J = [¢p — ngb —
91 —1/(4N), ¢ — ngf + 6 + 1/(4N)]. Since the numbers (n — ng)a/q are
in arithmetic progression with common difference 1/¢, the number of n,
ng <n < ng+ q, for which (n —ng)a/q € Jis <1+4¢q(26; +1/(2N)) <
261q + 3/2 since ¢ < N. Consequently, the total number of n < N for
which nf € I is

< (N/q+1)(201q + 3/2) = 26, N + 3N/(2q) + 261q + 3/2.

Since ¢ < N, the first and third terms on the right hand side sum to
< 461N < §3N/3. The last term is < §3N/2, since N > 3/d2. Since the
number of n < N for which nf € I is by hypothesis > J2 N, we conclude
that
0o N < §62N + ﬂ7
6 2q

which implies that ¢ < 9/ds. O

. : Smodthiftiet aWellApprox . .
With Lemmas [I7.4HI7.8[1n hand, and most particularly with our non-

trivial estimates of ||T||c and of ||Ty|l1, we are now in a position to
apply Vaughan’s identity with f(n) = (—1)%™ to prove

Theorem 17.9 (Mauduit-Rivat 2010) Let s(n) denote the sum of the
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binary digits of n. Then

> (=1)*™MA(n) < N1, (17.70)

n<N

Proof For N > 2 we set

T(9) = Z (—1)*™e(ng).

n<N
If we choose J so that 2771 < N < 27, t}:lL%IsllT is a truncation of the
sum Ty, and hence by @ﬁ%ﬁow that
17| < N*"*log N (17.71) |E:LinftandGFcn |

and that
|7 < N2~ Flog N (17.72)
:Defalph “T_JL1Est1
where o and g are defined in %ﬁfd Lemma ﬁ_wglfake f(n) =

(—1)*(™) in Vaughan’s identity in order to estimate S = Y onen fF(MA(n).
Our treatment of the Type I sums is very simple:

> fln) =+ 3 T(a/)

n<N
tln

. . . -LinftyBndGFcn
By the triangle inequality and @%ﬁﬂﬁvs that
S| Y set| < UNlogN. (17.73)

t<U r<N/t

. . -LinftyBndGFcn . .
By replacing N in (il (; ) %y w and differencing, we see that

max e(nb) < N'™%log N
>, fn g

w<n<N

uniformly in 6. Hence by the same reasoning,

Z mgulc‘ Z f(dh)’ < VN'"%log N.

a<v = w<h<N/d
Thus
S3 < VN'"*(log N)? (17.74)
in the notation of @E\Ne write So =,y + X pycpcpv = S1+S51n

then
S; < UN'™*(log NUV)? (17.75)
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: Test
by W}?ﬁg—trea‘c Srr and Sy as Type II sums, and for that we show
that if |b,,| < 1 for all m, |cx| < 1 for all k, and M < K, then

Z bmer f(mk) < K1+e L=/ (3=48)+e
M<m<2M
K<k<2K
mk<N

4 K 1/(10-88) ke ) p1+(1-28)/(10-88) b
(17.76)

Here the second term is largest when M =< K =< N'/2_ at which point
it is < N1=8/(10=88) Here £/(10 — 83) = 0.00598... > 1/200. The first
term on the right above becomes larger as M becomes smaller (with
K =< N/M), but we take U = V = N*B=48)/B=38) " and note that
then NU—A/3-48) — UN1—> = N1=a8/G=38) Here af/(3 — 36) =
0.0038104 > 1/263. To treat a block with M > K we simply reverse the
roles of m and k. For S; we take

b = p(m), Ck = loglN Z A(d)

dlk
d>V

or vice versa if M > K. Conditions such as m > U and k£ > V can be
met by stipulating that b,, =0 if m < U and ¢, =0 if k£ < V. To treat
S we take

- b(m)/log N (m >U), o 1 (k<UV),
"o m<U), " |0 (k>UV)

or vice versa.

: ellest
By Cauchy’s inequality, the left hand side of (i (/ % 1S

<Y ’ 3 ckf(mk)‘Q)l/Q.

M<m<2M K<k<2K
mk<N

: ellest
Thus to prove %ﬁ%es to show that

Z Z Ckf(m/f)’2 < K2rep1—28/(3—48)+e

M<m<2M K<k<2K
mk<N

+ KQ—1/(5—4,8)+5M1+(1—25)/(5—4B)+8.
(17.77)

E:MRTypellest

E:MRTypelIVar
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2 orputDiff
By van der Corput’s lemma (Lemma ﬁ_w%sﬁfhat

2
Z Ckf(mk)‘
K<k<2K
mk<N
K+H-1 9
<=— > laf(mk)
K<k<2K
mk<N
K+H-1&
+2Re =———— > "(1—h/H) ¥ crsnmif(mlk+ h))f(mk).
h=1 K<k<2K—h

m(k+h)<N

Here H is a parameter to be chosen later, subject to H < K. The first

term on the right hand side above is < K? Iélv.ayVe sum the above over
m to see that the left hand side of il (l 55 is

< —+—Z Z ’ Z f(m (k+h))f(mk)‘. (17.78) |E:MRTypeIIVarEst

h=1 K<k<2K M<m<2M
m(k+h)<N
Let n = Zj dj2j be the binary expansion of n. We divide 27 into n,
so that n = ¢27 +r. Then r = > j<y ;27 and s(n) = s(q) + s(r). Put
sy(n) =3 ;. ;d; = s(r) =s(n) — s(q). Thus if 27 <m,n < (¢+1)27,
then s(m) —s;(m) = s(q) = s(n) —s;(n). Put f;(n) = (—1)*’("). Then
f(m(k+h))f(mk) = f;(m(k+h))f;(mk) unless there is a multiple of 2
between mk and m(k-+h). We choose J so that 27 is large compared with
M H, but small compared with M K. Suppose that mk < ¢27 < m(k+h).
Then {mk/27} > 1—mh/27 >1—2MH/2’. Thus

Yo fmk)fmk+h) = Y fr(mk)fs(m(k+ b))

M<m<2M M<m<2M
m(k+h)<N m(k+h)<N
+0o( 3 1).

M<m<2M
{mk/27}y>1-2M H /2"

(17.79) | E:MRTypeIIVarSeg

We group pairs m, k according to the value of mk to see that

H
K
T2 2 >, l<kMe o 51
h=1 K<k<2K M<m<2M n<AMK
{mk/27}>1-2MH/2” {n/27y>1-2MH/27

since d(n) < (M K)¢. We divide the interval (0,4M K] into < MK /2’
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intervals of length 27. For n in an interval of length 27, the inequality
{n/27} > 1 —4MH/27 holds for < M H values of n. Hence the above

is

< (KM)** e H/27. (17.80) |E:MRTypeIlest3

The function f; is periodic with period 27, and so has a finite Fourier

transform,

2.]
Fo@) = 57 3 fome(—an/2’) = Ty (~a/2%),

so that
Z fi(a)e(an/2”).
: elIVarSe
Thus the first term on the right hand side of il (' $§ is
27 27
YD fi@fs) D el(am(k + h) + bmk)/27)
a=1b=1 M<m<2M
m(k+h)<N
27 27
<3 F@)fa(b) | min(M, 1/||(a(k + h) + bk) /27 |)
a=1b=1
[E-GeoSumEstE-MRTypelTVarEst
by (16.4]). 1s contributes an amount

<<52 ST ST S F(a) £ (0) min(M, 1/ (alk + ) + bk) /27 ).

Our estimate for this depends on the power of 2 dividing a + b. Write
a+b = 2/ with ¢ odd. We may assume that a and b are odd, since
fs(a) =0if a is even. Thus 1 < j < J, and the above is

27—

<<fZZZ|fJ )f7(c27 — a)

a=1j=1 c=1
2fc (17.81) |E:MRTypeIIEst4

H
x> min(M,1/|ck/2” 7 + ah/2”|).

h=1 K<k<2K

thilt
Let wq(h) be weights that arise when Lemma il f% s apphed to the
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-Smootht
interval [1, H], and let wo(k) denote the weights when Lemma il 1% Eaa

applied to the interval [K, 2K]. Then

H
ST min(M,1/|ck/2777 + ah/27|])

h=1 K<k<2K

< Y wi(hywa(k) min(M,1/|lck/2" +ah/2’).

h=—00 k=—o0

. -TruncTrigEst .
Let g(z) be defined as in Theorem @‘T’lﬁlgfﬁe above is

oo

Il
M=
Q)
—~
g
g
firy
—~
=
2
)
>
~
\}
<
~—
S
V]
—~
=
2
S
ol
~
\.}
<
d

M
= Y Gm)Wi(ma/2")Wa(me/2’ ).

M
< HK(log M) (1 + Z 1). (17.82) |E:MRTypelIEst5

m=1
lma/27||<1/H
llme/27 77 || <1/K

- 1Est3
By (@Tesee that

27-J
> 1F7(c27 — a)| < | f;(a)[20/2=A) =4, (17.83) [E:MRTypelIEst6
c=1

Hence

273 27

J
STF @] Y [F5(c2 — a)| < 20727PU=DN"F () fi(a)|. (17.84) [E:MBTypelIEst?
a=1

c=1 a=1

Z ecur
By @W see that

Toa) = 55 Ta(a/2)) = o5 To(a/27 )Ty (a)2)
1

= —Tj,j(a/zf)fj(a). (17.85) |E:MRTypeIIEst8

27-3
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] . eIIEst7
Write a = ag + a12’. Then the right hand side of 1'[ (%%i 1S

27 9J =i
= 2012 N T Fi(ao) P Y (T—j(a0 + ar/2777)).
ao:l G.l:l

H LiEst1
By Lemma 1S1S

J
< 207D T £ (ao)

ao:l

Here the sum over ag is = 1 by Parseval’s identity, so we conclude that

273
Zm )| Y Fs(e2 )| < 20720070, (17.86)
c=1
:MBTypeITEst5
Hence the term H K log M in (L7.32) eg\fIEsswreﬂects the mean value of
min(M, 1/||z||), contributes to (I7.81]] an amount that is
< K220-29)7 100 M. (17.87)
It remains to estimate
27 g 2773 M
K2 (log M)Y > ) 75 (a)fr(c2 — a)| > 1. (17.88)
a=1 1 c=1 m=1
7= 2tc Hma/2‘]\|<1/H

lme/27 =9 || <1/ K

The way that we proceed depends on the size of 2777, Suppose first
that 2777 > K. Since M < K, the numbers m = 1,2,..., M comprise
at most one complete system of residues modulo 2777, and hence the

number of them for which ||mc/27 77| < 1/K is s 5.2 2‘] J/K since c is

odd. By (%Psﬁlﬁ J contributes to an amount

< K237200=0) Jog M,
and the sum over such j contributes

< K228 7 10g M. (17.89)
Next suppose that M < 2777 < K. For 1 < m < M < 2777 we have
0 (mod 2 27=7), and hence |mc/2777|| > 1/2777 > 1/K. Thus in
¢ sum over m is empty when M < 2777 < K. Finally, suppose

that 2J J < M. Since K > M, the inequality ||mc/2” 77| < 1/K holds

|E:MRTypeIIEst9

|E:MRTypeIIEst10|

|E:MRTypelIEst11 |

|E:MRTypeIIEst12
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only when m is a multiple of 2777, Write m = 72777, Then we have to

estimate
2777 M/273
K?(log M) Z Z Z 177(a)F,(c27 — a)| > 1 (17.90)
j r=1
1<2J I<M llra/27||<1/H
- eIIEst6
To the extent possible, we argue as before. By Q%Pﬂﬁﬁove is
27 M/27
<K ogM)y > 20U Y L
a= j r=1
1<2"11<M lra/29||<1/H

eIIEst8
We appeal to %’mvme a = ap+ a12? to see that the above is

:K2(10gM) Z 2( 1/2-B)(J—3) Z |f a/O

apg= 1
1<2J I<M

M/2773  9J=i

X Z > Ty—j(a0/2” + ar/2779)).

a]1= 1
|\7‘a/2] H<1/H

: LiEst1
We apply Lemma ﬁto—fﬁa sum over a1, and thus see that the above

is

M/27 73
< K?(log M) Z 2(1=28)(J=J) Z fla)? Y. 1 (17.91)
ap=1 r=1
1<2J i<M lrao/27||<1/H

In general, we would expect the sum over 7 to be about M/(H2/~%)
in size. Let B be chosen later, B < H. The ag for which the sum over
ris < M/(B2777) contribute an amount < M/(B27~7), by Parseval’s
identity. Now consider those ag for which the sum over r lies between
2iM/(B2777) and 2’+1Méj§a2w‘illf This is far more solutions than we
expect, and by Lemma it follows that there is a ¢ < B/2% such that
llgao/27|| < B27=7/(2°HM). Let h denote the integer nearest qag/27.
Then 1 < h < g, and
27h B2/
0=~ < Ty

so for each h there are < B27/(2°HMgq) such ag. (There is no need
to add 1 to this estimate, since the interval in which the ag lie has

length > 1.) On summing over h and over ¢ < B/2¢, we find that there

|E:MRTypeIIEst13

|E:MRTypeIIEst14
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are §< BQQJ/(221HM) values aq in question. Since f;(ag) < 27 by

we find that the contribution of such ag is < B2(172%) /(2¢ ).
We sum over 7, and combine our estimates to see that

i M/27 =3 —2a)i
—~ M Bo(1—2a)j
Z ) 2 Z
1|f](a’0)| - 1<< B2J_] + H °
ap= r=

lrao/2%||<1/H

To optimize this bound we take B = MY/2H/22-7/2+i and thus see
that

M/2773
SN H@P Y 1< MVRETY2eT 200 (17.92)
ag=1 r=1

lrao/27||<1/H
: IIEsti4
Hence the quantity il (%I ) o
< K2M1/2H—1/22(1/2—a)J(10gM) Z Q(Q—QB)(J—j).
1§2sz§M

But o — 23 > 0, so the largest term occurs when 27~7 =< M, and hence
the above is

< K2MY/*e=28g=1/29(1/2=a) 160 . (17.93)
On combining this with |m’|“l=!‘é£f"|f 751 mj We Con-

clude that the left hand side of (I7.77)

<K?MH™' + (KM)**H2™7 + K202 1og M
+ K22729) 100 N + K2MY/2Ha—20 —1/29(1/2=0)T 155 0.
Suppose that 27 < MHA. Then (apart from the ¢ in the exponent),
the first two terms are < K2M(1/H +1/A). If A and H are allowed to
vary in such a way that AH is held constant, then the third and fourth
terms above are fixed, and the sum of the first two terms is minimized

by taking A = H. Accordingly, we take J so that 27 =< M H?. Thus the
above is

<<K2+EM1+EH—1 + K2M1—2,8H2—45 log M
+ KM?28 448 10g M + K2 HY/?722 p\[1=28 1og M.

Here the last term is smaller than the second one, so may be ignored.
If K1=4/3 < M < K, then we take H = K/(5=48) /pf(1=26)/(5=48)

|E:MRTypeIIEst15

|E:MRTypeIIEst16
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Then the first and third terms are roughly equal and the second term is
smaller. In this range, all terms are
< K1-1/(6=4B)+e ) r1+(1-28)/(5-4B)+¢
For 2 < M < K1*4ﬁ/3, we take H = M?28/(3~48) Then the first and

second terms are nearly equal, and the third one is smaller. In this range,
all terms are

< K2+EM1_2B/(3_4B)+E.

: ellVar .
Thus we have d%}jaﬁlThe proof is complete. O
- eIIEst15
We note that 1il f%%i is worse than the trivial bound

27 Mj27 =3 9J
SN H@P Y 1< M2 N fe))? < M2V
ap=1 r=1 ap=1
rao/2’|I<1/H
j : IIEst16
when 290/ > M H~1/2+2% Thus we could improve on ,e e
- eITEst16

this would not lead to a stronger conclusion because the bound in
: elIEst10

makes a smaller contribution than the estimate

S:DigitSums
1 Exercises

1. For 0 <r <1, let f.(0) =log|l —re(0)|.

(a) Show that if 0 <r < 1, then

oo n

”
= — — 2 .
1-(0) ,;1 —cos mnd
(b) Show that if 6 ¢ Z, then ) (cos 2mnf)/n converges.
(c) By Abel’s theorem (cf §5.2), deduce that

F(0) = — Z cosiwn&

n=1
when 6 ¢ Z.
(d) Show that

f1(0) — f-(f) < min (ﬁ,log 1||;HT)

(e) Deduce that || f1 — frl1 < (1 —r)log(2/(1 —r)).
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(f) Show that if 0 < r < 1, then

_ylnl

fw={ g 70

0 (n=0)

(g) By the inequality |f,(n) — f1(n)| < [|f, — fill1, deduce that

-1
~ — (n#0),
0 (n=0)
- zeroMV
(h) Deduce (I7. g
r
(i) Deduce (I7. i
2. (a) Show that |1 — e(8)| + |1 + ()| < 22 for %111]-:0{;1
- S
(b) Let S;(0) denote the sum in Lemma ow that S;(0) <

2v/257_1(26).
3. For 1 < n < N, let X,, denote independent random variables with
P(X,, = £1) = 1/2. For a generic point w of our probability space,
let f,(0) = 25:1 Xne(nf) denote a random exponential polynomial.

(a) Show that

/1 Fu(0)2do = N
0

for all w.
(b) Show that

/Ollfw(9)4d9=2§:( Y X

n=2 1<m,k<N
m+k=n
(¢) Show that the number of pairs (m, k) with 1 < m,k < N and
m+k=mnismax(0,N — |N +1—n|).
(d) Show that if n is odd, 2 < n < 2N, then

E[ 3 XmlxlemQXb] —2(N—|N+1—n|).

1<m1,k1,m2,ka <N
mi1+ki=ma+ka=n

(e) Show that if n is even, 2 < n < 2N, then

E{ 3 XmIXkIXmZXkQ} —2(N—|N+1-n|])—1.

1<my,k1,m2,k2<N
mi +k1 =m2 +k2=7l
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(f) Show that
1
E[/ £(0)* 6] = 28 ~ .
0

(g) Deduce that

DO =

P(/l £ (0)]4 dO > 4N2) <
0

[ (L™ ([

(h) Show that

for all f.
(i) Show that

With more work, it can be shown that fol |£..(0)|* df is usually near
its expectation, with the result that the probability considered in (i)
above tends rapidly to 1 as IV tends to infinity. Also, it is unlikely that LiEst1
| folloe WO %djl?e much larger than /N log N. Hence in Lemma @Jj
and We see that the coefficients (—1)*(™) produce behavior
that would be highly atypical for a random sequence.

4. Suppose that 0 < §; < §2/2, that N > 1/do, that 1 < ¢ < 1/(262),
choose a so that (a,q) = 1, put 0 = a/q + 01/(62gN), and set I =
[0, 261].

(a) Show that ||¢8|| = 01/(62N).

(b) Show that nf € I (mod 1) for at least 0o N valuesof n, 1 <n < N.

(Mauduit, Montgomery & Rivat 2010)

(a) Explain why [T,(8)]1 = [Ty _5(0)|*|Ts(27-26)]".

(b) Explain why [T7—1(0)|* = |Ty—2(0)*|T1 (27~20)|*.

(c) Write |Ta(a)[* = 2|T3(e)|* — 16 = 20 _, ¢, cos 2mna. Show that

Cop = C1 = 0.
(d) Explain why [ [Ty_2(6)|*e(k6) df = 0 if k| > 27~ — 1.
(e) Put uy = fol |T7(0)|* df. Show that ug = 1, u; = 6, and that

(Exer 0] 5.

ug =2uy_1+ 16uy_o

for J > 2.
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(f) Show that

1 1 17 - 51
17+5V17 1+m)J+M |- VIT).

uy =g 31\

17.5 Notes

Section 17.1. The description of the various sums as being of Type I

or Type II was introduced in BVJaug%an (1977b)). The 1dent1t con-
necting S with S, Sz, S3 and Sy was first displayed in (19774).
The proof there was elementary, and the identity was discovered during

an investigation of the properties of

> u(m).

m|n
m<U

H omposeLogDeriv R
Methods based on the identity il (%I) had already been used in

(1975) which had been noticed as an improvement of Gallagher’s identity

/ 2
S8 = 2G4 (G - (C(G) .
¢ ¢
ThlS Would be considered now a special case of Heath-Brown’s iden-

HBid
tity Heath- Brown| (1982), which 1s.scussed in Exercise 17.1.1 Mont-

gomery then pointed out that omose iwn(]’ are simply different
manifestations of the same underlying relationship. )

The introduction of the relatively simple identity lead to a
revived interest in a number of cognate problems that had otherwise
been consid‘enrpe_,dq inaccessible. From among the many examples, we note
the work of [Heath-Brown & Patterson| (1979) on the distribution of the
arguments, of Kummer sums (see also [Heath-Brown| (1982)), and also
the work [Gﬁen & Tao| (2012)) on the nature of the Mohius function.

Section 17.2. On the hypothesis of Theorem [I7. inogradov] (1937b))

showed by a method based on the sieve of Eratosthenese that

S(a) < (Nq_1/2—|—Nexp(—%w/71 gN)+N%q%) (log N)3,
ITMV5.

see also mgradoﬂ (1954), Chapter 9, Theorem 1. Vinogradov later
made a number of improvements to this, and applied the technique
to o}iher situations. The ultimate result is Theorem 3 in Chapter 9 of
Wgradov| (1954). For a general account of his work see the Royal So-
ciety obituary at msels Vaughan| (1985)).
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SRA1
In response to a question of N. J. Fine, ABesu:ovitch| (1961) showed that
there exist continuous 1-periodic real-valued non-constant even functions
[ such that >4, f(a/q) = 0 for all positive integers q. The construction
of Bateman & Chowla) (1963), found in Exercise 17.2.1 s simpler. The
graph in Figure 17.1 is based on a rigorous computation of Re g(z) at

10,023 points together with linear interpolation.

Section 17.3. Concerning n? +1, the quantitativ%gpon)jecture with the
constant C' in is Conjecture E in §5.42 of [Hardy & Littlewood|
(1922).

Instead of breaking the interval (K,4K] into subintervals X,., we can
restrict attention to terms near S?e diagonal by applying van der Corput
differencing (Lemma It ; as we do in the proof of Theorem

Theorem 17.2 is in |Pi%tski—Shapiro| (1953). The connection with ex-
ponential sums and the van der Corput method has led to many refine-
ments over the years. The best result currently is that the == has been
replaced by 212 by Rivat & Wl (2001).

Section 17.4. For an integer ¢ > 1 and a positive integer n, let, s,(n)
denote the sum of the digits in the base ¢ expansion of n.
m posed the problem of determining the distribution of s¢(p)
12%111‘1’1% m for arbitrary ¢ and m greater than 2. This was settled by
[%Imt & Rivat| (2010), who showed that there is a 6, ,,, < 1 such that

for all integers a,

card{p <z : s4(p) =a (modm)} = %ﬂ'(l’;d, a) + O(zfm)

where d = (m,q — 1). Our discussion of the special case ¢ = m = 2
follows an unpublished exposition of Green, and does not require some

of the ideas needed to treat the general case. See also E%rmota, Mauduit,
(2020)).

. er:MMR . )
The result of Exercise Eﬁei is a special case of the following result of
auduit, Montgomery & Rivat| (2018): If & is a fixed positive integer,
and

1
1= [ 1Ts@P* da,
0

then the integrals I satisfy a linear recurrence of order k.
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18
Additive Prime Number Theory

We now address additive questions involving prime numbers, particu-
larly the problem of expressing an integer as a sum of k primes

n=pi+p2+---+pg (18.1)

The cases k£ = 2 and k = 3 of this were first enunciated by Goldbach
in letters to Euler in 1742. We employ the ‘circle method’ of Hardy-
Littlewood, as later modified and improved by Vinogradov. For sums
of three primes our method is successful. For sums of two primes our
method fails, but we can nevertheless show that almost all even numbers
can be expressed as a sum of two primes.  Sumkorimes

Let r,(n) denote the number of solutions of @Jﬁme num-
bers p;, and let r;(n, X) denote the corresponding number with no p;
exceeding X. Thus rg(n) = ri(n, X) for n < X, and the identity

Skl X)e(na) = (3 efpa))
n p<X

is an immediate consequence of writing the product on the right as a
k-fold sum over p1,...,pr, and then combining those terms for which
p1 + -+ -+ pr = n. Thus the generating function

S(a) = e(pa) (18.2)

p<X

readily lends itself to the study of additive problems, and it is from its
properties that we derive estimates for ri(n).

! 1 wh =0
/ e(ma)doz:{ when =15
0

0 otherwise,

Since

113
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the functions e(ma) are orthonormal on the circle group T = R/Z. Thus

rk(n,X):/O S(a)¥e(—na) da, (18.3)

which is merely the formula for the n*" Fourier coefficient of S*.

The size of S(«) at an arbitrary point @ depends on the extent to which
« can be approximated by a rational number a/q with g relatively small.
The primes are uniformly distributed among the reduced residue classes
modulo ¢, but the reduced residue classes are not equally distributed,
so we expect that the numbers S(a/q) are sometimes large. Indeed,

q
S(a/q) = e(ha/q)n(X;q,h),
h=1

which is approximately

q

Z e(ha/q)

=1
,q)=1

if ¢ < (log X)#. The inner sum above is Ramanujan’s sum ¢,(a), and
by Theorem 4.1 we know that ¢,(a) = p(q) when (a,q) = 1. Thus the
above is

.

o(q)

if (a,q) = 1. By partial summation we find that S(«) has a peak of
width comparable to 1/X at a/q when ¢ is squarefree. The principle
of the Hardy—Littlewood circle method is to obtain an asymptotic for—Int
mula for r4(n) by estimating the contributions to the integral
from those peaks when ¢ is relatively small, and then to show that the
remaining portions of T contribute in toto an amount of a smaller order
of magnitude.

18.1 Sums of three primes

We now execute the approach outlined above in the case k = 3.

Theorem 18.1 (Vinogradov 1937) Let
1 1
ot = (I1(t- 5= 77)) IT(+ =)

pln
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and

3
lssn) = Y II log1mi.

mi+ma+ms=n i=1
mi>

Then for any fized positive number A,
r3(n) = G3(n)ls3(n) + O(n?(logn) ™),
and

ls3(n) = %nQ(logn)_‘?(l + 0(1/logn)).

The quantity &3 is written above in the form of an Euler product,
but we first encounter it below in expanded form, as an infinite series.
In the parlance of Hardy-Littlewood, this is a singular series. Hence the
use of the fraktur letter S to denote it.

It is readily seen that G3(n) = 0 for even n and that G3(n) < 1 for
odd n. Consequently, all sufficiently large odd numbers can be expressed
as a sum of three primes.

We begin with two lemmas. In the first of these, we find that S(«)
is relatively small when « is not near a rational number with small
denominator. The second relates to a sum that is useful in describing
the peaks of S(a).

Lemma 18.2 Suppose th%t(i? h—a)al/q| <1/¢?, that (a,q) = 1, and that
(i 52) TThen

S(a) is defined as in
S(a) < (Xqg™Y2 + X5 4 X12¢1/2) (log X)*/2.
Proof Let T'(u) =3 ., (logp)e(pa). By Theorem @Lvlv%as%%hat
T(u) < (ug™? +u® +u'/2¢"?) (log u)®/2. (18.4)

Then
X X
- T(X T(u
st = [ (g0 = 1 o a(gi)d“
: )
so the stated bound follows from @ﬁ 0

Lemma 18.3 Let U(B) =3 ,_,,<x €¢(mpB3)/logm. Then
UB)<Y/logY
where Y = min (X, [|8]|71).



116 Additive Prime Number Theory

Proof When ||f|| < 1/X, we argue that |U(5)| < U(0) < X/log X.
When ||8]] > 1/X, we again bound the con‘pribg&in%gtof m <Y trivially.
For the range Y < m < X we appeal to , and integrate by parts.

O

Proof of Theorem%@% = (log X)? and Q = X/P where B is to
be selected later as a function of A. We now dissect T into appropriate
arcs. For ¢ < P and (a,q) = 1, let M(q, a), called a major arc, denote
the interval consisting of those « for which |a —a/q| < 1/Q. Further, let
M denote the union of these M(q,a). If M(q, a) and M(q’,a’) are two
major arcs with a/q # a’/q’, then

!/

‘a a S 1 S 1 - 2
¢ ¢! q¢ = P27 Q
so M(q, a) and M(q’, a’) are disjoint. We define m, the minor arcs, to be
m =T\ M.
- Int
From we see that

We first estimate the integral over m. By Dirichlet’s theorem, for any
real number « and any @ > 1 there exist ¢ and a with ¢ < Q, (a,q) =1,
and |a—a/q] < 1/(qQ). If ¢ < P, then a € M(q, a). Thus if & € m, then
P < ¢ <@, and hence

S(a) < X (log X)3/2-B/2
by Lemma @Ql%?—rl%arseval’s identity and Chebyshev’s estimate we

have
/01 1S()[2 da = 7(X) < X/ log X.
Therefore
[ 15t da < (maxis) [ ' 15(@) da <€ X2(og X)V2-P2
Thus
/ S(a)®e(—na)da < X% (log X)~4 (18.5)

provided that

B>2A+1. (18.6)
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When « € M(q,a), we can approximate S(«) via the Siegel-Walfisz
theorem. Let

S(a/g, ) =) e(pa/q).

p<z

The number of primes p with (p,q) > 1 is < loggq. Thus

q
S(a/q,x) Z 7(x; ¢, h)e(ha/q) + O(logq).
=1
=1

Let the logarithmic sum be

Is(z) = Z (logm)™! =li(x) + O(1).

l<m<z

By the Siegel-Walfisz theorem (Corollary 11.21),

l;i )) + O(X exp(—cy/ log X))

uniformly for ¢ < P and x < X. Hence

S(a/q,xz) = ZE% Is(z) + O(X exp(—cy/ log X)). (18.7)

Let R(z) = S(a/q,xz) —1s(x)u(q)/(q), and set § = o — a/q. Then

71'(1‘; q, h) -

* nla) [* , *
/1 e(Bx)dS(a/q,x) = <p(q)/1 e(ﬁx)dls(x)+/l e(Bx) dR(x).

Here the first integral on the right is U(3), in the notation of Lemma

e estlmate the final integral by integrating by parts and applying
us we find that

S(a) = ZEZ%U(@ + O((1+8|X)X exp(—cy/log X)).

For o € M(q, a) we have || < 1/Q, and for arbitrary complex numbers
u and v we have [u® — v3| < 3|u — v| max (|u|?, [v|*). Therefore

S(a)® = :((5))3 UB)*+0(x? exp(—c@)),

/ S(a)?e(—na)da = I(n) Z J(q)
. o
+ O (1M X? exp(—cy/log X))
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where

e -
I(n) U(B)’e(—np)dp
-1/Q

and

q
p“(q))g Z 6 na/q
q a=1
(a,q)=1

Here I(n) is what Hardy & Littlewood would have called the singular
integral, and Y J(g) will turn out to be the singular series.
The measure of M is < 2P%/Q < X ~(log X)?E. Moreover,

S J@) <> el <Pt =(logX)™? and ZJ < 1.

q>P q>P

; t
By Lemma iﬂ%

1-1/Q
/ U(B)F df < Q*(log @)~ < X(log X) 253
1/Q

and

1
t/wwmw<xm%m*

fcn(A) ArcCont
Thus if @_h_oﬁaé then from @Wduce that

/ S(a na)da—/o U(B)%e(—npB) dB ZJ ((lo;(;()A>

g=1

Clearly
1
/ U(B)*e(—npB) dp =1s3(n, X)
0

where

Iss(n, X) = Z H logm

mi+meo+ms=n i=1
1<m; <X

Moreover, the sum in the definition of J(g) is Ramanujan’s sum ¢, (—n),
which is a multiplicative function of ¢ (as we recall from Theorem 4.1).
Since ¢,(—n) = p — 1 if p|n and ¢,(—n) = —1 otherwise, it follows that

> J(a) =

q=1
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:Bgefcn (A)
We take B = 2A + 4 so that @ﬁﬁsﬁed, and conclude that

/E)Jt S(a)de(—na)da = &3(n)lsz(n, X) + O(X?(log X)~#).  (18.9)

. -MinArcEst1l .
This and Qﬁlﬁm = n give the first part of the theorem.

To establish the asymptotic formula for lsz, we first observe that

1 1
1 =
s3(n) Z log My Z (logms) log(n — my — ma)

2<m1<n—4 2<ma<n—mi—2
1 n—mi—2 dx
L Z el G
1
O(7og7)
<logn )
_/n_4/n_y_2 dx dy
s 2 (log z)(logy) log(n — z — y) _
ol 1810
(logn)? /"

To estimate this integral, we first observe that if j and k are fixed in-
tegers, then

/X/ 2 dx X
j Nk itk
2 (lOg.I)J (log(X x)) 2(10gOX)J Py (1811)
* ((log X)j+k+1)'
The point is that (log(X —))* = (log X)*(1+0(1/log X)) for 2 < z <

X/2, and then the remaining integral can be estimated by integrating
by parts. Similarly,

/X/2 xdz B X?
> (logz)i(log(X —x))k — 8(log X)itk

+O<

e, o)

(log X )i+k+1 ) '

-1iikEst1
From @W see that

/X_2 dx B 2/X/2 dx
> (logz)log(X —z) ")y,  (logz)log(X — =)

= G 7 * (o )
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= stl
We take X = n — gy, and insert this in @_ﬁ see that

o n—y _nt
s = [ gt @+ (g

To es_tiérslgice the contribution of the interval 2 <y < n/2 we use both

(i and . o hj=1and k=2_To .t%esz}c‘% the interval n/2 <
y < n — 4 we replace y by n — y and use with j =2 and k = 1.
On assembling the various estimates we obtain the stated result. O

S: sumESFrimes .
Xercises

1. Let rx(n) denote the number of representations of n as a sum of k
primes.

(a) Show that ry(n) =3 _, rk—1(n —p).
(b) Let

_1)\k _1\k
&un) =[] (1 + (p(_i))k_l) 11 (1 - ((_li)k) (18.13) [E:8 k(h=n)prod]

= > [ (18.14) [E:Deis ktw |
i 1

For each fixed k > 3 and each fixed A > 0, show that
7(n) = 8 (n) sk (n) + O(n* ' (log n)fA).

(Do this by induction on k with the already completed case k = 3
as the basis of the induction. Do not use the circle method.)

2. Show that

X2 dz X 2X (X
/2 loga)log(X —2)  (logX)2  (log X)? © ((1ogX)4)'

SumE,
(a) Use @_tug—ssﬁow that >, - ¢q(n) < qlogg for ¢ > 1.
(b) Show that > on<x ©3(n) = X +O(1).

4. (Fooley][1998)
(

a) Suppose that A is a fixed positive number and z is sufficiently
large. Suppose further that ay, as, as are non-zero integers, not
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all of the same sign which satisfy |a;| < (logz)“. Shew that the
number Y(x;a) of solutions of

aip1 + agzpz + azps =0
with p; < x satisfies
T(z;a) ~ G(a)=(z;a)

where
a) — N Cqlara)eq(aza)ey(aga)
@ ;@%1—1 v(q)?
and
= . — 1
=(z2) = Z (log m1)(log mz)(logmg)

my,m2,m3<x
aimi+azmaz+azmz=0

Let T'(xz) denote the number of triples p; < pa < p3 < z of primes

in arithmetic progression. Prove that

Cx?
T(@) ~ (log x)3

N

p>2

where

18.2 Sums of two primes on average

Our minor arc treatment fails when we consider r9(n), but the major
arc contributions suggest the conjecture that

ra(n) ~ Ga(n)lsa(n)

as n tends to infinify IBhrrou_ h even values. Here GS2(n) and lsy(n) are
defined as in (|I8. an 4. ough we are unable to prove the
conjecture, we can prove that ro(n) is near Sa(n)lsqe(n) for most n. In

order to display the flexibility of the circle method, we switch now to the
von Mangoldt function A(n) rather than count primes with weight 1.

Theorem 18.4 Let

Pa(n) = Z A(m)A(n —m).

m<n
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Then for any fired A > 0,
>~ (2(n) - Sa(n)n)” <« X*(log X)~*

n<X

Co:Goldbachalmostall | Corollary 18.5 Let E(X) denote the number of even natural num-

bers n < X such that n is not the sum of two primes. Then E(X) <
X/(log X)4 for any fived A > 0.

Proof If n is even but not the sum of two primes, then ¥s(n) <
n'/?logn. Let E;(X) denote the number of even n, X/2 < n < X
such that ¥3(n) < &a(n)n/2. We observe that Ga(n) > 1 uniformly for
even n. Thus if n is counted by E1(X), then |th2(n) —Ga(n)n| > n > X.

nSqrGoldba
By Theoreml g% it follows that Ei(X) < X/(log X)A. But E(X) <

14>, E1(X/2"), so we have the stated result. O
h=n)prod
From ilgi% we see that

&s(n) =[] (1 n (;’f’;))Q).

p

This product is absolutely convergent, since c,(n) = —1 for all but
finitely many primes (namely the primes dividing n). Hence we may
expand the product, and find that

00 2
ST 515
q=1

— (g

It is useful to be able to work with a tr_uncastigélo fgbg?%s series. Thus, in
preparation for the proof of Theorem we establis

Lemma 18.6 Let

p(g)?
q<P’ q
Then
3" (82(n) — G2(n, P))” < P~2X(log X)?
n<X
for X > 2.

Proof By (4.7) we see that

Sa(n) — Sy(n, P) = Z 5 (a)? ) < Z L > d
>Q

9 o>P P\ i)
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We write ¢ = dr and note that ¢(q) > ¢(d)p(r). Thus the above is

IS DRy
CLaE 2w <P L@

d|n r>P/d

Put

Then
3 (8:(n) ~ Ga(n, P)” < P72 f(n),

n<X n<X

so to complete the proof it suffices to show that
> f(n) < X(log X)?. (18.16)
n<X

But this follows from Corollary 2.15, since f is a nonnegative multiplic-
ative function, f(p) = (1+(p/(p— 1))2)2 =4+0(1/p), and f(p*) < k2,
so that > . f(p)logp < =,

1T (1+@+f(p2)+m> < (log X)*,

2
<X p p

and

O
- st
An alternative derivation of the estimate ) }%a‘lu %voids the ap-
peal to Corollary 2.15 is outlined in Exercise clow.
H SgrGoldbach | . A .
Proof of Theoremi gli Tho appropriate generating function is now

S(a@) = > A(n)e(na).

n<X

Thus we define 12(n, X) by writing

S(a)? =Y ¢a(n, X)e(na),
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and we observe that ¢¥a(n, X) = %a(n fx(‘)fmeg < X. In place of the
auxiliary function U considered in e appropriate function is
Ve = Y ens) (1517

0<n<X

Let w(n, X) denote the Fourier coefficients of V(3)2, so that
V(B)* = w(n, X)e(nf).

Thus w(n, X) = n+ 1 for n < X. We retain without modification the

definitions of P, (), and the major and minor arcs given in the proof
i 3primes i

of Theorem @?—mgh the dependence of B on A may be different.

The main idea is to appl% Paglsrgxcal’s identity, but before we do so we

truncate Gq. By Lemma we see that
Z (n+1)*(&2(n) — &2(n, P))2 < X3(log X)372B,
n<X

Since also Y, . G2(n)? < X, it suffices to show that

ST (2(n) — Ga(n, P)(n+1))” < X3(log X)~4 (18.18)

0<n<X

if B is sufficiently large in terms of A. At this point, we require only
that

B> (A+3)/2. (18.19)

By Parseval’s identity,

3 (a(nsX) - Saln P / 15(a)? — T(a)[* dav (18.20)

where

=" &s(n, Pyw(n, X “q 5 Y Vie—a/g)*.
n=0 a=1

v(9)? =
=r (a,9)=1
We first dispose of the minor arcs. By Cauchy’s inequality,
1 q
T < (Zf)(z Z Via/o)l')
= #la)

q

Y lla—a/ql™*.

a=1
(a,q)=1

< (log P) Z

1
2
= #l)
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For ¢ < P and (a,q) =1,
/ o — a/q|| " da < / pHdp < Q.
m 1/Q

Hence

/ IT()]? da < Q3 (log P)? < X?(log X)?>735.
m

H lpha)Est :Vin3primes
From Theorem “ /if as in the proof of Theoremi El E we find that

max |S(a)| < X (log X)*/2~B/2,
Thus
1
/ |S(a)|* da < (maX|S(a)|2)/ |S(a)|? do < X3(log X)57P.
m m 0

On combining these estimates we conclude that

/ |S(a)2 — T(a)|2 da < X3(10g X)6_B. (18.21) |E:GoldbachMinorArcEst
m

For o € M(q,a), let 8 =a —a/q. Then

Cw@)? e p(r)? - o b/rl-2
o) = Bvervo( S50 X leun)
b/r;ébé;gzzrrfod 1

-GeoSunE
by @ﬁ._uﬁ%the b as in this last sum we have ||la/q — b/r| > 1/(gr).

B

Hence
Yoo lla=b/r < (@) + Y (r/m)” < (ar)?,
(b1 "
b/r#a/qmod 1
so that

_ w(q) 2 o 3B

-\in3primes
for a € M(q, a). For such «, as in the proof of Theorem iigl it we have

S(a) = @V(ﬁ)-l-O(Xexp(—c\/logX)), (18.22)

v(q)

whence




126 Additive Prime Number Theory

By comparing our estimates for S(a)? and T'(«) we find that
/ |S(c T(e)?da < |M| X exp(—cy/logX) < X3(logX)™

On combining this and |M| n qmp'

Z (v2(n, X) — 62(n,P)w(n,X))2 < X3(log X)~4
n=0
f B ZA/11 + 6. Assuming that A > 0 we,may take B = A + 6, for then
1s satisfied. Thus we have d@ﬁd the proof is complete. [J

we deduce that

e

p

S:Sum2primes .
impl_Exermses
AFTL.60
1. %(I}avrik7 1960) For positive integers k, let
> An)A(n— k).
k<n<X
Show that
ST (T(X k) — S2(k)(X — k))® < X3(log X)~4
k<X

for any fixed A.
2. Show that there exist infinitely many pairs a, b such that a, a+b, and
a + 2b are all prime. Do this in two ways:

(a) As a consequence of theorems already proved.
(b) By using the circle method to derive an asymptotic formula for
the number of solutions of the equation 2p = p; + po.

3. Let S(a) = 3_, < x An)e(na).
(a) Show that

> Sla/g+B) = m(@)S(B) + O(q(log ¢X)?).
=1

(aq )=1
(b) Let M(q,a) =[a/q—1/X,a/q+ 1/X]. Show that
a
3 / S()da > 1
a=1 M(q,a)
(a,9)=1

provided that g is squarefree and ¢ < X/(log X)3.
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(¢) Show that

1
/ 1S()| da > X1/2.
0

-3 ot
4. Let f(n) be defined as in the proof of Lemma ilgﬁf e

(a) Explain why

cAd? X
D)<Y o
n<X <X SD(C)2§D(d)2 [Cv d]
d<x
(b) Explain why the above is

X Y o Yot =X Y ( ¥ o

c<X rlc r<X
d<x rld r|d

(¢) Write d = rm and note that ¢(d) > ¢(r)e(m). Thus show that
the above is

<XZ

r<X m<X/r
(d) Deduce w
5. Let f be the multiplicative function for which f(2) = 0, f(p) =

1/(p—2) for p > 2, f(p") =0 for r > 1, and put

022,,1;[2(1_(17—11)2)'

Then
> f(d) _2H(1+—)H(1—ﬁ). (18.23)
" e e

This is Ga(n) if n is even.

(a) Show that

Y Sn)=C Y > )

n<X m<X/2d|2m

(b) Deduce that

Y &a(n) fCXZf @/d+0( 3 f(d).

n<X d<X/2 d<X/2
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(¢) Show that

= fd)
2.t

d=1
(d) Conclude that

D Gy(n) =X + O(log X).

n<X

6. Recall that in Corollary 3.14 we established that if x > 4, then
the number of n < x for which n and n + r are both prime is
< Gy(r)r/(logx)? uniformly for even nonzero integers r. Deduce

that
n+h

Z( Z A(”+m))2<<hxlogz+h2z,

n<zr m=n+1

18.3 Conditional estimates

The theorems that we have established thus far can be greatly sharpened
if we assume the Generalized Riemann Hypothesis (GRH).

T:MeanSquoldbachGRH| Theorem 18.7 Assume GRH. Then

Z (1h2(n) — Gz(n)n)z < X°2(log X)°.

1<n<X

Before proving the above, we first note two corollaries, and establish
three lemmas.

. :Goldbachalmostall IT: SqrGoldbach
In the same way that we derived Corollary rom Theorem
we have immediately

Co:GoldbachFailGRH| Corollary 18.8 Assume GRH. Let E(X) denote the number of even

integers n < X such that n is not the sum of two primes. Then E(X) <
X1/2(log X)°.

In the same direction, we also have

Co:sumSprimesGRH| Corollary 18.9 Assume GRH. Let

Y3(n) = > A(ma)A(ma)A(ma).

mi+ma+mz=n

Then
P3(n) = %63(71)712 + O(n7/4(log n)?’)
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Vin3ori
where G3(n) is defined as in Theorem “51 i e

Proof For even n this is trivial. Hence we may assume that n is odd.
We note that

=Y A(m)&y(n — —m)+ Y A(m)A(n—m) (18.24) [E:psi3=sumpsi2

m<n m<n

where
A(k) = 1a(k) — Ga(k)k.
[T:MeanSqrGoldbachGRH -psil3=sumpsi2
By Cauchy’s inequality and Theorem [I8.7] the second sum in 1'[5?;; 1S

< ( Z A(m ) 5/2(10gn)5)1/2 < n"*(logn).

m<n
. . = 52 (n) Av
Let C and f (n)stlg)me g%ﬁned as in Exercise 1 o estimate the first
sum in we use the formula , so that for odd n,
ZA )S2(n —m)(n —m CZf Z A(m)(n —m)
m<n d<n m<n
d|(n—m)
+ O(n(logn)?).

Here the error term accounts for the contributions of those m that are
powers of 2. If n is ?c%d and m is a power of 2, then Go(n —m) = 0, but
the formula refurns a value that is < log n. If there is a prime p

such that p|n and p|d, then m must be a power of p. Thus the above is

=c Y j /z/;xdnderO( (logn)* Y f(d )

d<n d<n
(d,n)=1

On GRH, if y is a character (mod ¢), then

-1 24100 L/ Xs+1
(s, x)——d
/ (@, x)d ~ omi 9 iee L (S’X)s(s +1) N

2 Xrtt
= Eo(x)X7/2 - ;m

1 1/4+i00 L/ Xs+l

s X)is(s ) ds

270 J1/4—ico f(7

By Theorem 10.17, the sum over p is < X3/2log2¢. On GRH, the
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formula of Lemma 11.1 is valid when Re s = 1/4, so the integral on the
right above is < X°/*log2q. Thus if (d,n) = 1, then

n n2
Y(x;d,n)dr = +0(n*?log 2d).
[ i do = s 0 log2a)

Therefore
mz;nA m)Sa(n —m)(n — Z / j
Uin) 1
+ O(n3/2(log )y f(d)).

d<n

From the estimates
Zf(d)<<logn, ZL«
d<n d>n

we obtain the stated result, upon observmg that

O

1 nSqrGoldbachGRH . SqrGoldbach
We prove Theorenré v modifying our proof of Theorem o-
Q moprimes

rollary [I8.9] could smlﬂarly be derived by modifying our proof of The-

primes X
orem [I3.1]_Correspondingly. we could argue as above to derive The-
Pm3primes SqrGoldbach
orem [I8.I]from Theorem wi e understandm% that it would be
R SqrGoltdbach | .
necessary to derive a variant of Theorem at counts primes with

weight 1, rather tl&aurir égl‘lc(elgecrg(}\éﬁth weight A(n). To prepare for the proof

of Theorem we first establish several useful estimates.

Lemma 18.10 Assume GRH. Let

(X, x,8) =Y Aln) nf3),

n<X
nd set (aX X, B) = (X, x,B8) — Eo(x)V(B) where V(B) is defined in
@—Wn for 18] < 1,

(X, 8) == > 1(8,7) + O((loggX)?)

[v]< X2

where the numbers 1/2 + i~y are the nontrivial zeros of L(s,x), and

1(8,7) = /j e(Bx)a"/2+1 de.
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Proof By the explicit formula (12.14) with T = X? we see that
X
V(X 8) = [ e(pa) vz
.

ly|<X?2

X X
+/ e(Bz) dEl(x,x)+/ e(Bx) dEy(z, X2, X).

By (12.15) we see that the integral with respect to Ej is < (log ¢X)?2.
The integral with respect to Fs is

X X
= [e(ﬂx)E(x,XaX)‘T — 277@'6/2 e(Bx)By(x, X2, x) dr < (loggX)?

by (12.16) and (12.17). Thus we have the stated result. O

L:I(beta,gamma)Est| Lemma 18.11 For real numbers 8 and vy, let I(3,7) be defined as in

the preceding lemma. If |y| < 1, then I(8,7) < XY2. If 1 < || <
10|8|1X, then I(B,v) < |B]7Y2. If |y| > 1 and |y| > 10|8|X, then
I(8,7) < X2/ ]n].

Proof The first estimate is trivial, since by the triangle ine ualitg
X IntESt1
[1(B,7)| < [; «='/*dx. If |y| > 10|8|U, then by Theorem |i§i with

r(z) = 2~ Y/? and 0(z) = 27Bx + ylogx we find that

U 1/2
; U
/ e(Bz)z V2 dr < o (18.25) |E:IntEst7
v

U/2

If |[y] > 10|8]|X, then we apply the above with U = X27", and sum,
to obtain the third estimate. Suppose now that 1 < |y| < 10|8]|X. If
B and 7 have the same sign, then (by taking complex conjugates if
necessary) we may assume that they are ’t;(gjc/h positive, and in this case
0'(z) =278 + v/x > v/x, and so @Tgain holds. If 8 and v have
opposite signs, then put o = —y/(278), and set J; = [2, X] N [2,20/2],
Jo = [2,X] N [x0/2,220], and J3 = [2,X] N [2z,00). Thus I(B,7) =

le + [ oo 11+ I+ I3, say. We cut Jy into dyadic blocks and
apply 0 see that I < X/|y|. We apply Theorem Wi

M = |BY2 /7|2 and b= 2 /|| to see that Iy < |B|7Y/2. If U > 2y,

TEdtL
then by Theorem @%\z—eﬁm that

2U
/ e(Bz)x™ ¥ de < U™Y2|B|7L
U

On summing over dyadic blocks, we deduce that Is < |3|~1/2|y|~1/2.
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Thus we see that if 1 < |y| < 10/8|X, then I(8,7) < |3|7'/2, so the
proof is complete. O

By Theorem 13.7 we know that the estimate 1/ (z, x) < x'/?(log gz)?
is a consequence ane SGRH. By integrating by parts as in the proof of
Theorem we can deduce that

V(X x, B) < XY2(1 + |8 X)(log ¢ X)2. (18.26) |E:psi’ (X,chi,beta)Est0

However. b%/ utilizing the more detailed informatio Erovided by Lemma
: chibetaGRH = | . : ta a.mmg) st
@W_ﬂﬁestlmates in Lemma or the integrals I(8,7v), we

obtain a better estimate, as follows.

L:psi’ (X,chi,beta)Estl | Lemma lcgi%eZtacﬁlesume GRH, and let ¢’ (X, x, ) be defined as in Lem-

ma 5 en

(X, x, B8) < (X2 + 872X ) (log ¢ X)2. (18.27) |E:psi’ (X,chi,beta)Est1

Wh X <1 the b d ’ (X,chi L:: tOchi,beta)Estl
When [§1X < 1, the bounds {TE T hd YT ATC COMDIZHE byt s

when [B|X > 1, t 162 ound o l| is smaller than t%_l?{gﬁ?,( L8, 260 DY, o

a factor of (|3|X)'/2. Despite this improvement over (IZ.26)) we expect

that more is true, and conjecture that

V(X x, B) < XV2(log q)2. (18.28) |E:psi’ (X,chi,beta)Est2

Proof We may assume that lﬂ | <1, for otherwise the estimate is trivial.
: ta,gamma)Es
By Lemma we see tha

dMoIB < Y X N B+ Y X

lv|<x2 lv[<1 1<]y|<10|81X I<]y|<x?

By Theorem 10.17 we know that the number of zeros 1/2+ iy of L(s, x)
with t < v < t+ 1 is < loggqr. Thus the right hand side above is
< (X2 +B|Y2X)(log ¢X)?, and the proof is complete. O

:MeanSqrGoldbachGRH
Proof of Theoremi él; Lot V}B , w(n, X), GQQ,(L.,M]Q&S%%%&%Q& S(«)

and T'(«) be defined as in the proof of Theorem [I3.4] buf we now take
P = Q = [X'/?] and redefine the major arcs 9(q,a). Let T denote
the set of Farey fractions of order (), which is to say the set of rational
numbers a/q with 1 < a < ¢, (a,q) =1, and ¢ < Q. Let a'/¢' and o /¢"
be the neighbors of a/q € Fgo with a'/¢’ < a/q < a’/q"”. Then we take
M(q,a) = [(a+a)/(g+ ), (a+a")/(qg+ ¢")). Since these intervals
partition T, we have no minor arcs.

H SqrGoldbach |
By the method used to prove Theorem Héﬁ we see that it suffices to
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show that

1
/ 1S(a)? — T(a)> da < X®/%(log X)°. (18.29) |E:S‘2-TMeanSqrEst
0
For o € M(q,a), let
_ M
W(a) = @—V(a —a/q).

Thus W («)? is one of the terms comprising T'(«t), and

1 T
T()-W(@P <Y —= > la=b/r|™
r<Q ¢(r) b=1
- (b,r)=1
b/r#a/qmod 1

Suppose that R/2 < r < R < Q. Since a ¢ 9M(r,b), we have ||a —
b/r|| = 1/(r(r+7")) > 1/(2rQ) > 1/(2RQ) where (b+b')/(r + ') is
the endpoint of M(r, b) lying between b/r and a. Also, if by /ry # ba/ra,
then ||b1/r1 — bg/’l“gH Z 1/(’/"1’/‘2) Z 1/R2 Therefore

T

> Yoo la-b/r Tt < R2QP 4D (k/RY) T < R2QA.

R/2<r<R b=1 k=1
(b,r)=1
b/r#a/qmod 1
Thus
1 - _
Z o(r)2 Z la—b/r||7? < Q*(loglog @),
R/2<r<R b=1
(b,r)=1
b/r#a/qmod 1
whence

T(a) — W(a)? < X(log X)2.

-S°2-TMeanSqgrEst
Thus to prove @Wﬁ‘ﬁ to show that

1
/ 1S(a)? — W(a)?)? da < X*/%(log X)°. (18.30) [E:8~2-W-2MeanSqrEst
0

To this end we first estimate S(a) — W(a). Suppose that o € M(q, a)
and that § = o — a/q. By the definition (9.3) of a Gauss sum and the
basic orthogonality (4.15) of characters we see that

g SOt = {g(b/ AN CEET)

x otherwise.
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We set b = an, multiply by A(n)e(ng), and sum over n < X to see that

1 _
S(@) = gy LNV ) + of Py An))
(n,q)>1

-psiXchibetaGRH
where (X, x, 8) is defined as in Lemma@("ﬂmsi

LIC)RPNE T o SN 0g ¢ X)?
S(a) = 2V ) w(q)g (X)x(a)¥' (X, x, B) + O((log ¢X)?).

(18.32) | E:S(alpha)approx1

:psi’ (X,chi,beta)Est1
By Lemma [IZ-T2[this 1S

< q1/2(X1/2 + |B|1/2X)(logX)2 < (q1/2X1/2 +Q*1/2X)

since || < 1/(¢Q). Thus

S(a) — W(a) < X3/4(log X)? (18.33) |E:S(a1pha) approx2

uniformly in a.
By Parseval’s identity,

1
/ S(@)2da= Y An)? < Xlog X,
0 n<X
while

/0 Wil da < 3 o0 3 / min(X2, 8] 2) dp

a<Q i

<X ) olg)t < Xlog X.
9<Q

2 ha) approx2
Thus from (ilgggi we dediice that
1 1
/ 1S(0)? = W(@)2 da < X¥2(log X)* / 1S(a) + W () da
0 0
< X52(log X)°.

- S”2-W~2MeanSqrEst .
Thus we have , an € proof is complete. O]

The argument just completed may be expected to be inefficient in two

respects. Sogle considerable cancellation should occur in the SUpR Oyer X
K : ha) approxi I:psi’(X,chi,beta)Estl

in , and we also expect that the bound in Lemma [I8.T2[is weaker
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than the truth. Indeed, we expect that S(a) — W (a) < X1/2%¢ for all
a. It would then follow that

Z (Q/JQ(TL) - GQ(n)n)Q < X*re, (18.34) |E:psi2MeanSquonjEst
n<X

i . . : ha) approxi |
While we are unable to establish that the sum in (ilgéi} canceis uni-

formly, we can at least demonstrate the cancellation in mean square. By
orthogonality,

‘ 2

e(a)

Z Sta/a+8) - X2y s)
:1
,q)=1

(18.35) | E:S(a/g+beta)MeanSqr3

TN Z |7'<Y)|2|1//(X7 X5 ﬁ)|2
©(q)

:psi’ (X,chi,beta)Estl
By Lemma [I.T2[this is

< (¢X +q|B|1X*)(log ¢ X)*. (18.36) |E:S(a/q+beta)MeanSqrEst3

For |8] < ¢7'X /2, ¢ < X'/2, this is uniformly < X3/2(10%X;4. ]Eér)a o
comparison, if were to estimate the left hand side by applying or
each a, then the bound we would obtain would be much worse, namely
< X?%(log X)*.
If (a,q) = 1, then a/q + 5 € M(q, a) precisely when

< q(logz@Q)* +

_71<5<#
qlg+q) " ~alg+q")

Since the dlmeqsmps of this interval deé)end on a, we are not immediately
a/q+beta)MeanSqrEst

able to apply (I3.36). To circumvent this difficulty, we replace 9(q, a)

by the slightly larger interval MM*(q,a) = (a/q — 1/(¢Q),a/q + 1/(¢Q)).
Hence

/0 W (@)(S(a) — W(a))[? da

IRAYCE) , Cwla),,
<yoe0t 3 [ Verlseer s - Shve) e
B (a.q)=1
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E:S(a/q+beta)MeanSqrEst3

By (I3.30)) this is

< Z / min (XQ,ﬂ_2) (qX+q5X2)(logX)4dB

q<Q

< X*(log X)* > qp(q) ™ < X (log X)°. (18.37) |E:W(S-W)MeanSqrEst

q<Q

H nSqrGoldbachGRH
Thus to sharpen Theorem “él; 1t suffices to improve our bound for
1
| 15(@)(s(0) = W@ do.

or equivalently, for fol |S(a) — W(a)|* da. Such estimates remain to be
established.

> (X,chi,beta)Estl
We next show that Lemma Z can similarly be improved in mean

square with respect to (.

psi’(X,chi,beta)MeanSqr2 | Theorem 18.13 Assume GRH. Let 6 > 0, and let x be any character

modulo q. Then

)
/ (X, x, B)[2 dB < 6X (log ¢X)*.

E:S(a/q+beta)MeanSqr3

This with (I8.35]) gives

Corollary 18.14 Assume GRH. Then

2
Z / S(a/q+B) —EZ;V@)] 0B < 69X (log ¢X)".
(a’q) 1
p ™ i’ (X,chi beta)MeanS r2 M lto L
.roofg[ Chlegg{;g} < en 1t suffices to appeal to Lemma

us we assume that X > 1 We may also assume that § < 1,
since it is trivial that

1
| 1o ds < X g x.
0
:psiXchibetaGRH
By Lemma [I8] wo soo that

8
[ wecnsras< [ | S 1 a+oomext

v <X2

ta,gamma)Est
By Lemma'igfii wé know that I(B,7) < X'/2|y|~! when |y| > 106 X.
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Thus

g 2
[ X 16| o< sxtogax)
=0 106X <|y|< X2
On the other hand,

[ 5 oafars [7] 5 [T a

=0 y]<106X 0 |y]<105X

oo

which by Plancherel’s formula is
X
o APV
9 x
lv|<106 X
We make the change of variable z = e¥, and note that

Y+1 ) 2
/ | ey < Y min(1 1/l = ).

Y
[v|<T [v|<T
| I<T

For any given «, the sum over 4/ is < (logqT)?, as we see by using
the bound of Theorem 10,17 in the same way that we did in the proof

3primesGRH X X
of Corollary e number of v is < T'logqT, so the above is <«

T(logqT)3. We take T = 106X, and sum over < log X values of Y to
see that

/65‘ Z I(ﬁa’Y)‘Zdﬁ<<5X(loqu)4.

ly|<106X

Thus the proof is complete. O

S:CondEst
Exercises

E-W(S-W)MeanSqrEst

1. Let M(q,a) and M*(q,a) be defined as in the proof of (I8.37).

(a) Show that if a/q and a’/¢’ are neighbouring members of Fg, then
M*(q,a) and M*(q’, a’) overlap.

(b) Show that if a/q and a’/¢’ are neighbouring members of F¢, then
a/q ¢ M(q', d).

(¢) Conclude that every « is in at least one, but not more than two
of the arcs M*(q, a).
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2. (a) By introducing appropriate weights before expanding and integ-
rating, show that

Y+1
/ Z ”y’ dy < T(log qT)?.

[v|<T

Here the 7’s are the imaginary parts of zeros of L(s, x) and x is

a character modulo q.
IT-psi’ (X,chi,beta)MeanSqr2
(b) In the context of the proof of Theorem [I8.13} show that

/_Z’ Z I(ﬂm)rdﬂ«&X(bqu);

[vI<106X

18.4 A lower bound for the error term

S:LowerBndErrorTerm |
We have estimated the mean square error in the Goldbach roblerré ?&(111 et
discussed the plausibility of sharper estimates such as 1'@%2; We now

establish a bound in the opposite direction.

T:MeanSqrErrorLowerBnd | Theorem 18.15 Suppose that 1/2 < r < 1, and let R = 1/(1 — r).

Then
37 (®2(n) — G2(n)n) *r*" > R2(log R)%.
n=1

Corollary 18.16 As X tends to infinity,

3 (aln) — @afn)n)’ = (%10 X)?),

n<X
and

Pa(n) — Ga(n)n = Q(n1/2 log n)

H SqgrErrorLower trunc
Proof of Theorem y Lemma we see that

> (41 (S2(n) - 85(n,Q)) 1" < Q7NN (log N)®.
N<n<2N
On setting N = 2¥R and summing over k, we deduce that

(oo}

Z(” +1)*(62(n) — &a(n, Q))2T2n < Q2R%*(log R).

n=1



18.4 A lower bound for the error term 139

Since

o0
D 6a(n)*r’" < R,
n=1

it follows that
i n)n — Sy(n, Q)(n + 1)) " <« Q7?R3(log R)®.
We take Q = R" with 1/2 < k < 1. Thus it suffices to show that
i — G2(n, Q)(n + 1))2 > R?(log R)?.

By Parseval’s identity the left hand side is T5 where

Z (1—re(a—a/q))™2 ' da

2
=5 el p=
and
S(a) = Z A(n)r*e(na)
n=1

By Cauchy’s inequality, T» > T7Z. But

T, > / ‘ )r ena)‘da
o '
@? & 1
Z Z / 11 —re(a—a/q)|~? do
=<0 7 ¢(q)? 0
B (GQ) 1
*ZA )22 — uq )L,
n=1 q<Q q

Here the first sum is 1 Rlog R+ O(R), and the sum over ¢ is $ Rlog Q +
O(R), in view of Exercise 1.2.1.17. Thus the above is 2 Rlog R/Q >
Rlog R, so the proof is complete. O
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18.5 Prime k-tuples

We begin by considegirllr%mg\gzin primes. The analysis and notation is sim-
ilar to that in n particular, we set

S(@) = > A(m)e(na), and V(B)= > e(np).

n<X n<X
If h is a positive integer, then
1
> AMm)A(n+h) = / 1S(a)2e(he) dov.
n<X—h 0

Let. the major and minor arcs be defined as in the proofs of Theorems
: 3prifeMeanSqrGoldbalthijorArcEst

deduce that if o € M(q, a), then

2 _ M(Q)2 2 2 .
15(a)] [V(B)P + O(X?exp (—cy/log X)).

©(q)?
Hence
. |S()Pe(ha) da = I(h) Y J(g) + O(IM|X?exp (— cy/log X))
q<P

where

1/Q

10 = [ v()Pehe) s
-1/Q
- / V(B)Pe(hB) dB + O(Q) = X — h+O(Q),
and
B H(Q)ZC

Here ¢4(h) is the Ramanujan sum, which we discussed in Theorem 4.1.
In particular, it was shown that if ¢g; and ¢o are relatively prime positive
integers, then cq, 4,(h) = ¢4,(h)cq,(h) for any integer h. Also, it was noted

that
c,(h) =
o(h) {—1 otherwise.

From these properties it follows that if ¢ is squarefree and h # 0, then
lcq(h)| < |h|. This is useful, since it follows that the singular series
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Ga(h) =3, J(q) is absolutely convergent. Hence

62(h)=1;[(1+(;p_(}i))2):££(1+pi1)1:[(1_(p—ll)z)'

pth

Note that G2(h) = 0 if h is odd. Based on this major arc treatment, we
conjecture that if h is positive and even, then

Z Am)A(n + h) ~ S3(h)X (18.38) |E:TwinPrimeConj

n<X—h

as X — oco. What we lack is a suitable treatment of the minor arcs. It
would suffice to know that

/ |S(a)]? do = o(X).

This is not so much stronger than the trivial bound

1
/ |S(a) 2 dor < / 1S(@))?do =" A(n)* ~ Xlog X.
m 0 n<X

We now turn to the main theme of this section, namely prime k-tuples
with k& > 2. Suppose that h; < hy < --+ < hy are integers. Then the
numbers n+hy,n+he, ..., n+hg form a prime k-tuple if all the numbers
n+ h; are prime. We have already observed that if n is large, then n and
n + h cannot both be prime if A is odd. A similar phenomenon extends
to prime k-tuples.

Definition 18.1 Let h = hq,...,h; be a k-tuple of distinct non—

negative integers and let v,(h) denote the number of different residue
classes modulo p among the hq, ..., hy. If ,(h) < p for every p, then h
is called admissible.

If h is inadmissible, then there exists a prime p such that v,(h) = p,
and hence for any n, the prime p divides at least one of the numbers
n+ hy,...,n + hy. We conjecture that the necessary condition that h
should be admissible is also sufficient to ensure the existence of infinitely
many prime k—tuples with the spacing h.

Con:primektuple | Conjecture 18.1 (The prime k—tuple conjecture) If h is admissible,

then there are infinitely many positive integers n such that n+hy, n—+hso,
...sn~+ hg are simultaneously prime.

We note that a translation of an admissible k-tuple is again admissible,
since v, (h) is unchanged by translation. Also, if h is a k-tuple of integers,
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vp(h) < k, and this is < p if p > k. Thus to determine whether h is
admissible it suffices to calculate v,(h) for p < k. Also, if the members
of h lie in an interval of length N, then v,(h) = k for all p > N. Useful
admissible k-tuples are provided by

T:admset | Theorem 18.17 Suppose that k > 2, and that the primes p1,pa, . . ., Pk
satisfy
kE<pi <ps<---<pg.

Then the k-tuple h = (p1,p2,...,pk) is admissible. If these p; are the
least distinct primes > k, then py, — p1 < klogk + kloglogk + O(k).

Proof If p >k, then v,(h) <k <p. If p <k, then p; #0 (mod p) for
1 <j <k andso v,(h) < p—1< p. Let P, denote then n'" prime.
From a quantitative version of the Prime Number Theorem it follows
that

P, = nlogn+ nloglogn + O(n).

In Exercise 6.2.1.5 a more precise estimate for P, was proposed, but the

weaker estimate above is sufficient to give the desired estimate. O
fcnsrho, overlinerho | In §7.3 we introduced the functions
M+N
ply) = limsupw(x + y) — w(x), p(N) = max Z 1.
rreo Mo S

pln = p>N

It is clear that p(N) < p(N). If k = p(N), then the n counted in the
above sum form an admissible k-tuple, so the k-tuple conjecture im-
plies that p(N) = p(N) for all positive N. Also, in Theorem 7.16 we
showed that there is a positive constant C' such that p(N) > w(N) +
CN(log N)=2 for all sufficiently large N. In the reverse direction, in
Theorem 3.3 we showed that p(N) < 2m(N) + O(N(log N)~2) for all
N > 2.

We have already failed to prove what we want when k& = 2, and the
situation is of course no better for larger k, but we can still make some
useful observationpsr %nré(gogqrmulate a quantitative conjecture, similar to
the one in . We work now with the k-tuple h = (0, h1,..., ht—1)
where 0 < hy < -+ < hg. Set

R(X,h)= > Ano)A(no+Mh) - Alng + hi1).
no<X—hr_1
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With a = (a1, a, ..., a5—1) we find that

:/1@715(0614—'”4—0%1 1;[ Je(hjoy)) de

Z A(ng) - Z Alng_1) H/ ((no —nj + hj)a;) doj

no<X np_1<X

= R(X, h).

In this new setting, the analogue of a major arc is a small (k — 1)-
dimensional block. To identify the blocks that we should attend to, we
appeal to Dirichlet’s theorem on Diophantine approximation (Lemma
15.10), which asserts that for any @ € T*~! and any integer Q > 1,
there exists in integer ¢, 1 < ¢ < Q*~1, such that |qo;| < 1/Q for
1 <7 <k—1.Let a; be the integer nearest ga;;. Then

aj 1

<=

q!™ q@Q

Let d = (a1,a2,...,ax-1,q). By replacing each a; by a;/d and ¢ by
q/d, we may suppose that (a1, as,...,a5-1,q9) = 1. The largest contri-
butions are made by the smallest values of g. Let P = N°. We restrict
our attention to ¢ < P and |3;| < 1/P where 5; = a; — a;/q. The
approximation

Qj —

S(a) @(q)V( /q)

applies only when |a — a/q| is small and (a,q) = 1. In our current
situation, it may be that (a;,¢) > 1, but we note that

cola) _ “(ufw),
¢(q) go(ﬁ)

SO

for all j. Put

>
|
—

= Z ;(EESL Je(a;h;/q)) (18.39)

[

<.

where " runs over @ = (ai,...,a5—1) with 1 < a; < ¢ subject to
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(al, .. .,ak,l,q) = 1. Set

&(h; P) = > f(g;h).

qg<P

and put
k—1
J(P) = /m,-|g1/p V(Bi 4+ Bor) 1:11 (V(=B;)e(h;8,)) dB

Then we expect that R(X,h) ~ J(P)S(h; P). It is not hard to show
that J(P) is within O(P~1%¢) of

k—1
/ V(Br+ -+ Bea) [T (V(=B))e(h;8y)) dB
j=1

k—1
- Z H/e((no"i'hj_nj)ﬁj)dﬁj =X — hxg—1+0(1).
NQyeeeyNp—1 j— T
0<7lj§kX =1

In order to assess the size of f(gq;h) is it helpful to observe that this
quantity is a multiplicative function of q. Moreover, if r > 1 and (a,p) =
1, then ¢pr(a) = 0, so f(p",h) = 0 since (a;,p) = 1 for at least one
of the a;. Thus f(q, h) is supported on squarefree integers. This is not
such a surprise, since S(«) has its peaks at Farey points with squarefree
denominators. Now suppose that ¢ = p. In the sum over a, the only
term that must be avoided is @ = (p,...,p). That single term, if it
were included, would contribute exactly 1. So we sum over a;’s without
restriction, and then subtract 1. We expand the sum ¢, (b) to see that

Here ¢y(—aj) =p—1if a; = p, and ¢p(a;) = -1 if 0 < a; < p, so the
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sum over a; is

p—1-" elaj(no+hy)/p) =p—"Y elaj(no +h;)/p)
aj=1 a;=1

_Jp ifhj #-ng (mod p),
o it hj = —ng (mod p).

The product of these sums is therefore p*~1 if there isno j, 1 < j < k—1,
such that h; = —ng (mod p). Since ny runs through all p — 1 nonzero
residue classes (mod p), this first alternative arises exactly p—1— v, (h)
times, where v,(h) is the number of nonzero residue classes (mod p)
found among the h; with 1 < j < k — 1. Since h = (0, h1, ..., hp—1),
vp(h) =1+ y,(h). In case hj = —ng (mod p) for one or more values of
j, the product is 0, so our expression is p*~1(p — v, (h)) and

—v k—1
f(pih) = W -1 (18.40)
Let
D =[] (h; — ha).

1<J

If pt D, then v,(h) = k, and so f(p; h) < p~2 for such p. Hence &(h; P)
converges absolutely to &(h) as P — oo where

&(h) =) flgh) =[]+ f(p;h)

pu v . L (18.41)
I

and

&(h) < (loglog(3D))* <4 (loglog(3 max \hs]))E. (18.42)

Thus when the h; are distinct, if h is inadmissible, then &(h) = 0. If h
is admissible, then v,(h) < min(k,p—1), and so 1—v,(h)/p > 1/p when
p < kand is > 1 — k/p when p > k. Thus there is a positive constant
C(k) such that, when the h; are distinct, h is admissible if and only if

S(h) > C(k). (18.43)

As an extension of the quantitative twin prime conjecture, we have
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Conjecture 18.2 Suppose that h = (hy, ha, ..., hg) is an admissible
k-tuple of distinct integers. Then

R(X;h) ~ X&(h)
as X — 00.

As with twin primes, the barrier to proving the above is our lack of
suitable bounds for the size of the integrand outside the regions that we
have identified as major ‘arcs’. It is generally believed that there are no
secondary main terms, and that the error term in the above is < X 1/2+¢,
We note that the quantity X on the right hand side above reflects the
size of the singular integral, which in turn is the density of solutions
of our system in real variables. Also, the factor 1 4+ f(p;h) of S(h) is
the density of p-adic solutions of our system. Thus the right hand side
above is the product of local densities, extended over all valuations of
the rational field. While we seem at present to be very far from proving
the Prime k-Tuple Conjecture, we accept it as guide to our thinking as

to how primes are c(lii triP%tze(clll)iAn short intervals.
- N A\
In Exercisei ng I% we noted that the mean value of singular series

G5 (n) is asymptotically 1. We now extend this to prime k-tuples.

Theorem 18.18 (%%Zl%gher, 1976) Let k > 2 be fized, and let H run
through positive integers. Further, let H denote the set of k-tuples h of
distinct integers hi, ..., hy with 1 < h; < H, and let A be the subset of
those h that are also admissible. Then

> &(h)=H" + O(H* ).

heA
Proof We first show that the case k = 2 is an easy consequence of the
H dl r:52(n)Av
result of Exercise ilg%t %T, whose notation we adopt. Thus
H ho—1
D Shih) =2 > Sa(hy—ha)
O0<hi,hoa<H ho=2h1=1
h1#ha
. . - Cand! :52(n)Av
which by Exercise ilg%t I EF%) 1S
H
=2 (ha+O(loghy)) = H* + O(H log H).
h2:2

From now on we assume that & > 3. Since S(h) = 0 if h is in-
admissible, it suffices to prove the conclusion with A replaced by H.
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. h
We argue from the original definition @gﬁf f(g,h). We note that
f(1,h) =1 for all h, which gives the main term H(H—1)--- (H—k+1) =
H’“ =+ OO ﬁ[lka_l) It remains to bound the contributions of ¢ > 1. From
we see that if v,(h) = k, then
Cr
|f(p;R)| < 2

a,nd Ol her W ise
’ =

where C}, is a suitable positive number. Let D =[], ;< [h; — hal, so
that D < H¥k=1/2 Then

[f(a:h)] < ¢2C (D, q) <. (D, q).

For convenience we introduce the parameter > 1 which is at our
disposal. Then

SIfah)l <Y r > P> Y < (D).

>Q r|D >Q r|D t>Q/r
(D,q)=r
Hence
Z If(g;h)| < Q°1HE. (18.44) |E:sun|fqh|tailEst |
>Q

For convenience we write

9(q;h) = 9(@)" f(g; h). (18.45)
Crudely, from : gve have
l9(a:R)| < g7 (q)
for any h where
97 (@) = Y leglar+ -+ ar-1)cq(—ar) - cq(—ar_1)l.
(a.0)=1

This is also a multiplicative function of ¢ (with its support on the square-

free numbers). Consider the k& numbers —a; — -+ — ax—1,G1, ..., Ax—1-
When (a,p) = 1 at least two of these numbers are not multiples of p.
Moreover in g*(p) the terms with exactly j of the as, ..., ax, a2+ -+ ag

divisible by p contribute (p—1)? and since the ay, ..., ax—1,a1+ - +ax_1
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are linearly dependent the number of such terms is at most (I;) (p —
1)*=1=J. Hence g*(p) < 2F(p — 1)*~! and g*(q)¢(q) % < ¢°~1. Hence

S flah) < B S < HYQR. (18.46)

he[l,H]F\H 1<q<Q 1<q<Q

: h
Returning to @gﬁvhen q > 1 at least two of ay,...,ax_1,—a; —
-+ —ay_1 are non-zero modulo g. If there are at least two such of the a;,
then we pick two and call them b1, by. The remaining a; can be listed in

the form bs,...,b;_1 so that —ay —--- —axr_1 = —by — by — -+ — bg_1.
If only one of the a; is non-zero modulo ¢, then call it b; and take
by = —a; — -+ — ap_1. In that case any one of the other a; can be

rewritten in the form in the form —b; — by — s (mod ¢) where s is the
sum of the remaining a;. Thus

b | |C b2
) < HF2 |Cq 1 q
2. e 3 Tor/al 3 Toaal

he[l,H]k b1=1 ba=1
X eglbs) o cq(broa)eg(br+ -+ bra)|
be[1,q]# 3
where b = b3,...,b;_1 and where the summand over b is taken to
be |cq(b1 + b2)| when k& = 3. In general this multiple sum does not

exceed
(S la)
b=1

Since |¢4(b)] < (g,b) the sum here is at most

> rela/r) < dlg)g.

rlq
Similarly
q_l‘ q/r—1
Sl <30 Y losta < dapeos
b=1 q rlq
Therefore

Z Z f q’ << Hk72Q1+E.

hell H]k 1<¢<Q

: fghlt fghSums |
Hence, by (I8.44)) an: . e choice () = H secures the theorem. [

E:DifffqhSums
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S:tuples .
ii S:%[ 1 Exercises

. (a) We observed that if the k-tuple h is inadmissible, then the num-
bers n + hi,n + hs,...,n + hy are simultaneously prime for at
most finitely many nonnegative n. Show that in fact the number
of such n is < k.

(b) Suppose that p is a prime for which v,(h) = p and that the h; are
all nonnegative. Show that the numbers n+hy,n—+hs,...,n+hy
are not all prime if n > p.

. Suppose that £ > 2 and the 1 < ¢1 < g2 < --- < qx. Suppose that
none of the g; is divisible by a prime p < k. Show that ¢i,...,q
forms an admissible set.

. Let hj = (2j —1)? for j = 1,..., k. Prove that h is an admissible set.

. Call a set h of distinct nonnegative integers hq, ..., hy sf-admissible
when there is no prime p such that every residue class modulo p?
contains at least one of them. Let S(x; h) denote the number of n < x
such that n 4+ hq,...,n 4+ hi are simultaneously squarefree.

(a) Let f(n) denote the characteristic function of the squarefree num-
bers. Prove that

S(xih) =" f(n+h1)... f(n+ hg)

and

f(n) =" u(d).

d?|n
(b) Suppose that 0 < § < 1/(3k) and let y = 2% and

fniy) = uld).

A<y
d?|n
Prove that for j =1,...k
S(z;h) = Tj(z;y) + O(z' ey ™)

where

Tj(wiy) = Y f(n+hi;y) .. f(nthysy) f(nthy) .. f(nthy).

n<z
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(¢) Given a k-tuple of positive integers d = dy, ..., d; let d = dy ... dy
and given another one r we use d|r to mean d;|r; (j =1,...,k)
and d? to mean d3,... ,di. Write n + h for the k-tuple n +
hi,...,n+hg. Let p(d) denote the number of solutions of d*|n+h
in n modulo d?. Prove that p(d) < d* and

) =a Y ML) g o)

d1<y,...,di <y

(d) Let vp(h) denote the number of different residue classes modulo
p? amongst the hy, ..., hs. Suppose that k = 2. Prove that

S(a;h) =] (1 - ”p(h)> +O(z'79).

p2

5. Given a k-tuple of positive integers d = dy,...,dg let d = d;y ... dy
and given another one r we use d|r to mean d;|r; (j =1,...,k) and
d? to mean d2,... ,di. Write n+ h for the k—tuple n+hq,...,n+ hy.
Let p(d) denote the number of solutions of d*|n + h in n modulo
d? and let p*(d) denote the number of solutions of d*|n + h in n
modulo lem[dy,...,d;]% Let v,(h) denote the number of different
residue classes modulo p? amongst the hq, ..., k.

(a) Prove that p(d) = d*lem[dy, ..., d;] 2p*(d) and p*(d) < 1.
(b) Prove that

T M(d1)~--u(dk)p(d)<< 3 fu(di)? ... p(dy)®

d? dy, ..., dg)?
max(d;)>y max(d;)>y [1’ ’ k]
2k:w(m) .
< Z m2 <y

m>y

and deduce that

Ti(z,y) =z Z g(W;) + O (zy= ")
m=1

m

where
gmy= 3 uld)- . u(d)p(d).
] =m
(¢) Prove that p(d) is multiplicative, i.e. given d, e, define

de = d161, ‘e .,dkEk
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and deduce that if (d,e) = 1, then p(de) = p(d)p(e).

(d) Prove that g(m) is multiplicative and has its support on the
squarefree numbers.

(e) Deduce that

g(m =TI +9w?).

(f) Prove that 1+ g(p)p™2 =1—v,(h)p~2.
(g) (Pillai [1936]) Prove that

mth( )+O( ")

and hence that if h is sf-admissible, then there are infinitely many
n such that n+h; are simultaneously square free for j =1,..., k.

m=1

6. Find the minimal diameter of 20-tuples which are sf—admissible, i.e.
max h; — h; is minimal.

18.6 The distribution of primes in short intervals

For a k-tuple h = (hq, ..., hy) of distinct integers let 7(M; h) denote the
number of integers m, 1 < m < M for which m—l—ﬁl,?l?z—i—hg, coo,mA+hy
are all prime. We now use Conjecture @Q’m@i’%comectmes con-
cerning moments of the number of primes in short intervals. It is clear
that if H and n are positive integers, then

Z (m(m+h) —7(m))" = Z Z 1.

m<M m<M m<pi,....pn<m+H

Let k denote the number of distinct primes among the p;, i =1,2,...,n.
Think of indices ¢; and iy as being ‘related’ if p;, = p;,. Thus the
p; partition the set {1,2,...,n} into k nonempty subsets Si,...,8j of
related indices. For ¢ € §; the prime p; depends only on j; call it p(j).
Suppose further that the labelling of the subsets has been chosen so that
p(1) < p(2) < --- < p(k). Put h; = p(j) — m. Then p(1),...,p(k) is a
k-tuple of primes counted by 7 (M ; h), and this k-tuple has the property
that 0 < hy < --- < hy < H. Let {}} denote the number of ways of
partitioning {1,2,...,n} into k unordered nonempty subsets. This is a

Stirling number of the second kind and is the number of ways of choosing
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the subsets §;, before they are given names with subscripts. There are
k! ways to order them, so the right hand side above is
n

- 1{Z}k!0<hl<;hkSH7r(M;h):kzn:{;‘} S Mk

k= =1 0<hi,....,hy<H
h; distinct

(18.47)

Suppose that the relation
M
M;h) ~S(h)——
v h) ~ S(h)

holds uniformly for all admissible k-tuples h with 0 < h; < ho < -+ <
hy < H, k < n, and H < ClogM where C is an arbitrarily large
constant. Sup osenglat 0 <X <C, and that H = [Alog M |. Then the
expression 1'[%??) is

- n} M
N M &(h)
> DY :
k=1 {k (lOg M) 0<hi,....,hy<H
h; distinct

: h
which by Theorem @%g%mn()\)M as M — oo where

mp(\) = En: {Z})\’“. (18.48)

This suggests a subsidiary

Conjecture 18.3 Let m, () be defined as above. Let C be an arbitrary
positive number. Then for any given n,

1 M
Jim ZZl(ﬂm + Alogm) — 7(m))"™ = my,(N)

uniformly for 0 <\ < C.

It is very significant that the moments m,,(\) that arise here are pre-
cisely the mom(—,;r%t'%I o%fi g Poisson random variable X with parameter A
(see Exercise [). Such a variable takes nonnegative integer values, with
the probabilities

A

PX=r)=e )
for r =0,1,.... It can happen that two different distributions have the
same moments. However, if the moment generating function is entire,
it follows that the two distributions must in fact be the same. In Ex-

. er :MomGenFcn i
ercise p| we establish the (well-known) fact that the moment generating

E:PoissonMomO



Con:PrimesinIntervall

18.6 The distribution of primes in short intervals 153

function of a Poisson random variable is entire. Thus the distribution
of m(m + Alogm) — w(m) should be close to Poisson. This suggests a
further conjecture.

Conjecture 18.4 Let P.(M,\) be the number of m < M for which
the interval (m, m + Xlogm] contains exactly r primes. Then

LN

M

as M — oo, provided that |r — A\| < /1 + A.

It may be the case that the constraint on r can be gradually relaxed
as M — oo, but the question of how quickly depends more on arithmetic
than on probability theory. The case r = 0 is of course of great interest,
and P(X = 0) = e~ for a Poisson variable X, but this is at the extreme
end of the distribution when A is large, and the incidence of very long
gaps between primes is expected to be a more complicated issue.

Concerning the Stirling numbers of the second kind, it is customary to
set {0} =1, and {{} = 0 for n > 0. Given a partitioning of {1,...,n—1}
into k — 1 parts, we can derive a partitioning of {1,...,n} into k parts
by introducing the new part {n}. Alternatively, given a partitioning of
{1,...,n — 1} into k parts, we can derive a partitioning of {1,...,n}
into k parts by adjoining n to any of the given k subsets. Thus

{Z}:{Z:i}ﬂf{n;l}' (18.49)

This Pascal-like recurrence gives rise to a triangular array of numbers.
Stirling numbers of the first kind, which may be denoted [Z], count

the number of permutations of {1,...,n} with exactly k cycles in their
cycle decomposition. Rather obviously, [Z] = [Z:ﬂ +(n-1) [";1} The
‘factorial power’ is defined to be % = z(z — 1)---(x — n + 1) with

2% = 1. Just as 1,z,22,23,... form a basis for polynomials, so also do
0 .1 .3

cer ; pow2fall
2,z x>, . ... In Exercise E‘"@mse Stirling numbers of the second
kind to express an ordinary power as a linear combination of factorial
powers. Stirling numbers of the first kind are similarly useful in writing
a factorial power as a linear combination of ordinary powers.

S :PXG .
1 Exercises

1. (a) By inclusion-exclusion, or otherwise, show that the number of

| E:Stirling2Rec
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n\k 0 1 2 3 4 5 6 7 8 9 10
0 1

1 0 1

2 0 1 1

3 0 1 3 1

4 0 1 7 6 1

5 0 1 15 20 10 1

6 0 1 31 90 65 15 1

7 0 1 63 301 350 140 21 1

8 0 1 127 966 1701 1050 266 28 1

9 0 1 255 3025 7770 6951 2646 642 36 1

10 0 1 511 9330 34105 42525 22827 7140 930 45 1

Table 18.1 Stirling numbers of the second kind

surjective maps from a set of n elements to a set of k elements is
k ; N
ijo(_l)j (I;) (k—4)"
(b) Show that the number of surjective maps from a set of n elements
to a set of k elements is {Z}k'
(c) Conclude that {7} = % Z?ZO(—l)j (];)(k: —j)m.
. k ; )
(d) Explain why > . (—1)7 (I;) (k—j)=0for k> 1.
(e) Show that {¥} =0 (mod p) for 1 <k < p.

-Stirling2Rec . .
Exer:pow2fall | 2. Use the recurrence @_ﬁgm a proof by induction that
" (n
> {k}zk =g" (18.50) [power2fall

k=0

Hint: Note that z - 2k = ak+L 4 kgk,

3. (a) Suppose that ¢ and n are integers with ¢ > n > 0. Count n-
tuples (a1, as,...,a,) in which each a; is an integer satisfying
1<a; <gq.

(b) Consider n-tuples as above, but with the restriction that the co-
ordinates take on exactly k different values. Show that the num-
ber of such n-tuples is {Z}qﬁ

(¢) Deduce that Y {3}k = q™

(d) Argue that since each side above is a polynomial in ¢, and since
these two polynomials are equal at infinitely many arguments,
they must be identically equal.

4. If X is a Poisson random variable with parameter ), then its n'P
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moment is

X" = fxzr as (18.51)

ofall
By taking z = r in ),aor otherwise7 show that E[X"™] = my,(A)
where m., (A) defined in .

Exer:MomGenFcn | 5. If X is a random variable, then b deﬁnslgl%%m 11ts moment generating
function is Y07 o E[X"] Zn— Use @_ﬁ%w that

T;)mn(/\)i; = e Mexp (Ae).

6. Show that

Zk{ }x—m (e — 1)

7. Let Xq,..., X be independent identically distributed random vari-
ables each with the distribution P(X; =a) =1/p for a =1,2,...p.
Let v(X), a dependent random variable, denote card{X7,..., Xj}.
This random variable takes values from 1 to k.

(a) Show that

forr=1,2,...,k.
(b) Deduce that

(¢) Conclude that

18.7 Notes

Section ilg lE Earan;/ & Littlewood| (1922)) determined the asymptotic
number of representatlo‘QMs %f a large odd number as a sum of three
primes, assuming GRH. [Vinogradov| (1937) gave the first unconditional

proof.

S:NotesAddPNT
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2
Section [§ if %rflf%?s the publication of Vinogradov in 1937,

(1937), (lﬁuaakovl 1938) and EL] fermann| (1938) independently estab—
lished Thegrem and with it the estimate for E(X) found in Co-
rollar is stood as the best-known estimate for many years,
but, [Vaughan| (1975) showed that E(X) < Xexp (— ¢y/logX). Then
ontgomery & Vaughan| (1975)) followed a suggestion of Gallagher to
show that there is an effectively computable constant § > 0 such that
BE(X) < X'79 for all large X. iu (1989) showed that one
can take ¢ = 0. 05 and admlss1ble Valueb of 6 were established in small
ongze! OQLnid
, Ptz (2023)
announced_his intent to pubhsh a proof that E (X) < X3/4,
2 dEst H 3primesGRH
Section orollary em A 1n§])1 .3 of
d it hi beta)Estl
Hardy & Littlewood| (1922)), and Lemmas m m are substantially
the same of those found in Hardy & Littlewood (ibid).
erBndErrorTerm
Section 18. LTie resulf here is due to ontgomery & Vaughan| (1973).
Section[I8.5[ Hardy & Littlewood|(1922), pp. 54-62, gave a condltlonal
determination of the asymptotic number of prime k-tuples. k| (1961)

showed that the proposed formula are correct in mean square
Section ﬁi This section is based on (1976)), in which the

Formula
proof of Theorem . abed on the product formula or the

singular series. Many systems of notation for the Stirling numbers have
beg% used, with none of them dominant. We have followed the example of

raham, Knuth, & Patashnik| (1989), who also provide a large collection
of interesting identities.
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The Large Sieve

C:LargeSieve

The large sieve takes various forms, as a mean square upper bound
for a trigonometric polynomial at well-spaced points, as a mean square
upper bound for the distribution of a set of integers into arithmetic
progressions, and as a mean square upper bound for character sums.
We take the trigonometric form to be fundamental, and derive the other
versions from it.

19.1 Trigonometric polynomials

S:TrigPolys

Let
M+N
T(z) = Z cne(nx) (19.1)
n=M+1

be a trigonometric polynomial. Suppose that § > 0, and that the points
x, are well-spaced (mod 1) in the sense that

R 192

whenever r # s. We seek an inequality of the form

R M+N
SEEIEA Y fel (19
r=1 n=M+1

which is to hold for all possible choices of the ¢,. Our object is to de-
termine how A must depend on N and §. When R = 1 it is easy to
establish an inequality of this form, since by Cauchy’s inequality

M+N
T)P <N > eal” (19.4)
n=M-+1

159
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This is best ;OSSllble for if ¢, = e(—nzy) for all n, then T(x;) = N.

Thus if olds for all ¢,,, then A > N. We also observe that
M+N

/ Z|T v +r/R)dz = R / T@Pdr=R S |eaf.
n=M+1

Hence there is an = for which

R M+N
N IT@+r/RIP=R Y el
r=1 n=M+1
For any given § > 0_we can choose R = |1 (EIL and then the points
d 11Spaced 1
x+7r/R satisfy us 1f1A satisfies en A>R>1/0—1.

We now show that olds with a value of A not much larger than
necessitated by the above considerations. Our first result in this direc-
tion is somewhat inferior, but the approach is very direct, and generalizes
usefully to other situations. For each r let M, = (z, — 6/2, 2, +.0 2)113 sced
be a short interval centred at x,.. We note that if the x, satisfy i gelﬁ ;,
then the intervals 91, are disjoint (mod 1). The idea is that |T(z,.)|? ap-
proximately the average of |T'(x)|? over 9, unless T"(z) is very large, in
which case the integral of |T"(z)|? over 9, is large. To put this intuitive
principle on a sound footing we prove

Lemma 19.1 (Sobolev) Suppose that a < b and that f is a continuous

complez-valued function with a piecewise continuous and bounded first
derivative on the interval [a,b]. Then

b
’f(aJr / |f(2)|do + = / |f/ (z)] dz, (19.5) |E:CenteredSobolev

and

b b
1@ <50 [ fwlar [rwla ()

for any x € [a,b].

Proof Suppose that a < x < b. By integration by parts we see that

/:f(u)du=[( /f J(u—b)d
= (b—2)f(z) / £'(w)(u — b) du
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and similarly that
- "(u)(u — a) du

a
x

=(z—a)f(z) - "(u)(u — a) du.

a

x

[ = -a)

a

On adding these two identities we deduce that

(b—a)f(:v):/abf(u)du—i—/:f’(u)(u—a)du+/:f’(u)(u—b)dx.

Hence by the triangle inequality

b x b
(b—a)|f(2)) < / | )| dut(z—a) / | (w)] du-+ (b—2) / F(w)] du.

- Sobolev
Now z —a < b—a and b—x < b—a, so we haye as0b%1§v(“+b)/2’
then ¢ —a =b—x = (a + b)/2, which gives ; O

Lemma 19.2 (Gallagher 1967) Let g(z) be a continuous function with
period 1, with a piecewise continuous and bounded first derivative. Sup-
pose that § > 0, (%?sd;féze%t x1,%2,...,TR are well-spaced modulo 1 in the
sense that olds. Then

ég(mﬁ <o ([ wra)”( [ wwe)”

Proof Let M, = (x, — /2,2, + 6/2) for 1 < r < R. By the Sobolev
lemma with f(x) = g(x)? and (a,b) = M, we find that

o) < 5 [ ot [ gt @) de

The arcs 91, are pairwise disjoint modulo 1, so

R 1 1
z,)[? E z)|* dx x)g ()| dz.
> lo(er) <5 [ @R+ [ lgta)g@)la

To complete the proof we apply the Cauchy—Schwarz inequality to the
last term. O

Suppose that U(z) is a trigonometric polynomial of the special form

K
U(zx) = Z bre(kx).
k=—K



T:LSIneql
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By Gallagher’s lemma,

1 K K 1/2 K 1/2
S IUEIP<3 Y |bk|2+( 3 |bk|2) ( 3 |27rikbk|2)
K K

r=1 =— =— k=—

Since |27ik| < 27K for —K < k < K, it follows that

R K
3 < (%+27TK> S (bl

r=1 k=—K

K

Z bre(kx,)

k=—K

- 1
This is a special case of @.&% obtain the general case let K = | N/2],
put L =K+ M + 1, and set U(z) = T(x)e(—Lzx). Then U(z) is of the
required shape, |U(z)| = |T(x)|, and 2K < N, so we have proved

Theorem 19.3  Suppose that M and N are inte er%)N > 1, and that
T(x) is a trigonometric polynomial as given in @Tuppose that 0 >

11Spa
0, and that the points x, are well-spaced in the sense that @_ﬂﬁﬂ?
Then

Z|Tmr )? < ( +71'N) Z len|?

n=M+1

For purposes of estimating character sums, the above estimate is per-
fectly satisfactory, but when dealing with arithmetic progressions the
coefficient of N on the right hand side becomes important. To optimize
this dependence we adopt a different line of attack. The quantity to be
estimated is a bilinear form in the coefficients ¢,,. Often when presented
with the problem of estimating a bilinear form we simply expand, take
the outer summation inside, and estimate the resulting innermost sum:

R M+N 2 M+N M+N
E E Cp€ nx,« E E CmCn E —n CL'T
r=1'n=M+1 m=M+1n=M+1

Unfortunately, we have little control over the inner sum on the right, so
this approach, in its most direct form, leads nowhere. However, every
bilinear form inequality has a dual, and we have the option of passing
to the dual before ,gerforming the above manipulations. More precisely,

-BilinDualit i . - neql .
by Theorem we see that the inequality @_ﬁﬂds for all choices
of the ¢, if and only if

M+N

>

n=M+1

Z yre(n,)

r=1

R
<A Il (19.7
r=1
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for all y,.. On expanding and taking the sum over n inside we find that
the left hand side above is

R R M+N
=2 ¥ Y elnler—x.)
r=1s=1 n=M+1

By applying @_Stugiesstﬁmate the innermost sum we could demonstrate
that A < N + O(6 tlogd~1), which is good for N but inferior for 4.
The extra logarithm results from the inverse first power decay of the
exponential sum, which in turn is attributable to the jump discontinuity
of the characteristic function x, () of the interval J = [M + 1, M + NJ.
To obtain an exponential sum that decays faster, we introduce a smooth
weighting factor.

Theorem 19.4  Suppose that M and N are intQ%er%N > 1, and that

T(z) is a trigonometric polynomial as given by . Suppose that 0 <

; \ 11Spaced
0 < 1, and that the points x, are well-spaced in the sense that 1'[?%)
holds. Then

Proof If B = 1, then we have the stated result by Cauch ’ls1 ailnlequality,
as in . If R > 2, then § < 1/2. We proceed to @Tﬁt before
expanding we introduce a weighting factor zltl)a({Ll) If x,;(n) < w(n) for all
integers n, then the left hand side of 1S

2

<> w(n)

neZ

R
Z yre(nx,)
r=1

Suppose that » ., w(n) < oo, and put W(z) = >, w(n)e(nx). Thus
W (x) is a continuous function with period 1 whose Fourier coefficients
are the w(n). On expanding the above we see that it is

R R R
= Zy,mz w(n)e(n(z, —xs5)) = ZZyT@W(xT — Zy).

R
=1s=1 nez r=1s=1

T
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Let A be a positive parameter, and set

0 (n<M+1-A),
Tn—M—-1+4A) (M+1-A<n<M+1),
wn) =<1 (M+1<n<M+N),
L(N+A-n) (N<n<N+A),
0 (n >N+ A),

then W(x) decays like an inverse square, and by choosing A carefully
with A < 1/§ we can show that A < N + 2/6. Howe.vel(r)7 Vl?memploying
the more sophisticated weighting given in Theorem we find that we
can actually ensure that W (z) = 0 for ||z|| > §, so that the bilinear form
above consists only of diagonal terms. Moreover, with this choice of the
w(n) we find that W(0) = N — 1+ 1/4, so the proof is complete. O

In most arithmetic applications of the large sieve, the x, are simply
taken to be the Farey fractions of order @), as below.

Corollary 19.5 Let M and N be integers, N > 1 azljblgl suppose that
T(z) is a trigonometric polynomial of the form . Then for any
positive integer @,

Q q M+N
DT IT(a/@)P < (N+Q) Y eal®

=1 a=1 n=M+1

= @m i
Proof By Cauchy’s inequality, |T'(1)|*> < N Y, |c,|?, which suffices. For
Q@ > 2, the numbers 1/2 and 1/1 are among the Farey fractions of order
Q, with the result that two adjacent Farey fractions, a/q and a'/q’ differ
by at most 1/2. Thus

/

Ha a 7’a a 7|aq’fa’q\> 1

q d q q ¢ T ad"”

Thus we may take 6 = 1/Q?. O
S:TrigPolys

1 Exercises

:Def TP
1. Let T'(x) be defined as in @
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(a) Show that

1 @ q M+N
[ rerapPd= (Y e@) Y laf
0 ¢=1 a=1 <Q n=M+1
(a,q)=1
(b) Deduce that there is an x such that
q M+N
Z +a/q)f de 2 2Q2 Do leal®

q=1 a:)l 1 n=M+1

. Suppose that f(z) is a complex-valued function with a continuous
first derivative, and that f(z) — 0 as © — £oo. Show that

1 />,
f@I< 5 [ 1wl

for all real z. (Thus || f|lso < [/f[l1.)
. Suppose that a > 0, and that f(z) has a continuous first derivative

for —a < z < a. Show that if —a < x < a, then

]f(w)—% _af du\</a ()] du.

. Suppose that f’(x) is continuous for 0 < z < 1.
(a) Show that if 0 <z <1, then

:/Olf(u)du—l—/omf’(u)udu—i—/; F)(u—1)du

(b) Deduce that

1mﬂf|</Wf|W+/Lf\m

0<z<1

. Suppose that f(x,y) has continuous derivatives through the second
order on [0, 1]2.
(a) Show that if 0 <2z <1and 0 <y <1, then

1 p1
WaM§AAvmemmmHmmMHmwmmwu
(b) Show that
1 p1 1
fa21/21< [ [ 1ol gl

1 1
+ 5‘]02(“7”” + Z|f12(u,v)| du dv.
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Exer:LocalDensity| 7.

Exer:PJCohen 9.

6. (a) Suppose that fo z)dx is a convergent improper Riemann in-
tegral. Show that 1f f’( ) = 0 as ¢ — oo, then f(z) — 0 as
T — 00.

(b) Show that if g(x) — 0 as  — oo and ¢” () — 0 as © — oo, then
g (x) = 0asz — oo.

Let x1,x2,...,2z be points in T. For 6 > 0 let Ns(z) denote the

number r for which ||z, — z|| < 4.

(a) Show that

1<r<R
llzr—zl|<d/2

for all x € T.
(b) Show ‘Tcllplat if M and N are integers, N > 1, and T'(z) is given by
 then
R M+N
|T(z)|? ( 2
+ 7rN) c
7; No(wr) ngw:+1| !

for all § > 0. .
o ne
(¢) Show that the above includes Theorem @Q

. Let p be a nonnegative measure on T.

-DefTP
(a) Show that if T'(x) is given as in @hﬁd if § > 0, then

M+N

/T|T(x)|2d,u(:v)§ (Iﬂrglg%u(($75/2,x+§/2))) (%MN) 3 el

n=M+1
- neqil
(b) Derive Theorem rom the above.

(P. J. Cohen, oral communication 1977) Suppose that M and N are
integers, N > 1, and that T'(x) is a trigonometric polynomial as given
in @_Suppose that 5 e O and that the points x,. are well spaced in
the sense that o a5 uppose further that there are constants
A, B and a real valued function f(N,¢) such that

N~ sup f(N,8) = 0as N — oo
5

and such that for any choice of the above we have

M+N

Z|T 2)|? < (AN + B+ f(N,8)) > el

n=M+1
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Let H be a positive integer, and define

T, +h
H

Tyrp = 1<r<R,0<h<H,

b — Cn/m When Hin,
" 0 when H t n,

HM+HN
T*(z) = Z bpe(nx).
n=HN+H
(a) Prove that min ||z, — z5;|| > 6/H where the minimum is taken
over pairs 7, h and s,j with r, h # s, j.
(b) Prove that

R H-1 M+N
Y T @P <A D el
r=1 h=0 n=M+1

where

BH 5
A:A(HN—H+1)+T+f<HN—H+1,E).

(c¢) Prove that

R H-1 R
YD T @) =H Y |T()f.
r=1 h=0 r=1
(d) Prove that
R M+N
DT )P < (AN =1 +B5Y) Y feal.
r=1 n=M+1

-xlle11Spaced
10. Suppose that § > 0 and that the points z, satisfy @._Sﬁg%that
for any ¥, there is a number 6, —1 < # < 1 such that

M+N R 9 ; R
2 | Lwetnan)| = (N S 5) > luel
n=M+1"'r=1 =

Brer o1 Take
K
T(x) = Z e(kRzx)

k=1

and set ., =r/R for r =1,2,... R.
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12.

13.

14.

(a) Show that when this particular t%ggonometric polynomial is ex-
pressed in the notation of ;> the parameter N is = KR —
R+ 1.

- 11Spaced

(b) Compute all quantities in @ﬁﬁ%s of K and R, and show
that equality is achieved.

(¢) Show that (N — 1) is an integer.

(Eﬁ%gomery (1978)) Let MTPand N > 1 be integers, and suppose

that T'(x) is given by . For given positive integers @, X, let

A = A(N,Q, X) be the optimal constant in the inequality

M+N
)OI SNLOCIEEIN S
qeQ a=1 n=M+1

(a,q)=1

where the ¢, are arbitrary and Q is a set of X positive integers not
exceeding Q. Show that A(N,Q, X) < min(N + Q% X (N + )1})

17 er: Loca en51t
(B urgess| (1971)) Let Ns(x) be defined as in Exercise u
z, to be as in the preceding exercise, namely the points a/q Wlth
(a,q) =1 and ¢ € Q.
(a) Show that if § = (QX)~?!, then

> D Nila/g) <QX.

qeQ a=1
(a,q)=1

(b) By usi(relrg: LCoauch}iss1 inequality and applying the above and Exer-

. calDe
Cise snow a

q M+N 1/2
) Z T/ < (QX(N+QX) 3 laf)
qeQ a—l n=M+1

We have discussed a bilinear form with a coefficient matrix of the
form [e(nz,)] where the n are consecutive integers and the x, are
well-spaced moduulo 1. We now consider a more general bilinear form
with a coefficient matrix of the form [e(A, )] where the A, and p,
are both well-spaced sequences. Specifically, suppose that —L/2 <
Am < LJ2 for all m, and |\, — Apr| > 1 > 0 for m # m’, while
0 < pp <M for all n, and |y, — pn/| > 0 > 0 for n # n’. Our object
is to find a number A = A(L,n, M, ) such that

Z ’ Z Tme(Ampin)

2
<Al (199)
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for all choices of the variables xz,,.

(a) Let S(p) =>",, Tme(Amp). Show that

, 1
SIstur <5

M+16 M+16

1S(u)|? dys + / 1S(u)S' (1) dp.

16 ~1s

:SelbergFcns
(b) Let S, () be Selberg’s majorant function as in Theorem ié‘%ﬁ
chosen so that it majorizes the characteristic function of the in-

terval [a,b], its Fourier transform has support in (—7,7), and
S4(0) =b—a+1/n. Show that if T(u) =", cme(Amp), then

b oo
[ rwrans [~ sc@ir@Pde= 0-a+ 1/ 3 lenf
(¢) Deduce that

M+15
/ 1S dp < (M +6+1/n) S [oml?,

M+16
/ 1S ()P dp < T LM+ 5+ 1/m) Y foml?.

(d) Deduce that (9.3 Tolds with A? = (L + 1/8)(M + 6 + 1/n).

(e) Show that the same bound holds when the intervals [-L/2, L/2],
[0, M] are replaced by [A, A+ L], [B, B+ M] for any A and B.

(f) Show that the number of m is < 1+ L/n. Deduce that |S(u1)|? <
(14+L/n) >, |zm|?. Show that if there are two or more values of
n, then § < M, in which case A? < (7L +1/8)(2M + 1/n).

IASO1

Selberg] (1991}, pp. 221-224) used a different method to show that one
can take A% = (L+1/8)(M+1/n)+1+min(6L,nM), and speculated
that the inequality will still hold without the last term (min(---)).
[Preissmann| (1985) had shown earlier that the inequality is in general
false when A% = (L + 1/6)(M + 1/n).

19.2 Mean square distribution in arithmetic
progressions
Suppose that we have a sequence of numbers ¢, for M+1 <n < M+ N.

We now consider how these numbers are distributed when n falls in
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various arithmetic progressions. Let

M+N

gk (199

(

If T(x) is given as in @Tﬁhen
q
T(a/q) =Y Z(q,h)e(ah/q),
h=1

and hence by the orthogonality of the additive characters (mod ¢) (or
in other words, Parseval’s identity for the Discrete Fourier Transform,
as we treated in §4.1) it follows that

> IT(a/a)| qu|Zq, : (19.10) [E:ZqhMeansqr ]

a=1
Let
M+N
Z = Z(1,0) = > cn (19.11)
n=M+1

Thus the average of the Z(q, h) is Z/q. It is natural to consider the mean
square difference of the Z(g,h) from its mean (called the ‘variance’ in
probability theory). We now express this variance in terms of T'.

:Def TP [E:DefZqh
Lemma 19.6 Let T, Z(q,h), and Z be defined as in @W

and , respectively. Then

q q—1
gy 12(a,h) = Z/q)> = |T(a/q)|?
h=1 a=1
for arbitrary complex numbers c,,.

Proof On expanding, we see that the left hand side above is

q

q
=ay_|Z(@ P —2ReZ Y Z(q.h) +|Z]*.
h=1

h=1
Here the second sum is Z, so the above is

q
=g |Z@@.n))* - |12
h=1
[E:ZghMeanSqr/E:Def?

The stated identity now follows by appealing to (19.10) and (T9.11)). [
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In the above we have restricted a to nonzero residue classes modulo
g, but not to reduced residue classes, as would be required in order to
appeal to Corollary arowever7 for a prime modulus the reduced
residues and nonzero residues coincide, so we have

T:DistResClassModp| Theorem 19.7 Let N C [M + 1, M + N] be a aset of Z integers. Let

Z(q,h) denote the number of n € N such that n = h (mod ¢q). Then for
any positive integer @,

P
> p> (Zp,h) = Z/p)* < (N +Q*)Z.
p<Q h=1
2T2
Proof Take ¢, = 1if n € N, and ¢, = 0 otherwise. In Le'mr%lg

replace ¢ by p, sum over p < @, and then apply Corollary

From the above estimate we see that if Z > N1/2%€_ then most of the
numbers Z(p, h) are near their mean, Z/p, for p < N'/2. In particular,
we note the following consequence.

Corollary 19.8 Let N C [M+1, M+ N] be a set of Z integers. Choose
7, 0 < 7 < 1, and let P denote the set of primes p < @ such that
Z(p,h) =0 for at least Tp residue classes h (mod p). Put P = card(P).
Then
N +Q?
TP
Here we finally see how the large sieve got its name: We are estimating
how many integers remain in an interval after a large amount of sifting
has been done. We find, not surprisingly, that Z is small if P is large,
and vice versa.

. . +DistResClassMod
Proof 1If p € P, then the inner sum in Theorem “g? is (;27;0);2J for at

least 7p values of h. Hence the prime p contributes at least 722 to the
left hand side, so we see that

Z <

TPZ? < (N +Q*)Z.

If Z =0, then there is nothing to prove. Otherwise Z > 0, and we may
cancel Z from both sides to obtain the stated inequality. O

To exemplify the sorts of arithmetic applications that these tools
might find, we apply Corollary o show that the least quadratic
non-residue of a prime p > 2 is not often very large. For an odd prime p,

let na(p) denote the least positive quadratic nonresidue. The distribution
of this quantity is quite easy to determine: We first observe that ny(p) is
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a prime number, for if na(p) = ab, then (%’) = —1, and hence (%) =-1
or (%) = —1. We note by quadratic reciprocity that no(p) = 2 if p = £3
(mod 8), which by the prime number theorem for arithmetic progres-
sions is the case for asymptotically 1/2 of the primes p. Also, na(p) =3
if (2) =1and (2) = —1. That is, cither p =1 (mod 8) and (§) = —1
or if p =7 (mod 8) and (§) = 1. Hence ny(p) = 3 for asymptotically
1/4 of the primes. Let p; < pa < p3 < ... be the prime numbers listed in
increasing order. Then by continuing in this way we see that na(p) = px
for asymptotically 27% of the primes. Using the Siegel-Walfisz theorem
(Corollary 11.19) to the modulus ¢ = 4H§:1 p; < elFeklosk "we can

state this quantitatively:

i
card{p < x : na(p) = pr} = % + O(z exp(—cy/ log z)) (19.12)

for pr < loglogx. For somewhat larger k we can appeal to the Brun—
Titchmarsh inequality (Theorem 3.9). Thus we see that

card{p < x : na(p) > pr} < % (19.13)

uniformly for py < % log x. The presumption that this bound might hold
for still larger pi suggests the conjecture that

na(p) < (14 o(1))(log p) log log p (19.14)

for large primes. This is stronger than the bound we derived from the
Generalized Riemann Hypothesis (cf. Theorem 13.11). To bound ‘qhez
frequency with which nq(p) might be larger, we employ Corollary

Theorem 19.9 Let a be fized, a > 2. The number of primes p, 2 <

p < x for which ny(p) > (logp)® is < x?/a+e(l)

Proof We apply Corollary @%ith N=@* N={n¢€[l,N]:pn=
p < (log@/2)%}, and P = {p € (Q/2,Q] : n2(p) > (logp)*}. Thus if
n € N and p € P, then all the prime factors of n are so small that they
are quadratic residues (mod p), and hence (%) = 1. Hence Z(p,h) =0
for at least (p + 1)/2 residue classes h (mod p), and so we may take
7 =1/2. By Corollary 7.9 we know that Z = N1-1/ato(l) Consequently
P « NYato(l) — @2/ato(l) To complete the proof it suffices to set
Q =27z and sum over j =0,1,2,.... O

We recall from Chapter 9 that Vinogradov’s Hypothesis asserts that
no(p) < p° for all e > 0. Although this has not yet been proved for all
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p, we can use the above method to show that any possible exceptions
are exceedingly rare.

YVI.42
Theorem 19.10 (Linnik| (1942))) If 6 > 0, then the number of primes

p < x for which ny(p) > p® is <s loglogx.

Proof Let P be the set of primes p, QY/? < p < Q, for which ny(p) > p°.
We show that P <5 1; then the stated result follows on summing over
Q = 2% . Put N = Q?, and let N be the set of integers n, 1 < n <
N, composed entirely of prime numbers not exceeding ‘l\g‘;/ 4 As in the

preceding proof we may take 7 = 1/2 in Corollary [I9. Dj%y Dickman’s
Theorem (Theorem 7.2) we know that Z s N. Hence by Corollary
we see that P < 1, and the proof is complete. O

Since we have determined the distribution function of the na(p), and
have also shown that large values of na(p) are rare, we can deduce that
a moment of the na(p) tends to the moment of the distribution function.

EPA1
T:n2pDistMoments | Theorem 19.11 ([Erdds| (1961)) Suppose that 6 > 0 is chosen so that

na(p) < p°*e for all p > po(e). Let v be a fized real number such that
v <1/6. Then

Z na(p)” ~ c(y)m(x) (19.15) |E:n2pDistMoments

2<p<Lz

as T tends to infinity, where
oo
k
c(v) = _p/2
k=1

and 2 =p; < pg < --- are the primes in increasing order.

Fr ' istMoments to ded that 1/~ it is to b
om 1il§:i§; 1t 1s easy to_de uggtMogenglsg(p) < p/7, s0 1t 18 to be

expected that we can prove only under the assumption that v <
1/6. By our remarks ollgwing Theorem 9.27 we may take § = 1/(4+/e).
Thus it follows that (9. olds for all v < 4y/e =6.59....

' ist
Proof By @TNG see that the primes p 011; t&v()}llniecgsng(p) <
loglogz contribute to the left hand side of !LE!@ an_amount that
is asymptotic to the right hand side of (I9.15]).
show that those p for which na(p) is larger make a_smalilggEscgntribu—
tion. Suppose that loglogx < pr < %logx. By we see that
the number of p < x for which ny(p) = pp is < 27%n(z). On sum-
ming this over the appropriate range of k we obtain a contribution

that is o(m(z)). Next suppose that 1logz < pr < (logz)® where C

remains to
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is to be determined later. By @%ﬁsﬁee that the number of p < x
for which na(p) falls in this range is < z exp(—c(logz)/loglogx). The
maximum contribution made by such a prime is (logz)®. Since the
product of these last two quantities is o(7(x)) this suffices, Finally con-
sider primes p for which ns(p) > (logz)¢. By Theorem e number
of such primes is < 22/¢*¢. The maximum contribution made by such
a prime is < 27*¢) Hence the total contribution by all such primes is
< x7(0+e)+2/C+e Now 4§ < 1, so we may choose € > 0 so small that
Y0 +¢) <1—3e. If we take C' = 2/¢, then the contribution in question
is < #17¢ = o(m(x)), so the proof is complete. O

:DistResClassMod
Suppose that we try to use Theorem“ g? as a small sieve. For example,
suppose that N = {p : N/2 < p < N} and that Q = N'/2. Then

Z(p,0) =0 for all p < @, and hence we obtain the estimate
N < N
>op<q /P loglog N’

which is vastly inferior to the bounds we obtained by Selberg’s method
(cf. Theorem 3.3). Of course the loglog N arises because the sum is
restricted to primes. If we were able to sum over all ¢ < @, then we might
expect to get a bound O(N/log N), comparable to our prior estimates.
We now show that this can be done.

HLMER
Lemma 19.12 (Montgomery| (1968))) For M +1<n < M+ N let the

numbers ¢, be given. For each prime p let D(p) be the collection of those
residue classes d (mod p) for which ¢, = 0 whenever n = d (mod p).
Let 0(p) = card D(p), and let R(p) be the complementary set of p—4(p)

reszdue classes mod . Finally, let T(z), Z(q,h), and Z be defined as
and . Ifq s squarefree then

> T/ |2>|Z|2H (p) (19.16)

a=1
(a,q)=1

We think of the residue classes D(p) as being deleted, so that R(p) is
the set of residue classes that remain. We note that if we replace the ¢,

by cne(néé 3 thgnj {the numbers d(p) are unchanged, so that not only do

7KL

we have ut more generally
q
> T(a/g+ AP > @] 22 (19.17) [E:Sun(q) LBbeta
a=1 P|q p 6( )
(a,q)=1

for any real number 3.
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Proof We induct on the number of primes dividing ¢. The assertion is T

trivial when ¢ = 1. Suppose that ¢ is prime, say ¢ = p. By Lemma
we know that

p—1 P

712
ST/ =pY |20 - 5‘ : (19.18)
a=1 h=1

Clearly
Z |2 Ak 0

Py ’Z(p,h)—f‘ =p Y ’—‘ :|Z|2@. (19.19)

heD(p) p RED(p) P p
On the other hand,

Z Z  4(p)

Z(p,h)——=)=Z—-(p-46(p)— =—>2Z,

> (20m) =) =2~ -0t

heR(p)

so by Cauchy’s inequality

Wrize—| 5 (20w -Z)| <o-s0) Y |2to.m - Zf
p heR(p) p heR(p) P
Thus
CZpL 6w
phezﬂe%p)’z(p’h) p _p(p—é(p))|Z|

- DSupEval
On combining this with d@,vﬁ\i@ find that
P
Z |2 o(p
> |20 - 2| = ro)p 22
he1 p p

—d(p)’
A : )LB . .
which is dﬁﬁgﬁﬁen q is prime.

Now suppose that ¢ is the product of two or more primes, so that
we may write ¢ = q1g2 with (q1,¢2) = 1, ¢1 > 1, ¢o > 1. Since ¢; and

g2 each has fewer prime factors h)aﬁ]l3 ¢, by the inductiye )Egglte;is we
know that the inequality and hence also old for ¢y
and for go. By the Chinese Remainder Theorem we see that

S realP= Y Y [Tla/a +a/e)

a=1 ay1=1 azx=1
(a,9)=1 (a1,91)=1 (az,92)=1
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. . : )LBbeta .
By taking 8 =a1/¢q1 in (ilgl ?i we see that the above is
q1

> > [T/a) IQH
a;=1 p|q2
: )LB
By dﬁgﬂﬁs is

(a1,91)=1

2 3(p) 7 2 5(p)
0 H Hp—5(p) =T Hp—é(p)’

plql plqz

so the induction is complete. O

Theorem 19.13 Let N be a set of Z integers in the interval M +1 <
n < M + N. For each prime p let 6(p) denote the number of residue
classes (mod p) not represented by any member n € N. Then for any
integer Q > 1,
N +Q?
L

Z <

where

r= Y]] 2

9<Q plg

Precisely the L0 same estimate can be obtained by Selberg’s A method, if
Theorem i used to eliminate the non- diagonal terms (see Exercise 5
below).

; ITI2
Proof By Lemma @Mﬁgaear that
Z*u?(q) H

plg

q
Z T(a/q)| (19.20)
=1
q)=1
:LSF
We sum this over ¢ < @ and apply Corollary @s—t%%le that
Z)L < (N+Q*Zz

p— 5

If Z = 0, then there is nothing to prove. If Z > 0, then we cancel Z
from both sides to obtain the stated inequality. O

x| T|2ge
We now give a second proof of Lemma @"ngmbmng an explicit
ex_pres;ig)& for the difference between the two sides of the inequality

E:sum|T|2ge
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MNH72
Theorem 19.14 (Huxley (1972)) For M +1 < n < M + N let the

numbers ¢, be given. For each prime p let D(p) be the collection of those
residue classes d (mod p) for which ¢,, = 0 whenever n = d (mod p).
Let §(p) = card D(p), and let R(p) be the complementary set of p— §(p)
residue classes (mod p). For general q let R(q) be the collection of those

residue classes v (mod q) such that v € R(p) for all plq. Put '17:}’( ) = n
card fR(%; Finally, let T(x), Z(q,h), and Z be defined as in @ﬁf@i

and . If q is squarefree, then

q

> [T(a/g)
pla

a=1
o= q , (1021)
+ 3| Y elar/a)(Za) - 2/r(@)]

(@ 51:1 reR(q)

Proof We first show that if & € R(g), then

> cgh—k)=]]sw) (19.22)

heR(q) plg

where ¢4(n) is Ramanujan’s sum (cf. §4.1). We recall from Theorem 4.1
that qq(n) = > 4 (4n) d1(q/d). Thus the left hand side above is

o> dulg/d) =) du(g/d) > 1.

heR(q) dlg dlq heR(q)
d|(h—k) h=k (d)

In the inner sum, h (mod p) is fixed if p|d, but is free to take on any
value in R(p) if p { d. Thus there are [, 4(p — (p)) such h, and hence
the expression above is

=S dua/d) [] (0—5) =] (0 - (0 - 5))).

dlq plg/d plg

and so we have 1 9.22)).
F~StmFxpani

To establish (I9.21)) we expand the second term on the right hand
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side, and find that it is

SIS Zan ah/q)‘2
a=1 = heR(q)
(a,q)=1
~2Re (i ) Z(a,h) > elalh—k)/q)

q) (5L heR() kER(q)

IZI2 -
e 2 | X eah/q\
:T172R6T2+T3,

. 1
say. Clearly Ty is equal to the left ha1=1dr 0sc}de of (@% taking the

sum over ¢ inside and applying we see that
=¥ 2an]e-2(I1,2%5) ¥ z6n
hefR(q) plg plg heR(q)

Finally, we see that

|Z|2
S N e
kER(q)hEIR()
- sum=prod
which by (0095

IZI2 R

r(@)? k€R(q) plg

The number of terms in the sum is r(g), so

Ty = |2z

- xpanl
On combining these observations we obtain @Jﬁ the proof is
complete. 0
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1 Exercises

1. Let Q be a set of pairwise coprime positive integers not exceeding @,

sup%ogehthat T'(z) is given as in , and that Z(q, h) is defined by

(a) Show that

q—1 M-+N

DD IT@/gP <(N+Q%) D el
q€eQ a=1 n=M+1
(b) Show that
q M+N
S ad 12(a,h) = Z/gP < (N+Q%) > leal”
qeQ  h=1 n=M+!

IT:DistResClassModp

(c) Show that this includes Theorem [T9.7}
. T|21d
2. Let R(p) and d(p) be defined as in Theorem @Lé'hoiwthat if ¢ is

squarefree, then

- s\ 3(p)
Z( 11 p—5(p)> _qu—5(p)'

h=1 plg plg
heR(p)

[HL.MAS] 2 TP
3. (Montgomery, (1968 ; Le;cl T(x)( be defined as in dﬁand Z(q,h)

be defined as in ut f(a) = T(a/q) if (a,q) = 1, f(a) =0
otherwise. Let f(h) = _; f(a)e(—ah/q) be the Discrete Fourier
Transform of f.

(a) Show that

fi = =3 uta/d)az(d.n)

dlq

(b) Deduce that

q 14
Yo T/ ==
a=1 q h=1

(a,9)=1

-Propli
4. Let wy(n) be defined as in Theorem “Efiow that if q <1/6, then
Y we(n) =Wi(0)/q

n=a(q)

2

> ulg/d)dZ(d, h)

dlg

for all @ (mod q).



180 The Large Sieve

5. Let wy and W be as in Theorem @E%Jt%(m) be a polynomial with
integral coefficients, and let §(p) denote the number of solutions of the
congruence f(x) =0 (mod p). Suppose that \g is real and subject to
the conditions A\ = 1, Ay = 0 for d > z. Assume that P is a positive
squarefree integer.

(a) Explain why

M+N

Z 1< Z w4 (n)

G BE myp)=1

< zm(n)( ) Ad> . (19.23)

(b) Show that if ¢ is squarefree, then

(g)
q

~—

Z w.y(n) = Wi (0)

alf(n)
if ¢ < 1/6, where 6(q) = [[,, 6(p)-

(¢) Explain why it may be assumed that d(p) > 0 for all D P.) pyot
(d) Set § = 272, and show that the right hand side of is

A, 0(d1) Aa,d(da)  (dy,do)
=(N—-1+2> 1 2 ) 19.24) [E:Idcontdl
( TR T Ny (1020 [Elcom]
d.;gz
i=1,2

(e) Put g(q) =II,,(p—0(p))/d(p). Show that if ¢ is squarefree, then

-7

dlq
: tdl
(f) Show that the right hand side of (T0.29) 7 -
=(N=1+2%3 g(a)y; (19.25)
P
i<
where

Agd(d
w= 3 2 (19.20
d
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(g) Show that if the y, are given as above, then

Ag = % Z w(gq/d)yq. (19.27) |E:1ambda_dForm
dlg\P
q<z

(h) Show that the y, are real, that y, = 0 if ¢ > z, and that

> ul@)yg = 1.

q|P
q<z

(i) Show that configurations of y, with the properties described in
the preceding part are in one-to-one correspondence with admiss-
ible choices of the \q4.

. d2
(j) Show that the sum in @%

plg) \2 1
=Zg(q)(yq—g(q)L) +7

where

(k) Show that y, = u(q)/(g(¢)L) is an admissible choice of the y,,
and hence deduce that

N—1+22

—

(1) Suppose that P is a positive integer, and that for each prime p|P
a set D(p) of §(p) residue classes is given. Show that there is a
polynomial f(z) such that if p|P, then f(z) =0 (mod p) if and
only if x € D(p).

card{n € [M +1,M +n] : (f(n), P) = 1} <

An old conjecture, which perhaps dates to Gauss, is that if a is a given
integer, then there exist infinitely many primes for which a is a primitive
root, unless a = —1,0,1 or a is a perfect square. Suppose now that a
meets these requirements, and let N,(x) denote the number of primes
not exceeding x for which a is a primitive root. Artin (1927) conjectured
that a formula known as Artin’s Conjecture

T

No(z) ~ Aa) (x — 00).

log

Artin overlooked some considerations, with the result that his proposed
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formula for the constant A(a) was incorrect; the definition was amended
by Heilbronn. W]ey (1967) showed that the (adjusted) Artin Conjec-
ture is true, provided that the Riemann Hypothesis for the Dedekind
zeta functions of a certain family of Galois number fields is true. From
the next exercise we find that any possible exceptions to Artin’s Con-
jecture are quite rare.

PXCR7
6. (Gallagher|[1967))

(a) Let p be an odd prime. Note that the number of primitive roots
modulo p is p(p — 1).

(b) Use the Siegel-Walfisz theorem and the Brun-Titchmarsh in-
equality to show that

Z ( _11) _chx—i—O( (IOgX)iA)

p<X

for X > 2, where ¢ =

1— ——).
tRes agsi{od p(pfl)) .
(¢) In Theorem“?f ]('E et N be the set of those integersn, 1 <n < N,

such that n is not a primitive root (mod p) for any prime p < V'N.
Set Q = {\/JVJ Explain why

zp: Z/p) Z2 QD(p — 1)
h=1 p
for all p < Q.
(d) Conclude that card N < N'/2log N. Note N includes squares,
so card N > N'/2, Vaughan| (1973) derived a better bound for
card N by arguing instead from Theorem

7. Let p be a prime with (p,10) = 1.

(a) Let h be the order of 10 modulo p. Show that the decimal expan-
sion of 1/p is periodic with least period h.

(b) Deduce that the decimal expansion of 1/p has least period p — 1
if and only if 10 is a primitive root of p. (The first such primes
are 7, 17, 19, 23, 29, 47, ....)

8. Suppose that p and ¢ are primes, with p = 4¢ + 1. Show that 2 is
a primitive root of p. (To show that there are infinitely many such
(p,q) pairs would be similar to proving the twin prime conjecture.
One would conjecture that there are infinitely many such pairs, the
first few being (13,3), (29,7), (53,13), (149,37).)
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10.

11.
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(%ghan 1973) %%65 (1947) conjectured that 7, 15, 21, 45, 75 and
105 are the only values of n for which n — 2* is prime for all positive
integers k for which this expression is positive. Let F(N) be the
number of such n not exceeding N. Prove that there is a positive
constant ¢ such that

log N) loglog N
E(N)<<Nexp(—c(0g )loglog )

loglog N
Suppose that k > 2 and that hy,...,h; are k distinct nonnegative

dm
admissible integers in the sense of Definition efine vp(h) to be
the number of different residue classes modulo p amongst the h and,
when N € N, R(N;h) to be the number of n < N such that the

n + h; are simultaneously prime.
(a) Suppose that @ > 1. Prove that

N + @?

R(N;h) < )

+0(Q)

where

L@ = Y o2 [[ 2P

<Q pig P~ Vo)
(b) Suppose that @ > 3. Prove that

o k
L@ = FED + On((05 Q) )

- Formula
where &(h) is given by i g%i J.

(¢) Suppose that N > 3. Prove that

N N loglog N
o |

R(N;h) < 2kk!6(h)m + (Tog N)E1

(The ‘Larger Sieve’ of %gher 1971) Suppose that @ > 1 and N >
1 and M are integers, and {c,} is a sequence of nonnegative real
numbers such that ¢, > 0 only when M +1 < n < M + N. Define
Z(q,h) =3_,=h (mod q) Cns £ = Z(1,0) and let A, be a set of residue
classes h modulo ¢ such that Z(g,h) = 0 when h ¢ 4, and let r(q) =
card Ag.

(a) Suppose that r(g) # 0. Prove that

2

7 \2 2 i
3 (Z(h,q>—@) =Y Z@h’ - o

hEA, hed,
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(b) Let Q be a finite set of prime powers such that for ¢ € Q, r(q) # 0.
Group pairs ny,ny of members of [M + 1, M + N] according to
their common difference, and hence show that

YA Y Z(ha)* =D e,y Ma)

qeQ heAq ny,no qeQ
q|ln2—n1

(¢) Prove that

Z Cny Cniy Z Ag) < (ZQchi) log N.

ni,n2 qeQ
m#ns glna—m

(d) Deduce that

Y M) Y Z(g,h)? < <22 - ZCi) log N + > 2> Ag),

qeQ heA, qeQ
and so
0< (Z2 = Zci) logN—f—ZciZA(q) - 72 Z A(q).
n n q€eQ q€eQ T(Q)

(e) Conclude that

ZqEQ A(q) - log N A/IiN 02

n

7% <
2 e Ma)/r(q) —log N 4=

provided that the denominator is positive, and that if ¢, = 0 or
1 for every n, then

5o Alg) — log N
5T M@0 — TN

12. Let N denote the set of those integers n, 1 < n < N such that n is
a quadratic or zero residue modulo p for every p < v/ N. Show that
card N < v/ N. (This is best possible, since squares < N are members
of N.)

RU14
13. (Vaughan||2014) Prove if n € N, then the number R(n) of solutions
of 2% 4+ 3? = n in positive integers z and y satisfies R(n) < n'/6.
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19.3 Character sums

S:LSCharSum

Let
M+N
S00= > i) (1929
n=M+1

We reduce the question of the mean square size of S(x) for primitive
characters to the mean square size of the corresponding trigonometric

polynomial.
' harS
L:T(a/q)2S(chi) | Lemma 19.15  Let S(x) be defined as in (@%T(m) be defined
as in . Then
q
4 Z [S(x) Z a/q (19.29) |E:PrimCharSumIneq
pla) =
(a,q)=1

* . oy
where 3" denotes a sum over all primitive characters (mod gq).

Proof We recall (cf. Theorem 9.7) that if x is a primitive character
(mod ¢), then x(n) can be expressed in a simple way in terms of the
additive characters e(an/q), namely

-3 s(we(on/o (19.30)

for all n. On multiplying by ¢, and summing, we see that

q
= 2_X(@T(a/q).
a=1
From Theorem 9.7 we know that |7(x)| = /g for all primitive x, so
on taking the modulus-squared and summing over primitive x it follows

that

q 2

> IS0 = T(a/q)
X

On the right hand side we drop the condition that x be primitive, and

invoke the orthogonality of characters (as expressed in (4.14)) to see that

the above is

2 q

=elq) Y, |T(a/g)f.

(a,9)=1

This gives the stated result. O

T(a/q)
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; )25(chi) :LSF
On combining Lemma il g[ % with Corollary %tain

Theorem 19.16 'Let}%sggd N be integers with N > 1, and let S(x)

be defined as in . Then for any integer Q > 1,
M+N

> o Z S0P < (N+Q%) > leal”
q<Q n=M+1

for arbitrary complex numbers c,,.

S:LSCharSum .
1 Exercises

1. Some parts of this exercise may be familiar. Let s(n) denote the
‘squarefree part’ of n, which is to say that s(n) is the largest squarefree
divisor of n.

(a) Show that if n is squarefree, then

el )= X

pln m
m

Ho

(e) (van Lint & Richert 1965) Show that if ¢ is a positive integer,

then
s = (S50 Z S)

n<z d|q

(m,q)=1
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(f) Conclude that

2
Z i m)) (q)logx.

m<zx
(m,q)=1

RD6] :DETof chi
2. (Bombieri & Davenport|(1968)) Recall from Theorem 9.5 that W

holds for all y modulo ¢, if (n,q) = 1.
(a) Show that if ¢, = 0 whenever (n,q) > 1, then

q

Z OISO = (a) Y [T (a/a).

a=1

(b) Suppose that ¢, = 0 whenever n has a prime factor < Q. Show

that
1 M+N
> — @ ZI WISCOP < (N+Q%) > eal®.
<o P n=M+1

(¢) Suppose that ¢, = 0 whenever (n,q) > 1, and that the character
x (mod ¢) is induced by the primitive character x* (mod d).
Show that S(x) = S(x*).

(d) Recall from Theorem 9.10 that 7(x) = 7(x*)u(g/d)x*(q/d) if
(g/d,d) =1 and that 7(x) = 0 otherwise. Also, recall from The-
orem 9.7 that |7(x)| = /g if x is a primitive character modulo g.
Show that if the ¢, are as in (b), then

4 (N (k)2 MAN
éw((n <§><: o ><kSQ/q ‘P(k)> S(VHQ?) D el
(k,q)=1

(e) Show that if the ¢, are as in (b), then

M+N
> (1ogQ/a) YISO < (N+Q%) Y fenl®
q<Q X n=M+1

(f) Let N be the set of those integers n € [M + 1, M + N] such that
(n,q) =1 for all ¢ < Q. Put Z = card N. Show that

Z%log Q + Z (logQ/q) Z ‘Z ‘ (N +Q*Z.
1<q<Q neN

(2) Now suppose that M = 0, that Q = N'/2/log N, that ¢, =
logp for N'/2 < p < N, and that ¢, = 0 otherwise. Then
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22;1 lcn|? = Nlog N+O(N), and the first term on the left hand
side is ~ %N 2log N. If there exists an exceptional real character
X; with conductor q; < N€, then this character also contributes
an amount ~ fN 2log N. The consequence is that the combined
contribution of all other primitive characters is O(N 2log N )

ES57
3. (Erdéds & Shapiro| (1957))) Let x be a primitive character modulo g.
(a) Show that

Y x(m+n)X(m +ng) = ¢q(n1 —na)

m=1
where ¢, is Ramanujan’s sum, as defined in (4.5). (Suggestion:
Write X in terms of additive characters, as in Corollary 9.8.)

(b) Deduce that for arbitrary numbers b,

q q q q
Z ‘Z X ( m+n)‘2: Z ‘ane(an/q)‘
=1 n=1 a=1 n=1
(a,9)=1

(c) Explain why the right hand side above is

q
<03 bl (19.31)
n=1

(d) Show that

\Z_Z mbrx(m+ )| <J(Z|am| ) (nilw)m

for arbitrary numbers a,, and b

(
4. (Norton| (1972))) Let x be a primitive character modulo q.
(a) Show that if 1 < h < ¢, then

Eq:’i:)((m‘ﬂl‘ zq: ‘zh: an/q‘.

n=1 m=1 :1 n=1
q:
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(b) Deduce that

& 2 sinrah/q\’
Z’ E X(m—|—n)‘ = qh — h?* — Z <) .
n=1 m=1 1<a<gq Slnﬂa/q

(a,q)>1

(Norton conjectured that the left hand side above is < gh for all
nonprincipal x; this was proved by Burgess 1975.)
(¢) Show that if x is nonprincipal (mod p) and 1 < h < p, then

z”: ‘ Zh: x(m +n)
n=1

m=1

2
]:m—m

5. Suppose that ¢ > 1 is an integer, that (b, q) = 1, and that b has order
h modulo ¢. Show that

H(l _ X(b)Z) — (1 _ Zh)@(‘])/h
X
for all z. (Hint: Recall Exercise 4.2.1.4(c).)
6. Suppose that y is a character modulo ¢, and that h is the order of y.

(a) Show that for each integer a, the number of residue classes mod-
ulo ¢ for which x(n) = e(a/h) is exactly ©(q)/h.
(b) Show that

19.4 Maximal variants

We begin with a somewhat inferior bound, but one that suffices in many
applications.

ISTI72

Theorem 19.17 ([Uchiyamal (1972))) For given real or complex num-

bers c,, let
M+n
T*(x) = max Z cme(mx)‘.
1<n<N
m=M+1

Suppose that x1, %2, ..., Tk are well-spaced to the extent that ||z;—xy|| >
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0 for j # k. Then

K M+N

> T (xx)? < (Nlog2N + 6 (log2N)?) Y Jen|”.

k=1 n=M+1

:RadMenDev1
Proof From i%)%gj (\ezxrzleesvee that
or—1l_1 2
T*(l'k)2 < RZ Z Cne(fl?k)
r=1 =0 ' Mo cn< e gL
where R = [(log N)/(log2)]. Thus
R 27711 K 2

)

Z cne(zy)

Moy <n<M A+ 5

k=1 r=1 s=0 k=1

< S ﬁ 51 2
—RZ(QTJF ) 2 len]

r=1 M+ <n<M+

Ns N
or—1 +ar

M+N
< (Nlog2N + 6 *(log2N)?) Z len .
n=M+1

O

For f € I}(T), let f(n) = fol f(x)e(—nz) dx denote its Fourier coeffi-
cients, and set

N
sn(fiz)= > fne(na), s*(f,x) = sup |sn(f;2)|-
n=—N Nz1

IANK26

Kolmogorov, (1926) exhibited an f € I}T) for which the sequence
sn(f, ) diverges for all 2, but [Carleson| (1966) showed that s (f;z) —
f(x) as N — oo for almost all x, provided that f € I*(T). [Hunt (1968)
extended this to f € IP(T) for all p > 1, and established a quantitative
inequality: ||s*(f)ll, <p || fllp- The case p = 2 of this is particularly
useful for us: There is an absolute constant C'y (‘Hunt’s constant’) such
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that
K

Z ane(ne)

n=1

1

max
o 1<K<N

2 N
dz < Cpy Y |an|? (19.32)
n=1

for arbitrary complex numbers a,. We now use this bound to derive a
more precise maximal variant of the large sieve.

- xlle11Spaced
Theorem 19.18 Let 1, 29 frew TR be points of T that satisfy 1il§‘§ ; aes
let C'y be defined as in @,—a%d let a,, be arbitrary complex numbers,
for M+1<n<M+N. Then

R M+K 2 M+N
~1 2
| Dax Z ane(nz,)| <Cp(6~"+7wN) Z lan|=.
r=1 n=M+1 n=M+1
Proof Let
M+N
S(z) = Z ane(nx).
n=M+1

If we replace S(z) by e(—Lz)S(x), then each partial sum is multiplied by
the unimodular factor e(—Lz). Thus the size of the largest parial sum,
and its length, are unchanged. Hence through a suitable choice of L we
may assume that the interval [M +1, M + N] is a subset of [-N/2, N/2].
Let K (x) be chosen so that

M+K () M+K
ane(nz)| = max > " ane(na
2, ane(na) 1SKSN ne(nz)),
n=M+1 - = n=M+1

and let S*(x) denote this common value. Here K(x) is piecewise con-
stant, with at most finitely many jump discontinuities. The function
S*(x) is continuous, and differentiable except possibly at the discon-
tinuities of K (x). By Lemma it follows that

R

1
SoIs* Gl < 5 [ 18" as
+ </1 S*(x)|2dx)1/2</l ‘dS*(x)‘de>l/2.
0 o ldx
From @%’ see that
M+N

1
/|S*(x)\2dm§CH Sl
0

n=M+1
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If f(z) is a complex-valued differentiable function of the real variable z,
then | L[ f(z)|| < |f/(x)|. Hence

d d M+K(z) M+K(x)
lﬁs*(x)‘ < e Z ape(nx)| = Z 2minane(nx)
n=M+1 n=M+1
M+K
< .
<2m énKagN ;ﬂ nape(ne)
“HuntI
From (@% deduce that
Ly 2 M+N M+N
— 5" (x ‘ dz < 47%C na,|? < 7*N?*C an|?
/0 ‘daz @) - Hn=zM:+1| o= an::1| |

since [n| < N/2 when M +1 <n < M + N. These bounds combine to
give the stated result. O

Theorem 19.19 If M, N, and Q are positive integers, then

Zﬁz*sup‘ Z ambnx(mn)‘

a<Q x ¢ 1<m<M
1<n<N
mn<y

1/2 (19.33) |E:LSMaximalbiform

< (M+@Q)"*(N+@?)
M 12, N 1/2
X ( Z |am|2) (Z |bn\2> log2M N
m=1 n=1

for arbitrary complex numbers a,, and b,.

Proof By Cauchy’s inequality and the large sieve (Theorem @ we

see that
7 L MN
> o 30 D aubax(mn)|
q<Q X m=1n=1

M 2\1/2
Z amX<m>‘ )
1<Q m=1
X(qg(;@z]q)zx:* ;bnx(n)r)l/z

1/2 1/2 M 2, & 1/2
<M+ Q)P (V@) (X Jawl?) (X al)
m=1 n=1
(1931) [EsoiEom]

(X%
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In order, to _truncate this to mn < e Yeplve use a device discussed in Ap-
- S irSeril

pendix ﬁﬁpemﬁcaﬂy, by ‘IE: zo» we find that

sup ‘ ambnx(mn)‘

Y 1<m<mM
1<n<N
mn<y

<</ g ambpx(mn)(mn) ™| min(log M N, 1/|t|) dt
T H<m<m
1<n<N

MN
= D lambal-

1<m<M
1<n<N

By Cauchy’s inequality, the last term is

M3eNse , M \1/2 N N\1/2
< (X lanP) T (S 1eP)

In order that this term should not be troublesome, we take T'= (M N)3/2.
Since

T
/ min(log M N, 1/|t|) dt < log(T'log2MN),
-7

-LShi f
the desired result follows from W O

S :maxLS
1 Exercises

ISIT72
Exer imaxLSchil| 1- (Uchiyama) (1972)) Show that for arbitrary integers M, N > 1,Q > 1,

and complex numbers a,,,

M+V

Z i Z* 1<u<N‘ anX(n)

‘2
q<Q go(q) X =M+1

M+N
< (Q*(logN)* + NlogN) > lan|*

n=M+1
. I
2. Let Cg be defined as in @%’Se%ow that

M+K 2 M+N
q *
E —— max E
1<K<N
X

e(q) > anx(n)| <Cr(rN+Q%) > lanl?
<@

n=M+1 n=M+1
for arbitrary complex numbers a,, M +1 <n < M + N.
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3. Show that
7 M+K 2
S | Y e
a<Q X n=M+1
M+N
< (N+@Q%)(ogN)? > an?
n=M+1

for arbitrary complex numbers a,, M +1 <n < M + N.

19.5 Notes

S:NotesLargeSieve |

The large sieve was introduced by , already with the aim in
mind of treating the least quadratic non-residue in [Linnik (1942). I%é%ﬂ
used the large sieve to show that every large even number 2n can
be written in the form

n=p+ P (19.35) |E:AlmostGoldbach

where Py denotes a number that is a product of at most k prime numbers.

Renyl developed the large sieve in several papers, culminating in @

(1959), where the result, stronger than those in prior formulations, is
equlvalent to the assertion that the bound @Wpﬁmhe bound @7
in Theorem @Wh—fhe vectors ¢, in that theorem are taken to have
coordinates x,.(n) for M < n < M + N and yx, runs over all primitive
characters with conductor ¢ < @, it follows by the Pélya—Vinogradov
inequality (Theorem 9.18) that A% < N + Q3log Q. Consequently,

M+N M+N
S e « W +@UogQ) Y Jelt (1930
9<Q X n=M+1 n=M+1

MRRA
for arbitrary complex numbers ¢,,. (1963)) used the above estim-
ate to show that most L functions do not have a zero at small height
and real part near 1, and from those estimates deduced an bound of the
form

liz

2 —A -

E max |mw(x;q,h) — —‘ < z(logx 19.37) |E:LSpinAPO

e N(Q) h(ém(;d (i) ‘ ( q ) (p(q) ( 8 ) ( )
< Q)=

witha =1 /3. By introducing an appeal to the sixth moment estimate of
m m he improved this to a = 3/8. To obtain the representation
we fix a arge even number 2n, allow p to range over all primes <
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2n, and sift the numbers 2n —p. To do this, we need to know, for small d,
the number of p such that d|(2n—p); that is, 7(2n; d, 2n). When (d, 2n) =
1, this number should be close to (li2n)/p(d) for most d. The small
sieve only requires that t ho a, p%(‘)]}&glatlon here is good on average, as in
the ab2¥80?&%%1. Thus [Cevin] (1%5&”:) showed that Rényi’s Theorem

olds for k£ = 4 if the above holds for some a > 0.3058 and
for k = 3 if the abc;x&e}o?g%gghfor some_a_ > 0. 401 Hence Barban’s result
implies that 101ds Wi = 4.[Pan 3)) independently achieved
a=3/8 and k = 4. earlier showed that GRH implies that
one can take k: =3.

) wrote a detailed survey of the large sieve and its applic-
atlons, as it ex1sted up to 1964. However, revolutionized the
subject with the brilliant idea of taking the vectors ¢, to have coordin-
ates e(nz,) for M < n < M + N. Thus ¢, and ¢, are nearly orthogonal
if ||z, — x|| is large compared with 1/N. These vectors are much closer
to being orthogonal than were Rényi’s. Arithmetic applications follow by
taking the xz, to be Farey points of order (), in which case the x, differ
by 1/Q?. Thus where Rényi had Q3 log @, Roth had Q?log Q.
, working independently of Roth, reduced Rényi’s Q?log @ to Q?,
and derived imoproved zero-density estimates for L-functions, which yiel-

ded with a = 1/2. Previop:slg, this was only known as a con-
sequence of GRH. Conjecture ﬂ nown as the Elliott—-Halberstam
Hypothesis) asserts that olds for a = 1, but this is not known

to hold for any 4> 1 / 2, even under the assumption of GRH.

F be a measurable function defined over R™. In sem-

inal work, ISob (1938) initiated the study of bounds for norms of f in
terms of norms of partial derivatives of f. [Leoni (2017) and Saloff-Coste|
(2002) have prpv1dse7d introductions to_thlgesllbi]ect. Gallagher| (1967 olev
used Lemma o0 prove Theorem e idea that Lemma

can be used to derive a discrete mean upper bound at well-spaced points
from a continuous mean val}le is invaluable and has been used in many

other situations. T heorem [I9.4in the slightly weaker form with N —|— =—1
replaced by NV + is due to on -ﬂ___ \_/uh (1973 |, 1974). Paul

Cohen (unpubhshed see Exercise [19.T]
sieve with this larger factormon_c;gcan deduce the smaller one. The proof we
give is due to Selberg (see Montgomery| (1978))). The factor N —1+1/§
is quite sharp when N¢ is large, and indeed equalify can_be achieved

ST gHExlanR NG

when (N — 1)J is an integer, as we see in Exercise [I9.]] L'J Bombieri

E-TSTheql

Bombieri

) observed that from the large

holds with A = (1 + 270(N6)3). Bombieri and Selberg (see
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OpNor:
consider the use of bilinear forms (as we discuss i in JG Il and 1n the

(1971) and Chapter 1 of lVlon’cgomery| (1971)) were  among the. ﬁrst to

[TK71
[Kobayashi| (1971}, [1973]), and (1971) also treated the large sieve

2 4 AR4R R b
were first obtained by [Linnik| (1941 and developed by Lm (1948
LTk (1047 T961) established the
generalization. Theorem E-_E is due to [Montgomery| (1968), although
the special case 6(p) = 1 was obtained first by [Bombieri & Davenport
(1968)). Montgomery established the critical inequality v a judi-

Our sim lg roofoof ue to Gallagher.
amare 2009); [Ramaré (2010) has studied the large sieve in
[l?e 19

1970

context of the large sieve. Soon after, [Matthews 9?2@ 187 2bl, [1973)),
in this way.

. :DistAPs :DistResClassMo
Section @‘Tﬁeorems of the general klnd Theorem an d Corg l_Ey
1949b)). Theorem 19.10 s in [Liny
case 7 = 1 of Theorem [I9.T1[and the argu‘lg%eﬂ%g displayed here is a simple
cious application of Cauuch\[ﬁ2 nequality coupled with Mobius inversion.
great detail, while [Wolke| (1971/1972)) and Bal?ﬂﬁ & Zhao (2005, 2008)
tended the large sieve to algebraic number fields, and [B

have considered sparse sets of moduli. [HuxlIey

established a version of the large sieve for T". %owalsgl (2006}, 2008) has
extended the large sieve in a number of directions, including to arith-

metic geometry and to discrete groups, As it stands, the large sieve is
GTS11,CTST3.C1519

only an upper bound, but [Conrey, Iwaniec & Soundararajan| (2011} [2013|
m ) have constructed a more elaborate asymptotic large sieve.

The larger sieve of , established in Exercise 19.2.9 and
subsequently applied, has had many appllcatlons and has been especially

useful in establishing the density of squarefree values of polynomials. See,

for example El@ley 1976) .
Section [I9. LI S]emma (1967).
(1972)). Hunt’s Theorem,

Section eorem [I9.
even when restricted to p = 2, reais challenging to prove. For an
accessible exposition of this, see the .

Maximal variants that flow from the Hardy-Littlewood maximal the-
orem are available without appealing to the Carleson-Hunt Theorem,
as follows: Let f be a bounded meeasureable function'witbl&l eriod 1 and
let the maximal function My (z) be defined as in (ﬁ%ﬁ%ﬁ%m

(1982) showed that if A(f,d) has the property that

R

S 1f(x)]? < A(f,6)

r=1
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. 2 11Spaced
whenever the x, are well-spaced as in , then

R
> My ()| < 200A(f,6).
r=1
-DefTP . 3
Thus if T is defined as in @T’chen by Theorem @I’ﬁ)llows that
R M+N
> Mp(z,)P <200(N+671=1) Y Jenl®. (19.38)
r=1 n=M+1
-LShif . S3
mvéI(‘)be estimate @%d Theorem are Lemmas 1 and 2 of

Vaughan| (1980)).
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Our best unconditional bound for ¢ (x,x) (cf. Theorem 11.16) is not
very good, owing to our rather limited knowledge of the zero-free region
of L(s,x). If we assume GRH, then we have a much better estimate
(cf. Theorem 13.7). In some situations, a good bound for an average of
|(x,x)| is all that is required, and'sgggarl%ggsnds can be obtained by
combining our methods of Chapter [I7[w1 e large sieve.

20.1 Averages of |¢(z, x)|

harSum
Asin we le Z denote a sum over all primitive characters modulo

q. In thls notation, we have

Theorem 20.1 For arbitrary Q > 1 and = > 2,

ZﬁZ sup[(y, X)| < (z+2%°Q +2'/2Q%) (log 2)*. (20.1)
q<Q x Vst

The term ¢ = 1 contributes an amount ~ x, but otherwise we expect
that |1 (y, x)| is usually of the size 3'/?(logq)'/?. Thus we expect that
the left hand side above is < 24 Q%z/?(log Q)'/2. From GRH it follows
that it is < 2 + Q%2'/%(log Qx)?.

: st | psi (. dl8Makimalbiform
Proof 1f Q* > x, then we obtain (20.1]) from (I9.33)) by taking M = 1,
a1 =1, N =[z], and bn = A( ). Suppose that Q < z'/2. By Vaughan’s
identity (ﬁb with f(n) = x(n) we find that ¥ (y, x) = S1+S2+S3+54

203

|E:LSEst Ipsi(x,chi) |
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where

~ Y Ao 202
n<U
Saly,x) < (ogUV) - | 3 ot (20.3)
t<UV r<y/t
Ss(y,x) < (logy) Y- sup| D0 x(m)], (20.4)
k<V Y w<m<y/k
Sayx) = D>, bm) > plk)x(mk) (20.5)
U<m<y/V V<k<y/m
E:LSMaximalbiform
where b(m) < logm. Thus by (19.33]),
> o Z swp| T bm) DD ulk)x(m)
q<Q<'D YT A r <o M V<k<y/m
U<m<y/V
< (33 + QzM Y2 4 Qz'PMY? + ngl/Q)(logx)Q.

On summing this over M = 2¢ for U/2 < M = 2° < x/V, we deduce

that
%Z sup |54 (y, )|

27

q<Q X Us®

< (2 4+ QzUY? + QaV =12 4+ Q%/?)(log x)>. (20.6)

We write

=Y =34 Y =K@+, (207) [Epsiszecon]

t<UV  t<U  U<t<UV
and treat S in the same way that we treated Sy. Thus

Z% S sup |5 (. )|

<Q x Y=

< (24 QzU 2 + Q22U V2 + Q%' /%) (logz)®.  (20.8)

For ¢ = 1, Si(y,x) < y(logU)2. For ¢ > 1 we apply the Pélya—
Vinogradov inequality (Theorem 9.18) to see that

Sh(y, x) < ¢"/*U(log qU)?.

> S 2 s lSh 0l < (2 + @20) (logUr). (209)

a<Q x Y=
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We treat S3 in the same way that we treated S}, and hence find that

3 S s S0 0] < (e Q) (g Vi) (2010
4<Q x U=

Finally, it is trivial that
q * 2 -
— sup |S1(y, x)| < Q°U. (20.11) |E:psiS1Est
IETORE

psiS1Est
- we conclude that

q *
—— sup [¥(y, x)|
éw(q) EX: y<z
< ($+Q.’L'U_1/2 _’_va—l/Q +Q2$1/2
+UVPVRQz' 2+ QPU + Q¥PV) (log 2UV)?.

By allowing U and V to vary with UV held constant, we see that U =V
is optimal. For z'/3 < Q < x'/2, we obtain the stated bound by taking
U=V =2%*3/Q. For 1 < Q < z'/3, we obtain the stated bound by
taking U = V = z1/3. O

S:Ave|psi(x,chi)|
1 xXercises

1. Let w(x, x), 7(x;q,a), 9(x,x), and 9(z;q,a) be defined as in (11.20)
and (11.21).
(a) Show that |1 (x,x) — V(z, x)| < ¥(x) — ¥(z) < z/2.
(b) Show that

Z ﬁ Z* sup [9(y, x)| < (z+ #5/0Q + x1/2Q2)(log z)3.

a<Q x ¥s
(¢) Show that
v, x) 7 Pu,x)
= d .
(@, x) log x * 5 u(logu)? “
(d) Show that
w(z,x) < sup  [o(y, x)| + /2.

logz j1/2<y<,

(e) Show that

sup | (y, x)| < ] sup |¥(y, x)| + 212,
y<z 08T y<
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(f) Conclude that if x > 2, then

Z LZ sup|7r(y X)| < (z+2%°Q + 2'2Q?)(log z)*.

=50\ 5 usa
2. Show that
M+N q M+N 9
S| Y e -0 X | S o
n=M+1

1 n=M+1

:) 1 n=h (modq)

where Zx denotes a sum over all characters modulo q.
3. Show that

M+N M+N
Z! enx(n \ S(N+q) D el
n=M+1 n=M+1
4. Show that
5| 30 3 mbonln)| < 01
m=1n=1
M N 1/2
(Z|am|) (bl
m=1 n=1
5. Show that
Zsup‘ Z ambnx(mn)’
x Y i<m<wMm
1<n<N
mn<y

M 12, N 1/2
< M+ 2N+ ( D Jawl?) (X [bal?) " t0g 20N,
m=1 n=1

6. Show that if ¢ > z, then

Zbuplw v, x)| < qz'/*(log 22)%/2.

X YST

7. (a) Show that

Zsup] S oum) Y elk)xmh)|

VST M<m<oM V<k<y/m
U<m<y/V

< (z+ ¢ PaM=V2 4 ¢ 2 22 4 g2t /?) (log )2
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(b) Deduce that

> " sup|Sa(y, x|
X

y<

< (x+q1/2xU_1/2 +q1/2xV_1/2 +qx1/2)(logx)3.

-psiSod
(c¢) Let S5 and SY be defined as in @._Sﬁg—ovgmthat

> sup |5 (y, X)|

Y Yse

< (a:+q1/2xU_1/2 +q1/2x1/2U1/2V1/2 +qx1/2)(1ogx)3.
d) Show that if 1 < ¢ < z, then
( q <,

> sup S5 (y, )| < ¢*/*U(log 2U)>.

X YsT

(e) Show that if 1 < g < x, then

> sup |S3(y. x)| < ¢*°V (log )

x Y=%

(f) Conclude that if > 2 and ¢ > 1, then

> sup [y, )| < (7 + 4"/ + ga'?) (log 22)°.
x Y=

20.2 The Bombieri—Vinogradov Theorem
__S:Bom—Vin

For (a,q) =1, let

T

E(z;9,a) = ¢(v;q,a) — 2@ (20.12)

put
E(z,q) = sup |E(x;q,a)l, (20.13)
(a,9)=1
and set
E*(x,q) = sup E(y, q). (20.14)
y<z

We show that E*(x,q) is considerably smaller than z/¢(q) for most
q < z'/?(logz)~A.
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Theorem 20.2 (The Bombieri—Vinogradov Theorem) Let A be a fized
positive number. Then

> E*(x,q) < 2'?Q(logx)° (20.15)

a<Q
for z'/?(logz) =4 < Q < x'/2.

The implicit constant in @% non-effective, since our proof will
involve an appeal to the Siegel-Walfisz theorem.

Let Q be the set of those ¢ < @ for which E*(z,q) > x/(¢(q)(log z)?).
Since ¢(q) < ¢, we deduce that the number of members of Q is

< Q%*z~ V2 (log x)BH4.
This is small compared with @Q if 2'/2(logz)™* < Q and
Q = o(z'*(logz)~B~4).
We recall (11.22), which is to say that
vlig.0) = 3wl )
If we assume GRH, then we have a good estimate for ¥(x, x), namely
(by Theorem 13.7)

Y(x,x) = Eo(x)z + O(z'/*(log ) (log ¢u))

where

0 (otherwise).

Folx) = {1 (X =Xo):

Put /(z, ) = ¥(, X) — Fo(x)z. Then

vleia.0) = /ole) = — > X' (@0, (20.16) [E:psiquzpsichi

and so
1
B(w.0) € 5o 3 10/ ) (20.17
X

by the triangle inequality. Thus on GRH,

E(z,q) < #Y/?*(log z)?, (20.18)

as was already noted in Corollary 13.8. In view of the Brun—Titchmarsh
inequality (Theorem 3.9) we know that E(z,q) < x/¢(q) for ¢ < 2'~°.
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- ExqGRH
Thus the estimate ﬁdespi’ce being a consequence of GRH—is
worse than trivial when ¢ > x'/2/logz. Here GRH gives a weak result

(when ¢ is large) because we have eliminated an ,pggsgailc% icancellation
that presumably occurs in the sum over x in @.—ﬁﬁ@, by Corol-
lary 13.10 we know that on GRH the root mean square size of E(z;q,a)

is < 2/2p(q)~"/?(log z)> when ¢ < x, and we expect that E(z, q) is not
much larger.

Conjecture 20.1 If (a,q) =1 and q < z, then

. _ T 1/2+4e/ 1/2
¥(x;q,a) (p(q)—l—O(x /q'?).

For many purposes, it would be enough to know this on average:

Conjecture 20.2 (The Elliott-Halberstam Hypothesis) Let A and ¢
be fized positive numbers. In the notation of )

Z E*(z,q) < z(logx)~4
q<Q

provided that Q < x'~=.

. _v' .
Proof of Theorem @m_ﬁ‘r&om @%‘e see that

E*(2,0) < @ S sup [/ (9, )1

<
x Y=

Suppose that d|g and that the character x (mod g¢) is induced by the
primitive character x* (mod d). Then

V) =) = D> x(p)Flogp
ple Kk

(2019

<Y logy = w(g)logy < (logqy)”.

plq
Hence
Y Efxg) < D> (sup [0 (y, x*)| + O((long)2)> 3 L
<Q d<Q x* Y=< <0 ©(q)

dlg

Write ¢ = dm. Since p(dm) > p(d)p(m), it follows that

1 1 1
2 ) S @ 2 pm)

m<Q/d ¥
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Now
1 1 1 1
mgngplm%)<yw_pgy<l+p1+p(p1)+ )
:p<y(1+(p_pl)2):pl:[y(1_]1?) (1+p(p1—1))
< log2y

by Mertens’ formula (Theorem 2.7(e)). (Alternatively, we could appeal to
(2.32) with k = 1, and then integrate by parts. The asymptotic formula
of Exercise 2.1.1.13(d) would be overkill at this point.) Hence

1 1 1 1 2
DS T 2 oo < oo FQ (20.20) [E:Specsun1/phiq
oeld) T el s e(m)  eld)
dlq
for d < @, so
log 2Q/q
E*(z,q) < Q(log Qx)* + supw ¥, x)|. (20.21) __E:E*qustl
q;;) q;z ¢(q) Z

[ LSEst | psi(x,chi) |

Put Q; = (logz)4*!, and suppose that Q; < U < Q. By TheoremE
we see that

Z k’gw/qz s 1/ (3. )

U<q<2U QD((]

log 4Q/U \
< g 40/U > Ly sup [1/(y, X)|
x Y=*

U 52 @)
< (2/U + 25 4+ 2'20) (log 2)® log 4Q /U.
On summing over U = 2*Q;, we deduce that
log 2@ /q
S e ETTCRY
Qi<a<q 7V
< zQ7t (log z)* + 25/ (log 2)° + 2'/2Q(log x)?

< @'2Q(logx)® (20.22)

since Q > z*/?(log x)~4. Suppose that y is a primitive character modulo
q with ¢ < Q1. By the Siegel-Walfisz theorem (Corollary 11.18) we know

that sup,<, [¢'(y, x)| < zexp ( — c1y/logz). Hence

log 2
Z Oi(f/q Z bup [V (y, x)| < zexp (—c2y/logz) < #12Q(log z)?
a<Qu x ST
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JEst1 Est1
since @ > x'/?(logx)~*. We combine this with @%@%

obtain the desired bound.

After we proved the Siegel-Walfisz Theorem for ¢ (x;q,a) in §11.3,
in Corollary 11.20 we derived analogues for ¥(z; ¢, a) and 7(z;q,a). We
follow the approach used there to deduce

Corollary 20.3 For (a,q) =1 let
li(z)

x
Ey(z;q,a) = 9(z;9,a) — @» E.(x;q,a) = 7(x;q9,a) —

v(a)’
Ey(z,q) = sup |Ey (259, a)l, E(z,q) = sup |Ex(z;q,a)l,
(a.q)=1 (a,q)=1
Ey(x,q) = sup Ey(y, q), E*(z,q) =sup E:(y,q),
y<z y<z
and let A > 0 be fived. Then
Z Ej(z,q) < xl/zQ(log $)3 (20.23) |E:Bom—Vin4theta

9<Q

and

Z E(x,q) < z'/2Q(log ) (20.24)

q<Q
provided that x'/?(logz)~4 < Q < x/?
Proof We first observe that
D(y;q,0) — I(y; g,0) < ply) — I(y) < y'/2.
Hence
[0(y;9,0) — y/w(a)] < E(y:q,a) +y'/>.
Thus
Ej(z,q) < E*(z,q) + /%,

' ~Vindtheta - -Vin .
SO ollows from Theorem s for 7 (y; q,a), we write

_ liy) Yl w;q,a)—u/o(u
w(i0.0) = [ o dita.) = S0 [ i 0) /el

By partial integration this last integral is

_ Vw9 —u/pl@r [T a) —u/ela) o
N log u ‘2* /2 u(log u)? du.
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For 2 < u < y/z we use the trivial bound ¥(u;q,a) < u(logu)/q, and
for v/x < u <y we use the inequality |Ey(u;q,a)| < E}(y,q). Thus

Ei(z;q,0) K x1/2/q + Ej(x;q)/ log x.

' -~Vindpi - ~Vindtheta .
Hence ollows from , an e proof is complete. O

The following variant of the Bombieri—Vinogradov Theorem is con-
venient in some applications.

Co:Bom-VinVar2 | Corollary 20.4 Let A > 0 be fized. Then

ZqE*(z,q)Q < 232Q(log x)*, (20.25)

9<Q
> aBj(r.q) < 2*?Q(loga)*, (20.26)
<Q

and
ZQE;(%(])Q < x3/2Q(logx)2 (20.27)
<@

provided that z'/?(logz)~4 < Q < x'/?

Proof 1If ¢ < x, then there are < x/q integers n < x such that

n = a (mod ¢q). Thus it is trivial that ¥(z;¢,a) < x(logz)/q. (The
Brun-Titchmarsh inequality IV%S a better bound.) Hence gF* ‘gicﬁ 9)?* <

E*(x é@c%lo%m, and so QME glslé)ws from Theorem imilarly,
ollows from lwp For m(z; ¢, a) the tr1V11§121 l[l)ound is wix, %7 aQ]IM .

< x/q,s0 qEx(z,9)* < EX(x,q)z, and thus ollows from
O

20.3 Applications of the Bombieri—Vinogradov
Theorem

The twin prime problem is to show that there are infinitely many prime
numbers p such that p 4+ 2 is also prime. One way of attacking this
problem would be to sieve the numbers p 4+ 2, and try to estimate the
number of survivors. However, in order for a sieve to be applicable, we
must know approximately how many multiples of d are in the set {p+2 :
p < z}. That is, we need to know that 7(z;d, —2) is approximately
li(z)/p(d) for most odd d up to a certain size. The Bombieri-Vinogradov
Theorem gives us precisely the sort of information we need for sifting
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up to xl/Q(log x)~4. By Selberg’s lambda squared method we can show
that the number of primes p < x for which p + 2 is prime is

< (4+o(1))cx/(logx)?

where

c=2]] (1 - ﬁ) (20.28)

p>2

. tp3
(The details are outlined in Exercises W is a factor of 2

better than the bound in Theorem 3.10, but is still a factor 4 larger than
the conjectured truth. The Bombieri—Vinogradov Theorem is also useful
when a lower bound sieve is, a Plied to the twin prime problem. This
will be explored in Chapter @i

Theorem 20.5 The number of representations of a positive integer n
as a sum of a prime and the product of two positive integers is

S din-p) = “Qgg@g(l_@)momﬁ;ﬁ%)

Here the main term is > n/loglog 3n, so the main term is definitely
of a larger order of magnitude than the error term.

Proof Let P denote the set of primes, and put Q = n'/?/(logn)*. Then
by the method of the hyperbola,

Zd(n—p): Z 1=Z7r(n;d,n)—|— Z w(n;d,n)
d,e

p<n d<Q QR<d<n/Q
de<n
n—dee®P

+Z7r(n;e,n)— Z 1

e<Q d<n/Q
e<Q
n—dec®P
=% + 554 03 — 5y, (20.29)

say. If (d,n) > 1, then 7(n;d,n) < 1. Thus

Si= Y w(midn) +0Q =lin) 3 %

d<Q i<Q 7
(dn)=1 (d,n)=1
+ ) Ex(nid,n)+0(Q)

| E:TwinPrimeConst

E:SumDecompl
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From Exercise 2.1.1.16(c) we see that

L ((2)¢3) p
> e - e L0 mr)

n<Q #(n) plg

(n,g)=1
logp logp
1 C sy or
< (loe@+ Co+ 30 ER 5 B

plg ptg
+0(2¢9(log Q)/Q).

By considering ‘record-breaking’ ¢ as in the proof of Theorem 2.9 we see
that

1
Z o8P < loglog 3q
p—1

plg

:Bom-VinVaril
uniformly for ¢ > 1. Thus by Corollary Ei)% we deduce that

_ 6(2)¢(3) P log @
X1 = ¢(6) g(l_p2p+1>nlogn

nloglogn _A42
+ O<7logn ) + O(n(logn) ).

00

By the Brun-Titchmarsh inequality (Theorem 3.9),

n 1 nloglogn
by . 20.31) |E:EstSig2
s X Lot o) [FEwg]

Q<d<n/Q v

Clearly Y3 = ;. We note that

Sa= ) > oL

e<Q n—ne/Q<p<n
p=n (mod e)

Thus by the Brun—Titchmarsh inequality,

n e n
b E . 20.32 _E:E tSigs
1< Qlogn o(e) < logn ( ) m

e<Q
We take A = 3, and note that log (é = l% 110%7} =+ OJ}}OE lp%n?e.conhgs the
stated result follows on combining 30)—(20. mn 29)). O
Let
E = lim inf 2L —Pn (20.33)

n—00 log py,

By the Prime Number Theorem, E < 1. In an unpublished manuscript
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Partitio Numerorum VII (ca 1926), Hardy & Littlewood showed (as-

suming GRH) that £ < 2/3. In the arguments that follow, we use the

Bombieri-Vinogradov Theorem to show unconditionally that_fz e%c 1 2/ 2.

This represents the state of the art in the 1960’s. In Chapter 22[we show

not only that F = 0 but also that liminf,, o pr4+1 — pr is bounded.
Let

H
S(a) =Y (logp)e(pa), T(e) =) e(ha).
p<N h=1
Then
H
T())* = Y (H—|h])e(ha),
h=—H
S(a 2da— h|) S(a)?e(ha) d
/ S@)T(@)*da= 3 (3 =) [ st
H
=H Y (logp)’ Z R(N;h)
p<N h=1
where

R(N;h) = > (logp)(logp).
p,p' <N
p—p'=h

Since 3 y(logp)? = Nlog N +O(N) by the Prime Number Theorem,

this gives

Lemma 20.6 Let S(a), T(«), and R(N;h) be defined as above. Then

/ 1S(a Pda—HNlogNHZ (H — h)R(N;h) + O(HN).
h=1
Our object is to derive a lower bound for the integral above that is
sufficiently large to prove that R(N;h) > 0 for at least one h. _TOF;cllrlgs
end, we apply the large sieve, which in the form of Corollary gives

S S IS(a/)T(a/a) < (N + H + ?) / 1S(e)T(0)? da.
= Q(a?q)lzl ’

We anticipate that S(a/q) is often near %N . Thus the next lemma
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provides an asymptotic evaluation of the main term that we expect will
emerge.

L:sum|T(a/q) |‘2| Lemma 20.7 Let T(«) be defined as above. If 2 < H < @Q, then

q
pla)” Z T(a/q)|> = Hlog Q + H? + O(H log H).
5 ¢(a)?

(a q) 1

Proof The left hand side above is

q
1(g)?
5 > Z — [h])e(ha/q)
q<Q@ q)° a=1 h=—H
(a,q)=1
H
3 S ey )
=0 P9,y
2
_ gy A9 +2ZH h) Zuq
= P9 S e #0)

As we observed already in W # 0, then
o~ H(9)? cp(h)
> e =110+ 5%5)
1 1
H(”p)g(l‘@_l)z) = G (h)

is the singular series for twin primes. As for the tail in this series, we
note that if A # 0, then

1(q)* Zﬂgzzduq/d«z:dzﬂq
d\h

>Q SD q >Q ('0 d|h qd>‘Q <'0 q
q

<Tamp X wp < s

d\h m>Q/d d|h
< Q7 d(h)(h/p(h))*.

Now multiply both sides of the above by H — h and sum over h, to see
that

H
N (H - h) Z“Z h) < Q' H?log 2H.
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Thus

2

Z zq: a/q HZ#(Q)

q9<Q =)1_ q<Q w(a)

H
ZH h)&s(h

+0(Q "H?log2H).

In Exercise 2.1.1.17 it was shown that Y, u(q)*/¢(q) = log Q+O(1).
(Actually, a more precise estimate was proved, with lower %rgier terms.)
In Exercise 3.4.1.3(a), and again in Exercise ilgéf IE 1% was shown that
S Sa(h) = H + O(log H). Thus

H H-1 h
2 (H-hn)&y(h) =2 > &z(m
h=1

h=1 m=1
H-1
=2 (h+0(log2h)) = H* + O(H log H).
h=1
Thus the proof is complete. O

We now derive a lower bound for |S(a/q)|? in terms of the distribution
of primes into residue classes modulo q.

-Bom-VinVarl
L:1S(a/q) |"2>=| Lemma 20.8 Let Ey(N;q,a) be defined as in Corollary EE)%, and put

Ula/q )_QZE ;NR Z Ey(N:q,m)e(am/q). (20.34)
m=1
(m,q)=1
If (a,q) =1 and ¢ < N, then
1(q)?
= v(q)?

|S(a/q)? N?+U(a/q) + O(NlogN).

Proof We write

S(a/q) =Y _ (logp)e(pa/q) = > e(am/q)9(N;q,m).

p<N

If (m,q) > 1, then 9(N;q,m) = 0 unless m is a prime dividing ¢, in
which case ¥(N; ¢, m) < logm. Since Zplqlogp < logq, it follows that
the above is

q

= > elam/q)9(N;q,m)+ O(log q).
(=1
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We write ¥(N;q,m) = N/p(q) + E9(N; g, m) to see that the above is

:ZEZ;N+ mz::l Eo(N; q,m)e(am/q) + Ologq).
(m,q)=1

Here we have used the fact that c,(m) = u(q) if (m,q) = 1. If A and
B are complex numbers, then |A|? = |A + B|> + O(|AB| + | B|?). Take
A = S(a/q) and note that S(a/q) < N. Take B to be the error term
above. Hence

2

q
1S(a/q)|? = ‘Z(Z;NJF Y. Es(N;g,m)e(am/q)| +O(NlogN).
(g1
The modulus-squared on the right hand side is
q)? - ’
w(q)QNQ Ula/q) + ‘ > Ey(N;q,m)e(am/q)

(m q)1:1
Here the last term is nonnegative, so we have the stated lower bound. [J
The following simple estimate will be useful.
Lemma 20.9 For positive integers q and H,

Zq:‘ zq: T(a/q)? am/q)‘ﬁqd(Q)H

m=1 a:l
,q)=1

Proof We note that

q q H
> T(a/g)lPelam/q) = > > (H—|[h])e(a(h+m)/q)
(a?q:)l=1 (a?z)lzl h=-H
H
= > (H—|h|)cg(m+h)
h=—H
H
= > (H-|n) > du(q/d).
=-H dlq
d| (m+h)
Hence
q H
| Y ma/letem/a)| < S H-n) Y

a=1 h=—H dlq
(a,9)=1 d|(m+h)
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The sum over m of this upper bound is

H

SH-)Y, > d=qd(gH"

h=—H d‘q m=1
m=—h (mod d)

Lemma 20.10 If N*/?(log N)=4 < Q < N2, then

Z Z T(a/q)*U(a/q) < H*NT/*QY?(log N)*.
(WJ) 1

Proof From the definition of U(a/q) we see that the expression to be
bounded is exactly

q q
q
Ma) SN py(Nigm)Re S [T(a/g)e(am/).
a=1
1 (a,q)=1
By the triangle inequality, the above is

RO HITDS

q<Q m=1

H eEst |
By Lemma is is

< H?°N ;@ WEMN; q).

S a/q>|2e<am/q>\.
(a?q)1 1

By Cauchy’s inequality, this is
e )gq 1/2 1/2
HQN(Z ) (ZqEﬁ(N;qf) :
q<Q a<Q

The first sum over q is
4 1\—4
< H (1+( p1)2> = H (1— 7) < (log Q)™
p<Q P p<@Q p

:Bom-VinVar2
By the Bombieri—Vinogradov Theorem in the form of Corollary Ei)%ﬁ
the second sum above over ¢ is < N3/2Q(log N)*. These estimates give
the stated bound. O

Theorem 20.11 (Bombieri-Davenport 1966) Let E be defined as in
20.33). Then E <1/2.
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(a/q)|~2>=
Proof We take Q ~ N'/2(log N)~'°. From Lemma ﬁ”lg Wo dedtce that

q

ZZ S(a/q)T(a/q)]” > NQZWJ > IT(a/g))?

(9)

? = iz 7
+> Z T(a/q)[*U(a/q)
a<Q a=1
(a,q)=1
( (log N) Z Z T(a/q)| )
= =1

Suppose that H < log N. By Lemma @%%%lv%hat the first term on
the right, above is = N?(3 H log N + H?) + O(N?(log N)(loglog N)). By
Lemma the second term above contributes << N?log N. The fi-
nal error term above we estimate trivially: |T(«)] < H for all «, and
the double sum has < Q? summands. Thus this final error term is
< N2(log N)717. hﬁough our application of the large sieve it follows

from Lemma EI![% EESELEAQ ¢
H
1
SHN+2 > (H=h)R(N;h) > H*N+O(N(log N)(loglog N)). (20.35)

h=1

Set H ~ clog N with ¢ > 1/2. Then the sum over A must be positive,
and indeed

H
> (H = h)R(N; h) >, N(log N)?.
h=1

Thus pp41 — pn < clog N for many primes p, < N. O

S:BVAppl .
i@ﬁ:?ﬁ 1 Exercises

In Exercise 2.1.1.17, a crude version of an estimate of % (1927)
for 32, ., u(n)?/e(n) was proposed, without indicating the method of
approach. In Exercise ﬁ%ﬁ/ we sketch an elegant treatment. Let Q(z)
denote the number of squarefree integers not exceeding z; an elementary
estimate for this was established in Theorem 2.2. In §6.2 it was noted
that the analytic method used to prove the Prime Number Theorem can
also be used to show that M(z) < zexp ( — cy/logz). From this we
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argued by elementary methods that

Q) = Sz + O exp (- o/ logz).

:W2
in Exercises 6.2.1.8 and 6.2.1.19. In Exercise el(; ow we sketch a corres-

pondingly improved estimate for Ward’s important sum. Of course we
knovvS that RH implies the better estimate for Q(x) found in Exercise
, which would yield (assuming RH) a smaller error term.

1. (a) Explain why
pu(n )2 u )? fi(m)

n<y m|n

n<y
By integrating by parts, or otherwise, show that

u

n>’u

(b) Let f be the multiplicative function defined by the relations

fp) = =f(0*) = 55715, f(P*) = 0 for k > 0. Let g(n) = 1/n
for all n. Show that

u(
o =" f(m)g(n/m).

m|n

(¢) Show that

“( = > f(m)(log - +Co) + 0( 3 |f(m)|m/x)-

90 m<z m<z

n<x

(d) Show that if m is cube-free, then m is uniquely of the form m =
dyd3 where d; and dy are squarefree and (dy,ds) = 1. Show also
that

_ p(de)
dldzw(dldz)
for such d;.
(e) Show that

> fm |m<<Z“ > ”(dzifdz«x”z.

m<x d1<:r d2<(x/d1)1/2 90( 2)
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(f) Show that

()2 (dn)?
Z Fim)l < Z d1<P d1 dQLP(d2)

m>ax dyd2>

p(dr)*(z/dy) =12 L1/2
< Z d1<,0 d1 Z dlsO d1 ’

di1<z

(g) Deduce that
> Ifmliog ™ = [ 5 I 2 a2
m>x T m>y

(h) Show that

> fm) =

m=1

(m,q)=1

for all positive integers q.
(i) Deduce that

BT gt Co - if )logm + O(x~/?)
O ogx 0 (m)logm x .
n<x m=1

(j) Show that

Z f(m)logm = ZA ) S f(md
=1 d=1 m=1
(k) Show that
o0 oo _1
— 2 —

(1) Conclude that

w(n ~1/2
—logz+Co+Y ———+0 .
Z ogx 0 Xp:p(p—l) (z )

n<z

2. Let R(z) be defined by the relation Q(z) = %z + R(z). In Exercises
6.2.1.8 and 6.2.1.19 it was shown that R(z) < 2!/ exp (— cy/Iogz).
Deduce that there is a constant D such that

ZM —logx—i—D—l—O( _1/2€Xp(—0\/10g$)).

n<x
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3. (a) Show that if o > 1, then

) ! ((s)
X o~ o T i) =
say.

(b) Show that F(s) =), f(n)n™* where

1
f(n) = A(n) 1 ﬂ
(¢) Deduce that
B0 () )’
p(n) L=, d m

(d) Let
1
G(S):l;[(”(p_l)(ps_n)'

Note that this product is absolutely convergent for o > 0. Show
that G(s) = >, g(n)n™* where

(e) Show that

ZM Z f(d) Z f(m)?
d m

n<z m<z/d
(f) Deduce that the above is

Zf (—logx/d—&—D)

d<z

+o(x-1/zexp(_gmg@ 5 g@) (20.36)
_ 9(d)
+O(x 1/2 Z dl/2>
z3/4<d<z

(g) Show that 3 _ g(n) < G(e)a®. Thus >, . g(n) <. 2. (This
can also be established by appealing to Theorem 1.3.)
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(h) Let o > 0 be fixed. Show that

9(d)
Z da

d>y

<<€ yfaJre.

-ardEst1
(i) Deduce that the second error term in @% Lo x /8%,
(j) (Ward 1927) Note that F(1) = ¢(2). Conclude that

p(n)?
2 p(n)

n<z

= logx+E+O(x_1/2€Xp(— RY logx))

er:Wi
for some constant £ (which is determined in Exermsei ;

4. (a) Suppose that a is a positive integer and

1
Z |,u(t)\d(%) when p = —1 (mod a),
F(p) = dry/a ¢
0 otherwise.

Prove that there is a positive number C(a) such that for X >
Xo(a) we have

ST fp) > Cl@)X (log X).
p<X
p=—1 (mod a)

(b) (Vaughan 1970) Let E,(N) denote the number of natural num-
bers n not exceeding N such that

is insoluble in integers. Prove that there is a positive number C(a)
such that

E,(N) < Nexp (— C(a)(log N)*/?).
5. Let 7(n) denote the number of squarefree divisors of n,

() = 3 lm)
m|n

Prove that

ZT(ZH-U :JH_O(xloglogx)

= log x
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6. In this exercise, combined with the next two after it, we establish an
improved upper bound for the number of twin primes. Let f(n) and
g(n) be multiplicative functions defined as follows:

_ 1 o) = pa—l
f(n) _pl;l[n (pfl)()” g( ) pl;[n (p* 1)04'
(a) Show that nf(n) =3y, 9(d).
(b) Show that
o) s~ 1
nz<:zf( ) dz<:z d m<z/d m
2in 21d 2m

(¢) Show that

1 1

— =1 C oO(1
T;Um 2ogw+ 1+ O0(1/w)
2tm

where C7 = (Cy + log 2)/2.
(d) Show that

i g(d) 2
C

d=1

21d

. . - TwinPrimeConst
where c is defined as in .

(e) Show that

3" 5) = 5% 4 0y + O((log ) )

n<z
2tn

where

_ Co+log2 1 g(d)logd
CQ*ffizT'
d=1
21d

7. Let
wa2(n) an (1 - %)

(a) Show that

p(n)? o pn)? 1 1
DR Dy H(”p—l Fe )
2tn 2tn
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er 1

it
Let f(n) be defined as in Exercise xplain why the right hand
side above is

>3 f(n).

n<z
2n

(b) Conclude that

2
s oz )
n<z (,02(77/) ¢
ﬂh

. . - TwinPrimeConst
where c is defined as in .

8. Put P = H2<p§2 p, and let Ay be real numbers such that A; =1 and
Ag=0ford> z.

(a) Explain why the number of primes p < z for which p+ 2 is prime

7r(z)+Z( Z Ad)2.

p<z  d|(p+2)

does not exceed

(b) Show that the sum above is

= Z AgAem(z;[d, €], —2).
P
e|P

(c) Write the above as
Adfxe

li(m)zm + > MM Er(w:[d €], —2). (20.37)

d|p d|p
e|P e|P

(d) Show that if f is a multiplicative function, then f((d,e))f([d,€])

= f(d)f(e)-
1tp2
(e) Let ¢a(n) be defined as in Exerciseﬁf Shiow that if n is squarefree,
then

p(n) = pa(d).

d|n
- TPMT1
(f) Show that the first sum in dﬁis 2o5p ©2(0)y? where
Aq
Ys = Z —-
ap ¢
sld

(g) Show that if Ay =0 for d > z, then ys = 0 for § > .
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(h) Show that
Aa = p(d) ) p(6/d)ys.

S|P
d|s
(i) Show that if ys = 0 for 6 > z, then Ay =0 for d > z.

(j) Explain why > 5 p 1(6)ys = 1.
(k) Put

_ N H(6)?
S perih
316

(1) Show that
S a0 = 1+ a(0) (s — n(0)/(Lea(8))”

S|P S|P
6<z 6<z

(m) Take%% :1M(5)/(L(p2(5)) for §|P, 6 < z. Show that the first term

in is

cli(x)

< o 2 + O(z/((log z)(log 2)%)).
(n) Show that
_ mld)p(d) p(r)?
M= T 2 el
(r,2d)=1

(o) Explain why

2
@(lil) Z p(r) <I,
) 2=, o)
(r,2d)=1
and hence deduce that |A4| <1 for all d.
(p) Show that if ¢|P, then

D AdA| < 34,
d,e
[d,e]=q

- TPMT1
(q) Show that the second term in ﬁ has absolute value not ex-

ceeding

> wq)*3° D Ex(x,q).
q<2?
2fq
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(r) Show that

Z H H ( )<<(logz)

q<z 2<p<z2
21fq

. 2 3 . 1
(s) Deduce by (%Lf%t the second term in @ is

< 2% z(log x2)S.

(t) Take z = x'/*(logz)~?. Conclude that the number of primes
p < x for which p + 2 is prime does not exceed

oz (1+0(hs))

. . -TwinPrimeConst .
where c is defined as in . This bound is smaller by a factor

of 2 than the bound we obtained in §3.4.

20.4 Mean square distribution

We begin with an upper bound for the mean square error in the prime
number theorem for arithmetic progressions, which we then use to derive
an asymptotic estimate for the same quantity.

Theorem 20.12 Let A be fized. If z/(logz)? < Q < z, then

Z Z (z3q,a) — 2/p(q))* < Qxlog z. (20.38)

1
=9 s

nsiga2sichi
Proof We start by recalling the identity @%he orthogonality
property of Dirichlet characters (as in (4.12) or Exercise 4.2.2), it follows

that

q
> (W(x3q.0) —x/0(q) le (x, %)

a:l
,q)=1

If x* is the primitive character that indtg}:gﬁ X, then ¢’ (z, x) differs ]ittlei

from ¢'(x, x*), was we see from . Hence the left hand of
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is

<<Z

q<Q

Z (19 (2, x*)[? + (log gz)*)

< Z* V@R (X o) + QUoz @)’

d<Q@Q x(modd) q<Q
dlq

. suml/phi
From the estimate @mﬁhm it suffices to show that
log
Z Z [v/(z,x)|* < Qzlog . (20.39)

9<Q wla
By the Siegel-Walfisz theorem (Corollary 11.18) we know that
V' (z,x) < zexp (— cy/ logz)

. The contribution of such ¢ is therefore

‘6

/N

for ¢ < (log x)A+2

< 2% (log x)**3 exp (—cy/logz) < 2*(log ) < Qu.

Consider now a range @1 < ¢ < 2Q; with 1 < @1 < Q. Then ¢'(z, x)
= 1(x, x), and the contribution is

log 29

Q1 q * 2
< ==t 3 S ()
Qr Lo, PlO) 5
By the large sieve (Theorem @F‘chis is
2+ @) S AM)? < (12Q +2Q1)(log ) log =2
o Z o

We cover the interval (lo 3@)“2“2 < ¢ < Q with ranges of the above sort,
b e

and sum, to obtain (%&Fhus the proof is complete. O]

For many applications the estimate of Theorem 20.11 is sufficient, but

it is interesting to note that with a little more work we can obtain not

just an upper bound but an asymptotic estimate. To prepare for the
main argument we first establish a lemma.

Lemma 20.13 There exist absolute constants a and b such that
3 (1-n/y)*  ¢(2)¢(3)
00

o) o) svte

4 o8Y logy 42 b +0. ( 73/2+€)
Y Y

n<y
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fory>1.

Proof By manipulating Euler products we see that

,; EOTERA 1;[ (+ =)

= s+ 1)+ 2 [T (1+ LI ! )

p—1)p*t2  (p— 1)p2s+3
p

= (s +1)C(s +2)F(s),

. h'
say. By taking k£ = 2 in (5.19), we see that in @z%g_lléft hand side is

9 oo+1i00 s

=5 o C(s+1)((s+2)F(s)md8

where o9 > 0. The Euler product F(s) is absolutely convergent for
o > —3/2, and is uniformly bounded for ¢ > —3/2 + . We let o1 be
slightly larger than —3/2, and apply Cauchy’s theorem with a path from
oo — 1T to og + T to o1 + 4T to o1 — T to o9 —iT. By Corollaries 1.17
and 10.5 we see that ((s + 1)¢(s + 2) < 73/ on this contour. Thus
the integral from oy + iT to o1 — T is < y?!. Within the contour the
integrand has double poles at s = 0 and at s = —1. The residue at
s=0is

! !

(D60(Co+ S+ G0 -3

This gives the first two main terms, since G(0) = ¢((3)/{(6). At s = —1,
the residue is

! !
_ (¢ &
20(0)G(0)y™ (F(0) +Co + G (~1) + logy).
We recall (10.11), which asserts that ¢(0) = —1/2. Since G(—1) =1, we
have the remaining main terms. O

Theorem 20.14 Let A > 0 be fired. If z/(logz)* < Q < z, then

S @Wwsg,a) — z/9(q)* = Qulog Q + O(Qx). (20.41)

9<Q (a'f,f)lzl

2 _A-1 + SqrDistPrimes
Proof Let Q1 = z*(logx) . By Theorem e contribution of

¢ < Q1 to the above is < z2(logz)~* < Qz. Thus we may restrict our
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attention to the range Q1 < ¢ < @. The inner sum on the left hand
side is

C S wmaa—2-C ST wlega) 4 e —
= > W(zig,0) 2270 > (g, o (04

Here the second sum is

= X A = wle) = 3 [ s

n<w plg
(n,q)=1

=2+ O((loggz)?) + O(zexp ( — c\/@)).
The first sum in @zﬁ&n

> A(m)A(n).

m=n (q)
(mn,q)=1

If the condition (mn,q) = 1 is omitted, then the value of the above is
changed by not more than

Z{logxr(logp)Q < (logqx)®.

In Exercise 2.1.1.16(c) it was established that

1 ¢(2)¢B) log p log
;@: R0) (log“CO_zp:psz)*O( )

Hence

i_w o Q log Q1
ng:scz‘p@_ ¢(6) ng1+O< Q1 )

Thus we deduce that

o> Wlwig.a) —x/e(q)?

Q1<q<Q (a:lqz)lzl

= > > Am)An) - CRXEB) 12100 @ 4 o(Qu),

Q1<¢<Q m,ngx) ¢(6) Q1
m=n (q

The terms with m = n contribute an amount

(Q—Q1+0(1)) Y A(n)* = Qzloga + O(Qx).

n<x
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Hence to obtain the stated result it suffices to show that

Yo D Am)Am)

Q1<g<Q m<n<z

_ ¢(2)<B3) Q 1 z
= " 506) 22 log o QleogQ + O(Qx).

To this end we show that

>> T Am)An)

y<g<x m<n<zx

m=n (q) (20.44) |E:LambdaDoublSum
C2)CB) 2 T a5 1 z
= z7log — + -z + -zylog — + O(ay
2¢(6) y 22 y o

_A_1 . . : ro/phi
for z(log x) < y < x, where a is the constant in Lemma 1S
suﬂicesi_r‘fi(%r an taking ¥y = @1 and y = @, and differencing, we obtain

) : daDoublSum
The left hand side of 1'5”%%; 1S
> > A(m)A(m + kq)

y<q<z 0<k<z/q 0<m<xz—kq

= > > > A(m)A(m + kq)

0<k<z/y y<q<z/k 0<m<z—kq

= ¥ > A(m) > A(m+kq)
0<k<z/y 0<m<z—ky y<q<(z—m)/k
= > > Am@(wskm) = d(m+ kyikm)).

0<k<z/y 0<m<z—ky

If m is a prime-power and (m, k) > 1, then m = p", say, where p|k,
and the prime-powers congruent to m modulo k£ are powers of the same
prime p. Thus the pairs m, k for which (m,k) > 1 contribute to the
above an amount

< Z Z[bﬂ} (10gp)2 < Z (logkx)?’ < (10gx)A+4.

Koty pn 08P k<z/y

On the other hand, by the Siegel-Walfisz theorem (Corollary 11.19), the
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pairs k, m for which (k,m) = 1 contribute the amount

Y o X Ame-m—ty)

0<k<z/y 0<m<z—ky
(m,k)=1

+O( Z Z A(m)xeXp(—c\/@)).

0<k<z/y m<z—ky

The error term here is < (log z)4* 122 exp (— ¢y/Togz) < 2?(log ) =4,
so can be ignored. In the main term, if the condition that (m,k) =1 is
dropped, then the expression is altered my an amount that is

1
<Lz Z Z [%} logp < z(logz)® < 2?(logz) ™.
0<k<z/y plk
By the Prime Number Theorem we know that
1

Z A(m)(z —m) = 522 +O(2%exp (— c¢y/log2)).

m<z
On taking z = z — ky, we see that the remaining main term is

1 (z — ky)* 2 1
3 Z W-ﬁ-O(w exp(—c\/logac) Z —)>

0<k<z/y 0<k<z/y (p(k

H ro/phi
By Lemma @Fﬂﬁ%ls

= C(22£(C(3()i’>) z? logg + %xz + %

' daDoublSum .
Thus we have @,Tncﬁ‘h? proof is complete. O

x
zy log m + O(zy).

S:MeanSqrDist .
i@ii:Z[ 1 Exercises

1. Suppose that ¢ > x. Explain why

q

> (Ywew - o) <

a=1
(a,q)=1

2

+> A(n)?

vla) =

22
< —logq+ xlogr < xlogx.
q
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2. (a) The object of Exercise 4.2.1.2 was to show that

> Z %x(n)f =0(0) > ley?
X n=1

X

where the ¢,, are arbitrary and x runs over all Dirichlet characters
modulo ¢ in the sum on the left. By a suitable application of this,
or otherwise, show that

> (san - ) = LY e

pla)/  ela)
(a’q—): X#Xq
+ (7/1(557 Xo) - 1’)2 )
(q)
20.5 Notes
S:NotesPrimesAP3 | . i (x,chi)
Section e a,T') denote the number of zeros of the Riemann

zeta-function in the rectangle a < o < 1,0 < t < T. An estimate for
N(a,T) is known as a zero-density theorem, although the estimate is
not actually a density. To the extent that it can be shown that the zeta
function does not have many zeros with large real part, various con-
sequences can be derived concerning the distribution of prime numbers.
For a Dirichlet character x, let N(a,T;x) denot% ];cﬁl;ien number of zeros
of L(s,x) in the rectangle o < o < 1, |t| < T. [Bombieri (1965]) used
his form of the large sieve to derive upper bounds for quantities roughly
of the form Y- 5 >7 N(a, T, ). The bounds obtained were then used
to estimate sums of |¢(z, x)|, and those bounds were in turn used to
derive the Bombieri—Vinogradov theorem Bomblerl s derivation of zero-
density estimates involved much work; TG_HELgher (1968) was the first
to obtain corresponding bounds for sums of |¢(x, x)| without consider-
ing zero densities, although his arguments still involved inverse Mellin
transforms and contour integrals. [Vaughan (1975) simplified Gallagher’s

ROotro

arguments somewhat, but it was in W&@HETHTTQW 1980) that he in-
troduced his decomposition ocmm( ), which allows us to derive
estimates for sums of |¢(z, x)| from the large sieve in an entirely ele-
mentary way.

Section @%’%ﬁyi’s approach to the large sieve was somewhat im-
paired because he employed vectors that were not sufficiently close to

being orthogonal. R_fh (1965) started his arguments using trigonometric
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polynomials, Where it is much easier to construct vectors that are close
to orthogonal b)) refined Roth’s work, while the work of A.
L |W3TogradOV| (]1965[) was entlrely independent, did not involve the large
sieve, was much more complicated, and led to slightly weaker estimates.

In some situations we do not need an estimate for each individual
E(x;q,a); rather a bound for a sum of such quantities suffices. Following
Wang, Yuan (1962), we say that the primes are distributed with level «
if

max |E(z;q,a)| = O(z(logz)™*) (20.45)

q<$a_€( a,q)=1

for arbitrarily large fixed A > 0. %argan (1963)) and %an { 15%“3?, 1964)

claimed proofs that o = 3/8 could be achleved but before their com-
plicated work could be evaluated, achieved o = 1/2,
which is exactly what follox}zlvs from GRH

The assertion with a = 1 is the Elliott—Halberstam Hypothesis
(Conjecture

The question arises as to the extent to which one can increase the
range for ¢ in the Bombieri-Vinogradov theorem when one relaxes con-
ditions such as taking the maximum over a or the absolute value of

(x5 q,a) —

ela)’

[FTR0

[n_this context there is a series of papers, [Fouvry & Iwaniec| (1980),

DT O

F
!
[Friedlander & Iwaniec| (1987), Bombieri, Friedlander & Iwaniec| (1989),
!

IADT O

(2021)) in which the main innovation is the introduction of estimates
for incomplete Kloosterman sums. In the last of these papers it is shown
inter alia that

> ( > A Z A(n ><<C,Az(1ogx)f‘

<@ n<z n<z
(g,a1a2)=1 a2n=a; mod q (n qd)=1
q=cp mod ¢ n=do mod d

E:Levelalpha

Fouvry & Iwaniec| (1983), |B—bler Friedlander & Iwaniec| (1986), Bombieri,

Bombieri, Friedlander & Iwaniec|(2019), and more recently [Assing, Blomér,

0.0

provided that Q < z'/219 for some small positive § and ¢, d, cody, a1, as
satisfy various conditions, including

0< |a1‘ < 1’1+5,0 < |a2| < xé,C,d < (logx)cv (d07d) = (0070) =1L

In a different direction as a significant part of his work on bounded
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gaps between prime 2014 showed that, for Q < /219

S Y| Y sk 3 aw| < o2
q<a(Q,R) cec(q) ' xz<n<2zx z<n<2w
n=c mod q (n,q)=1

where 4(Q, R) is the set of R-factorable numbers ¢ not exceeding @,
i.e. the ¢ with no prime factor exceeding R, and where C(q) is a set of
solutions of a s ei;ial polynomial congruence modulo g

Section @%’fet E be defined as in (20.33]). rmo_s| (1940) gave the
first unconditional proof that E < 1. Let w(x,k) denote the num-
ber of primes p < z such that p + k£ is prime. Erdos showed that if

7(z,k) < (c+ €)&a(k)x/(logz)? for all k and all large x, then E <
1—1/ (2(:) For a detailed derivation of this result, see Exercise 3.4.1.3.
“ obeerved that Selberg’s method gives ¢ = 8, and hence
that E < 15/16 m (1965) bhOWGd that one can take ¢ = 4,
which gives E < 7/8. m refined the Hardnylttlewood
argument to obtain E < 3/5 on GRH and | m ) showed
that E < (42/43)(3/5) = 0.5860... on GRH by combining h1s method
with that of Erdés. It might seem strange that these authors obtained
weaker results from GRH than what Bombieri & Davenport| (1966)

achieved unconditionally. The ;%Rlanatlon is that in the last line of

the proof of our Lemma i@li%]; we discarded a nonnegative quantity. It
seems that Hardy, Littlewood, and Rankin estimated the size of that

term, without recognizing that this is unnecessary. %omgieri & Daven-
(1966f) combined their results with Erdds’s method to show that
/3 4/ 8 =0 0. 466506 . To see how this is done, see Exercises

2111 BN ore reﬁned kernels T'(«) were introduced by [Pil'tai
‘ 1977) to obtain small further improvements,

E<04571..., E<04463..., FE <0.4425...

respectively. contributed a larger improvement by adapting
his matrix method (see Volume 3) to the situation so as to take advantage
of oscillations in the primes over short intervals. This led to the known
bound being reduced by a factor of e=¢° where Cj is Euler’s constant
and gives F < 0.2484 . ... This work was completely overtaken by that

- ;Twenty?2
described in Chapter
Section |20. arban! (1963|) showed that

> Z U(w;q,0) — 2/¢(q))? < 2*(logz)~*

=9 ot
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provided that @ < z(/logz)~2 where B = B(A). | -
(1966)) showed that one may take B = A 5 hn

(1967)) showed that one may take B = A+ 1 and

1971) showed that if z(log r)”4 <Q <z, then the above is = Qx log x +
0(Qxlog(2z/Q)). (see also ), then intro-
duced his inversion method and established that for @ in this same
interval the above is = Qzlog Q — cQz + O(Q5/4x3/4) where ¢ = Cy +
log(2m) + 3, p};g_pl). Hooley then followed this over a period of forty
years with a long sequence of papers with the Saﬂ{{lgs}%ﬂe investigating
various aspects al‘%ﬂglp generalisations of this result. [Harper & Soundara-|
rajan| (2017) and Breteche & Fiorillil (2023)) have given lower bounds for
the expession displayed above, when z'/? < Q < .

H
00 eyﬁ%m 2002) conjectured that

q

(T, Xy)\2
> (w(x;%a)—TqX;’) ~ zlogq

a=1
(a,q)=1

for ¢ in some range (depeding on x). Hooley’s Conjecture is not known

to hold in any range, but (2015) has conjectured that it holds for
(loglog x)'*+° < ¢ < = for any fixed § > 0. [Fiorilli & Martin| (2023) have

shown that the expression above can be much larger than zloggq when

q < loglog x.

More is known on, &cl)lpe Generalised Riemann Hypothesis. h est that
is known is due to [Goldston & Vaughan| (1996). That and
are based on applications of the Hardy-Littlewood methods which
whilst more complicated than the Hooley inversion method sometimes

ives more insight and suggests possible improvements. See for example
%aughan

(2001), %aughan (20034), [Vaughan! (2003b) and the corres-

ponding question concring the distribution of squarefree numbers in

arithmetic r}ggressmn (2005)) and more general sequences

(1998a)), [Vaughan| (1998b). This is a very active area with many associ-
ated aspects. See the survey article of (2024)), and references
therein.
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21.1 Refresher on sieves

In this chapter we return to the topic of Chapter 3, (small) sieves, which
we now treat, at least initially, in some generality. However our object is
to give nothing much more than an introduction and some applications
to what has become a vast and complex subject. Readers who wish to
see the many aspects of the subject in‘%rTl%"e detail are advised to consult
the standard reference on the subject [Friedlander & Iwaniec| (2010). Let
A = {an} be a sequence of nonnegative real numbers such that

A=Y "a, < oo (21.1)
nez
Usually this sequence has compact support, and most commonly, a,, = 0
or 1.
Let P be a set of primes, the sifting range, and define

P(z) =] » (21.2)
bes

Then we are concerned with estimates for the quantity

S(a,P,2)= > an).
ne”Z
(n,P(2))=1

Here z is often called the sifting level of the sifted set.

We find it useful to develop sieves with rather general weights. This
facilitates applications. For example, suppose that F(x) is a integral
form of degree k in s variables and we are interested in the number of
integer points @ in a box such that N — F(x) is prime, where N is a
large positive integer.

241
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As we saw in §3.1 in the special case of sifting an interval, it is natural
to suppose that we have some information concerning

Ay = {am(n) :n €7}
where we define
am(n) = a(mn).

This is usually in the form of an approximation for
m) = Z am(n)
nez

when m is squarefree and has all its prime factors in P, of the kind

A(m) = Xp(m) + r(m) (21.3)

where X is a large parameter and p is a nonnegative multiplicative func-
tion. Hopefully r(m) is relatively small compared with X p(m), at least
on average over some range of m. Often the r(m) are not explicitly
known, but we assume that there is a nonnegative function R(m) avail-
able such that |r(m)| < R(m).

Since

A= A1) = X + (1),

it is normal to expect that X is a good approximation to A. Hence if
a(n) is the characteristic function of the integers in an interval, then one
would take X to be the length of the interval, and holds with
p(m)=1/m and R(m) =1

If we are interested in the twin prime conjecture, then we might take
a(n) to be the number of solutions of 7(r 4+ 2) = n in integers r with
1 <r <X, and then holds with mp(m) the number of solutions
of z(x +2) =0 (mod m) and with |R(m)| < mp(m). Alternatively, we
might take a(n) to be the characteristic function of numbers of the form
p+ 2 with p < z. Then

A(m) = m(asm, —2),
we take P to be the set of primes p > 2, and

1
o(m)’

A familiar way of writing the condition (n, P(z)) = 1 is to observe

X =), plm)=
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that
_J1 (g=1),
%;'u(m) B {O > 1).

However, as we saw in §3.1, the number of m with m|P(z) grows too
rapidly for us to make good use of this identity. Thus we seek functions
AT (m) that are one-sided approximations to u(m) in the sense that

D AT(m) <) u(m) <A (m)

mlq m|q m|q

for all ¢, where the support of the AT is controlled. Then

X 3 A mptm)+ 3 A (m)r(m) < S(2,%,2)

m|P(z) m|P(z)
<X Y Nmpm)+ Y X(m)r(m), (214
m|P(z) m|P(z)

which gives

X 3 A (mp(m) — 3 A (m)|R(m) < (2,7, 2)

m|P(z) m|P(z)
<X Y A(m)p(m)+ Y [AT(m)|R(m). (21.5)
m|P(z) m|P(z)

Suppose that, among all possible upper bound sifting functions A+, we
take the one that minimizes the right hand member above. By appeal-
ing to the fundamental duality theorem of linear programming, it can
be shown that there exists a sequence of nonnegative a(n) satisfying
|A(m) — Xp(m)| < R(m) for all m, and which has the property that
S(4,P, z) is equal to the upper bound above. Similarly, if A~ is chosen
to maximize the lower bound on the left above, then there is a choice of
the a(n) for which S(4, P, z)_is equal to the lower bound above. Details
of this will be discussed in @The beautiful thing about this is that
when an optimal AT can be found, and the worst case a(n) is also con-
structed, then each one proves that the other is optimal. Unfortunately,
we pre'sentElgf know of such optimal pairs in only a few isolated situations.
See

As described in §3.1, Brun’s initial choice corresponds to taking for a
suitable positive integer r

D™ ={n:whn)<2r—1}, D" ={n:wh)<2rk (21.6)



244 Sieves I

thus u(m)A*(m) is the characteristic function of DF.

We say that a set D of positive integers is divisor closed if for each
n € D all positive divisors of n are also members of D. We now set
D = {d|P(z) : d < z}. In §3.2 we saw that the Selberg lambda-squared
sieve gives a superior choice of AT. To construct the Selberg upper bound
sifting function we take A(n) to be real-valued, supported on D, with
A(1) = 1. Thus

(Cr0) =3 3 M)

llq ml|g 11,12
[l1,l2]=m

If \(I1) # 0 and \(I2) # 0, then I; < z, I < 2, and hence m < [;ly < 22.
This gives an upper bound sifting function

> AA)

1,12
[t1,l2]=m

supported on the interval [1,2z%].

Thus
S(A,T,z)ﬁZZ)\ Za
fXZZA m)p([l,m]) +

where
r= > AOAm)r([l,m]).
I m
The interesting part is the main term X F where

F= ; > Ad)A(e)p([d, €)).-

We want to minimise this subject to the condition A(1) =1, and in the
special case p(n) = 1/n this we already did in §3.2. The general case
involves no new idea.

It is helpful to view F' as a quadratic form in the A. Our first objective
is to diagonalise F', and this can be done quite easily. Recall that we are
assuming that p(d) > 0 for all d € D. Write (d,e) =m, d = gm, e = rm,
so that (g,7) = 1. Since p is multiplicative and grm is squarefree we
have p([d, e]) = p(qrm) = p(qgm)p (rm)/ p(m) and

F=Y pm™") Z m)p(gm)p(rm).

1 (qu)=1
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Now we use the Mébius function to remove the condition (¢,r) = 1.

Thus
F =3 plm) ™ 3 ) (X Atm)p(dim))
m l d

Next we collect the terms with Im = n and observe that by multiplic-
ativity that

S o)) = [T A2

o o p(p)

Im=n

Denote this expression by g(n)~!. Then we have

F=> gn™" ( > A(dn)p(dn))2
n d

where
(p)
g(n) = I1 1f§(p)’ (21.7)
Let
v(n) = Adn)p(dn) (n€ D).
d
We have

F = Zg(n)_lu(n)Q,
v(n) = Z A(dn)p(dn) (n € D).
d

There is a bijection between the A and the v. We can view the transform-
ation from the one to the other as being by an upper triangular matrix,
which is obviously invertible. There is a standard number theoretic way
of expressing the inversion. Consider

S uy(nm) = 3757 Adn)p(dnm)u(n).
n n d

Collecting the terms with nd = ¢ this becomes, for m € D,

> Mgm)p(gm) Y p(n) = Mm)p(m).

nlg

Hence
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Thus we are seeking to minimise

F = 29(71)711/(71)2 under the condition Zy(n)u(n) = A1) =1
Let 0 =1/3 .5 g(n). Then

v(n) — 0u(n)g(n))?
F== Z (v(n) 551() Jg(n)) +292V(n)u(n)—0229(n)

-y (v(n) — Opu(n)g(n))”

9(n) +0.

neD

Obviously F' > # and the choice

gives

Zu(n)u(n) =1and F =90.

n

We have just shown that the minimum of F' is # and the minimum is
attained when

We can now invert the transform to recover the minimising A(m). Recall
that

Am)p(m) = v(nm)u(n) (m € D).

n

Thus the minimising A(m) are given by
Am) =~ 3 glmm)yutmn) ()
m)=——>Y g(mn)u(mn)u(n
p(m) < HATIHR

= ou(m) 4 > oo
nmeD

We need to determine the A(m) because they occur in the remainder
term. Write

ggmi -TI 1 [Ta+9k)=>"g@.

P plm 1= p(p) plm dlm
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Thus
m)| <6> gd) D g(n)
djm ndeDd
(n,m/d)=1
*92 Z
( )d
SO
A(m)| < 1.

. ) . P .
Theorem 21.1 (Selberg 1947) Suppose that d%ﬁﬁ%nd 15 XiB

hold, and p is multiplicative and satisfies 0 < p(p) < 1. Let D be a
divisor closed subset of the divisors of P(z). Then

S(A.9.2) < = Dg( +ZZA m])

leD meD

where g(n) =[], % Moreover
Al <1

This bound is reminiscent of the arithmetical form of the large sieve,
Theorem but that, of course, is just an interval sieve.

Our main interest at this stage is to develop lower bound sieves, hope-
fully in tandem with upper sieve bounds. For this purpose we introduce
several new parameters. Let

V(z) =1 = p))
o=

Then it is natural to suppose that XV (z) ought to give us the size of
S(4,P,z). It is normal at this point in the discussion of “small” sieves
to hypothesise that

> p(p)logp = rlogz +O(1)

p<z

where xk > 0 is a constant, and this important number is usually referred
to as the sieve dimension. By partial summation it follows that

Zp(p) =kloglogz + c+ O((log Z)_l)

p<z
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where ¢ is a constant. Then by Mertens’ approximation, Theorem 2.7
(e), we deduce that

V() = e=Co"&(log z)*ﬁ(1 +0((log z)*l))
where
1L — p(p)
C=||—F
1;[ (1-1/p)~
For much of modern (small) sieve theory the weaker assumption that

> pp)logp < Klog(z/w) +

log w
w<p<z &

suffices.
At this point it is convenient to introduce an identity that generalises
one used in the proof of Theorem 7.11.

Lemma 21.2 (Buchstab’s identity 1938) Suppose that 2 < w < z.
Then

S(a,P,w) =S(A,P,2)+ > S(a,,P,p)

w<p<z
Proof The identity is immediate on observing that the difference
S(a,P,w)—S(4,P,z)

is a sum over integers with at least one prime factor p with w < p < z
and no prime factor p’ < w. Hence the identity follows by sorting these
terms according to their least prime factor. O

This identity has been very suggestive of a possible way to improve
sieve estimates. Consider the special case w = 1, which asserts that

A=>"8(a,,P,p) =5(a,2,2).

p<z

If we have an upper bound sieve estimate, we could insert it in the
sum on the left and obtain a lower bound for S(4, P, z). We could then
use this lower bound in the sum on the left and obtain a new upper
bound for S(4,P, z). It was found that if one used initially a version of
Brun’s sieve then the new upper bound was stronger. This suggested an
iterative procedure. Examination of the limit of the process suggested a
more direct route, which was first discovered by Rosser in the 1950s and
then rediscovered by Iwaniec.



21.1 Refresher on sieves 249
Suppose that we can control suitably the behaviour of
r(m)

when m <y (the level of distribution of 4). We might hope that in some
generality there are smooth “fudge factors” fi(s) with s = }EEZ which
satisfy

XV(2)f-(s)(1+0(1)) <5(a,P,2) < XV(2)f+(s)(1 +0(1)) (21.8)

We note that the Buchstab identity has enabled us to guess that

X ~ X —Cok 1 -k _ 2=
V(2) e S(log 2) S Tog X)*

ought to be about the right size for the sifted set, at least when y = X.
Thus we might imagine that, for suitable f,

Xe~Cor <log X )*N
log 2z

XeCor .
GWS f—(s)(lJFO(l))
<SA,P,2) <
XeCor .
GWS f+(8)(1+0(1))

are the limits of the Buchstab identity iteration. It is also reasonable to
suppose that the sum over p can be replaced by an integral and retain

asymptotic equality. Finally put s = 11(;gg )Z( and t = 112§ flf , divide by

Xe—C()H

(log X )~

and let X, w, z go to infinity together so that the error terms tend to 0.
We may need to suppose that 8 < s < t where 3 is a positive constant.
Then we find that the fi satisfy

t
L) - felo) = [ el Dde, (219)
and hence that

(" fe()) = mt* f(t —1). (21.10)

We also know from the Brun sieve that if s is large, then fi(s) should
be asymptotically 1.

The analysis of the iterations can be quite complicated and instead
we follow the Rosser—Iwaniec approach. To set this up, write

A(m) = p(m)o(m)
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where we suppose that
om)=0o0r1l, o(1)=1,

and define the least prime factor {(m) of m, so that

I(1)=1, I(m)=min{p:pm} (m>1), (21.11)
and then define
T(m) = a(m/l(m)) — a(m).

Theorem 21.3 Suppose that z > 1. Then
S(a,P,z) = Z p(m)o(m)A(m) + Z w(m)7(m)S (A, P,1(m))

m|P(z) m|P(z)

Proof 1In the right hand side we substitute the definitions of A(m) and
S(Am,P,1(m)). On interchanging the summation we find that

San( X ametm s ¥ utmyrom)).

n m|(n,P(z)) m|(n,P(z))
(n.P((m)))=1

When (n, P(z)) = 1 the sums reduce to o(1) = 1. It remains to consider
those n of the form

n = n/plfl .. .pﬁr
with (n’, P(z)) =1and z > p; > --- > p,. Then the second inner sum
is

> p(m) (o (m/l(m)) — o(m)).

1<mlpy---pr
(p1--pr P(U(m))) =1

The only m which satisfy these summation conditions and give a non-
zero contribution have I(m) = p, and m = jp, with j|p; ---pr—1. Thus
the above sum is

> ulipn) (o) = olipy) =

j|P1"'Pr—1

= Y (u)e() + pGpotp) == > u(m)a(m)

ilprpr b

and this cancels out the terms in the first sum. O
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Suppose that o& can be chosen so that

Fum)rm) 20 (m|P(2) (2112

Then

S pm)o (m)A(m) < S(A,2,2) < 3 plm)o (m)A(m)

m|P(z) m|P(z)
and so

XS~ 417 < 5(2,P,2) < XST 40t (21.13)
where

S =3 ulm)r*(myp(m) (21.14)

m|P(z)

and

rf = 3" p(m)ot(m)r(m). (21.15)

m|P(z)

We can also use the theorem to compute a suitable approximation to
the main term. Suppose that

0<p(p) <1 (plP(2)).

Note that if p(p) = 1 for some p, then almost nothing will survive the
sieving process and that would not be very interesting. Now define a to
be the multiplicative function with

a(p®) = p(p)F (peP,p<zandkeN),
0 (p¢Porp>z and k €N)).

Then

A=T[@-p@) " =V,

p<z

and for m|P(2)



252 Sieves I

Moreover

(kP (U =1
= p(m)v(vlg))-
Also S(a,P,z) = a(1) = 1. Thus by Theorem P13
Viz)= Y ulm)at(m)p(m)+ > plm)r™(m)p(m)V (I(m)).

m|P(z) m|P(z)

Thus, by @fgnd @, we have

Theorem 21.4 Suppose that for every prime p € P g)nith p < z we
have 0 < p(p) < p and for every m|P(z) we have . Then

XS~ +r  <SA,P,2) < XSt 4T
where

SE=V(z) = > pm)r(m)p(m)V (i(m)),

m|P(z)
R* = Y p(m)o*(m)R(m),
m|P(z)
of(m)=0or1, o5(1) =1,
Fu(m)(o* (m/l(m)) — 0¥ (m)) >0,

=A(m)
and @ﬁhold&

S:RefSi

1 Exercises[X:Refsi |
1. Suppose that h is an even positive integer and

R(x;h) = card{p; < x,ps <z :p; —ps=h}.

Let g be the multiplicative function with g(2) = 0, g(p) = —15 when

=5
p > 2 and g(p¥) = 0 for all k > 2 and define

L= Z g(n).

n<D
(n,2h)=1
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Further, let f(q) denote the number of pairs I, m of positive squarefree
integers I < D, m < D such that [I,m] = q.

(a) Prove that

li(x)

R(z;h) <li(x)L™'+D+ Y f(q)
()=
q,h)=1

(b) Prove that if n is squarefree, then

and

(c) Prove that (c.f. the argument after (3.18)) that if Y > 1, then

pl)? o~ pm)?

> >logV
I<Y #(0) m<y p(m)
(z k)=1 B
(d) Prove that
g(m)p(2hm) D
L> log —
mg;j 2hm<p " 2hme(m) & m
(m,2h)=1
©(2h) 1
= (log D) ———= 1+ —— 1).
(log D) 2h H( +p(p72))+0()

pi2h

2. Prove that uniformly in x and h

Riaih) < o0 (14 0 MEEL))

where

c(h) is the comstant ncl)efcgé)slgcollary 3.14, and c¢ is the constant of Theorem
3.10 and cf. Exercise 19.2.8 with k = 2).
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3. Suppose that J < H < log N. By combining @%nd the previous

question show that

J H
1
SHNlogN +2 ;(H — h)R(N,h) + 8 h—Zm(H —h)&(h)N

> H’N + O(HN(loglog N)?).

(a) Deduce that

J
%HN log N +2> (H — h)R(N,h) +4(H — .J)’N

h=1
> H’N + O(HN(loglog N)?).
(b) Let
2 2
J:( Jr\/nges)logN, H:Mng.
8 12
Prove that if IV is large, then
J
> (H —h)R(N,h) >0
h=1
(¢) Prove that
lim inf PP 2FV3 G eeso6.
n—oo  logp, 8

4. Let = be a large real number and define

R(n) = Z Z log p1,

3<p1<z  p22>3
p1+p2=n

and f,(q) to be the multiplicative function with f,(p*) = 1/(p — 2)
when kK = 1, p{ n and p is odd, and f,(p) = 0 otherwise. Let y =
z(logz)~ P for a suitable constant B and write

=% f).
q<yt/?
(a) Prove that
Z R(n)L(n) < Z 19(3:)+O(x2(logx)ﬂ4).

r<n<2x z<n<l2z
R(n)>0
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(b) Prove that

L(n) > (11 i:?) 3 1(q)?

oy ¢1(q)
p>2 2tq

where

pi(@) =[[(r—2).

plq
(¢) Prove that
card{n € (z,2z] : R(n) > 0}

< logy [** min(u,2z — u)
T 49(x) S, log u

du+ O(z(logz)™1).

(d) Let N(z) denote the number of even numbers n < z such that n
is the sum of two odd primes. Deduce that
N(z) _ 1

lim inf > —.
rT—0o0 X 4

. Suppose that s > 3 and k£ > 2, and let N(Y) denote the number
of ordered s-tuples of integers y € [1,Y]* such that yf + --- + ¢y* is
prime. Prove that

YS
logY

NY) <

. Suppose that for a constant C' > 1 we have 0 < p(p) < C'/p and that
for m|P(z) we have |R(m)| < mp(m). Let k € N

(a) Prove that

> u(m)R(m)| < C*2*,
m|P(z)
w(m)<k
and that
V<1<m>>‘
> p(m)
m|P(z) V(Z)
w(m)=k+1
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(b) Suppose further that there are constants x > 0 and C; > 0 such
that for z > 3 we have

Zp(p) < kloglog z + C1.

p<z
Prove that
V(i(m)) 1 k+1 p
;() p(m) V) < Gt 1) (kloglog z+C4)" " (log 2)".
w(m)=k+1
(c) By taking g* 771}3 to be the characteristic function of the sets D*
given by , or otherwise, prove that

XV(z)—E@2r—1)<54,P,2) < XV(z)+ E(2r)
where

B(k) < é Z(f;! (kloglog = + C1)**!(log 2)" + (C2)".

(d) Show that there is a positive constant Co such that if

log X
<z <onp (G2,
=Z>exp 2loglogX

then

S(a,P,2) = XV(2)(1+O0(log™ " 2)) + O(X*7%).

21.2 The Rosser—Iwaniec sieve

We are ultimately concerned with the 1-dimensional sieve, but initially
there is no need to distinguish any one particular value of k. We will
find that there is a point at which there is a tricky convergence problem.
For simplicity we will give a treatment of this only when x = 1. In
principle the method can be adapted for all k, and gives the best results
that are known when 0 < x < 1. In particular it can be shown to be
optimal when x = % and 1. We would add that we are not aware of
any interesting applications of dimension x > 1 which cannot be treated
more effectively by other methods.

In addition to the role played by z, we introduce two further paramet-
ers

B>1 (21.16)
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and y > 2, which will give us some finer control of the lower bound and
the error term. The quality of the final results will depend on 3, and we
will see that there is a choice for each x which maximises the range on
which one can obtain a positive lower bound.

Let

ot my = ] 0 when p(m) = F1 and (m) > (y/m)"/",
1 otherwise

-leastpdi
where [(m) is given by @7%61 consider & to be fixed. In the notation
introduced in the previous section, let o+ (1) = 1 and when m = p; - - - py,
with p1 > pa > -+ > pyi let

k
H ),
F(m) = o (m/l(m)) — o™ (m) = o= (m/l(m)) (1 — v*(m)).
Clearly
of(m)=0or1, 75(m)=0or1

and it is readily checked that o*(m) = 0 when m > y. Moreover if
7%(m) = 1, then v*(m) = 0 and so u(m) = F1. Hence

+p(m)7=(m) > 0 for all m|P(z). (21.17)

Thus the hypothesis of Theorem @@%aﬁsﬁed.

There is an extremely useful way of describing the sets of m for which
7E(m) = 1. Let Dy (y, z) denote the set of divisors m of P(z) of the
form m = py---pg with p1 > pa > -+ > pi, 1+ Pr— 11954r >y, and
p1-~-pk_2j_1p§ff§j < y whenever 1 < j < k:/2. When k£ > 3 and k is
odd the case j = 1 is interpreted as plﬁ RPS y. Then define

Sk(y,z) = Z p(m)V (I(m)). (21.18)

meDy (y,2)

Note that Sk(y,z) = 0 when k > 3 and 2B+k=2 > Y, so the series below
are in fact finite.

Theorem 21.5 Let Si(y, 2) be as in . Then we have

XS (y,2)+ R~ < S(A,P,2) < XSt(y,z) + RT
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where

STy, 2) =V (2)+ D Sar1(y, 2),

Si(yvz) = V(Z) - ZSQr(y,Z),
r=1

and R* satisfies dﬁb and so
IRY|<R*= Y |R(m)|. (21.19)

m<y
m|P(z)
At this point we can see already that y can be used as a means of
controlling the size of R*. The initial problem is the convergence of the
infinite series when we replace the terms by smooth approximations.

Proof The expressions for S*(y, z) follow from our discussion above
concerning the m for which 7%(m) = 1.

To estimate R* we need only consider those m = p; - - - pj, with p; >
p2 > - > py, for which 0% (m) # 0. Then v*(q) = 1 for ¢/m and so for
either u =k or u =k — 1 we have

pﬁﬂ

: 1
By mwe have 8 > 1. Hence m < y. O

We now have to investigate ST (y, z). It will surely be no great surprise
to find that there is an iterative relationship between the Sj. To better

Pu—1-"P1 <Y.

understand it we introduce as an important parameter, namely the ratio

_logy
~logz

For s >0 and k =1,2,--- we define

9y, 8) = V(") Sy, y*/*). (21.20)

Suppose k£ > 2. Then for m € Di(y,z) we have m = p;---pp with

1 1
p1 > p2 > 0 > Dk, pl"'pkflngr >y, and pl"'pk7172jp£i2j <y
whenever j > 1. These inequalities can be rewritten as

1 1 .
P Peo1Py > y/p1, D2 Pre1—2Ph g <y/m (1< <k/2),

and also p; < y'/(P+1Y) when k is odd and k > 3. Thus m is of the form
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pm/ with m’ € Dy_1(y/p,p) and additionally p_<_y'/#*+1 when k is

odd, and every such m is in Dg(y, z). Thus, by (2T.18)),

SQT+1(y,Z) - Z p(p)S2r(y/pvp)a

p<min{yl/(B+1) 2}

Sar(y,2) = Y p(p)Sar—1(y/p,p)-

p<z

Thus, by @D, these relations can be rewritten as

G2r41(y, 8) = 3 p(p)Mg%(y logy

V(y'/s)”*"\p’ logp

p
max{B+1,s}< 8y

log p
V(p) y logy
= —_— _ _— —1 .
92r(y: 5) E,, POy 92 1<p,10gp )

log y
s< Tog p

: 1
Note that in @when s< pB+1,
92r+1(y7 S)V(yl/s)

is independent of s, so
V(o)
T b = T ;7 a7\ T bl ]- .
92r+1(Y, 8) V(o) g2r+1(y, B+ 1)
Consider the case k = 1. Then

Siw,2)= >, pV®),

yl/(ﬁ+1) <p<z
and so

S1(y,z) = 0 when z < Yt/ (B,

Now suppose that z > y'/(#+1) The identity

n m—1

am [JU-z)=1-(1—21) (1 - )
m=1 =1

is easily proved by induction on n, and gives
Sily.2) = V(y"/ ) — V(2.
Thus

V (y'/(B+1)

aly,s) =1 V')
0 when s > 8+ 1.

—1 when0<s<pg+1,

1) (21.21)

(21.22)

(120

(21.24)

(21.25)
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To make further progress we have to input some information which cor-
responds to the dimension of the sieve. Thus we assume that there is a
positive constant C' such that

“//((Z)) = (llc(:gg;)ﬁ(l + 1ogw) (2 <w<2). (21.26)
Therefore
91(y,8) < G1(s) + CM (21.27)
where

Gi(s) = {(54—1)“3_“—1 when 0 < s< (41, (21.28)

0 when s > 8+ 1.
Interestingly, G'1_is independent of y.
The form of is not the most useful for all our purposes. Al-

though we will only use it later, in the case x = 1, it is convenient to
establish here the following lemma.

Lemma 21.6 Suppose that 0 < p(p) < 1 and that @ holds.

(a) If2 <w < z, then

log z C
3 o) < klog 2 :
logw  logw

(21.29)
w<p<z

(b) Suppose that s < u, 2 < y"/* < y'/*, that n is nonnegative, con-
tinuous and decreasing on [s,u], and differentiable on (s,u) with a
continuous and uniformly bounded derivative. Then

V(p) lo
> p(p)v(yf)/s)n( gy)

eyl log p

u Cvn+1 —K
< 5*“/ kt"In(t)dt + w8 M) n(s).
s logy

Proof The bound (@%ﬂs immediate from (@ on observing that

(21.30)

V(w
> p(p) <log V((Z)) :
wp<z
To prove . Tmet
V(p)

E:gendim
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so that our sum is
T(wpn() ~ [ T(Ow(0)dt. (21.31)
Then, as in the proof of @D, combined with dﬁﬁ,

V(y't) t\" Ctrtt

Since 7'(t) < 0, inserting this in @ gives the upper bound
® C
() (v gy) 1)
_ /u ((z)n(l + 10%) - 1>n’(t) dt.

Then integration by parts gives
Cs vkttt O 1)t"
o), [ (e, et
logy s sk st logy
Rearranging gives
“ C “C 1)t~
3_””/ wt" I (t) dt + 51(s) + 3_“/ Mn(t} dt.
s logy s logy

In the second integral we replace 7(t) by its upper bound 7(s) and in-
tegrate. Part (b) follows. O

)n(t) dt.

We need to consider what to do with gr when k£ > 1. If for some k
and suitably smooth G (s) we have

91(y,8) S Gr(s),
. 1 .
then the relations &% and (&Eﬁ suggest that, at least for larger s,

Gosr(y,5) < Z p(p)( logy )F»Gk(logy _ 1)

slogp log p

logy
$<Togp

~ s—"/ st 1G(t — 1) dt.

. 1
This in turn suggests that Gy should be defined by (ﬁ% and that
Gon(5) = 5—* / Wt Gy 1 (E—1)dt (s > B), (21.32)
Gorpa(s) = 57 / Gt — 1) dt (s >0).  (21.33)

max(3+1,s)
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At this point we need to observe that, at least when k =1, G1(t — 1) <
(t —1)7" and so we need to suppose that

>1 (k<1 g>1 (k>1).
By an easy induction on k we find that
Gr(s) =0 when s > f + k.

Let

hQ‘I 1 ya ZQZT 1 y, , (2134)
th Y,s Zg?r y7 7 (2135)

ng_1(8) = Z GQT_1(8), (21.36)
Hoq(s ZGQT (21.37)

The aim is to show that the first two sums can be approximated by the
second two, with an error that cam be controlled. With quite a lot of
work it can be shown that there is a positive number § such that

XV (2) (f(s) 4 o(mD _ R

< 8(a,P,2) <

—K ,—S8

XV (2) <f+(s)+o(flogey)5)) YR (21.38)

where

s)=1+ iGQH(s) (s > 0), (21.39)
f-(s) =1~ ZG%(s) (s> B). (21.40)

E:defGl [E:defG2r [E:-defG2r:

It then follows by (El 23], (21.32) and (21.33)) that f+(s) is differentiable
for s > 0,%# B+ 1 and continuous at s = § + 1, that f_ is differentiable
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T:auxfn
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for s > 8, and continuous from the right at s = 5, and that

J+(8) =B+ 1) fL(B+1)s7" (0<s<p+1) (21.41)
(s“f+(s))l =rs" I (s—1) (s>p+1), (21.42)
(s"f- (s))l =rs"If (s—1) (s>p). (21.43)

It is perhaps not surprising that these are essentially the same }rlglflcmn—l
tiqnshi?smghat we adduced from the Buchstab identity, vide an

21.2.1 Convergence

We assume hence forward that x = 1 and that 1.75 < g < 3.

Lemma 21.7 When s > 3 let
o0
w(s,B) = ess_l/ (t— 1)_16_ max(f,t=2) gy
S

and

T(8) = sup (s, B).

s>f
Then 0 < Y(B) < 1.

Proof Suppose first that s > 5 + 2. Then

w(s) = essfl/ (t—1)"te?tat

and
w'(s) =e’(s —1)s 2/00(15 — )t tdt — s (s — 1)t
(1 L
=€ (sQ_ s(s—l))
<0
Hence
w(s) < w(B+2) = eBH2(B + 2)-1/00 (t—1)-Te>t at
B+2
< e2 < 162
(B+2)(B+1) ~ 165

<1.

o | |
H H
+| |+

A

E:f-
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Now suppose that 8§ < s < 8+ 2. Then

() = (tog 22 1 1(9))

S

where for brevity we have written
o0 efu
= —du
) /0 B+1+4u

sup  w(s) =max{w(s),w(f+2)},
B<s<p+2

If

then in view of the bound above for w(5 + 2), it suffices to deal with
w(f). Tt is readily checked that

2 1(8)
1 14—
is a decreasing function of 5. Hence
4 11 4 1 4
< = il i
@(8) < = (log 5 +1(7/4)) < = (log - + 17 ) < L.
It remains to deal with the possibility that

sup  w(s) = w(sp) > max{w (), w (8 +2)}
B<s<pB+2

for some sp with 8 < sg < 8+ 2. We have

w'(s) = 68768;721(1 5% +I(5))

s—

e

S 1)

and

Thus

1 S0 -
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: id1
Hence, substituting @%}Vhen s = sp we have
p50—B s34+1—(sp—1)% —sp(so — 1)

w// s —
(50) s2(so — 1)2

and this is

— S0 B 80(3 — 50)
80(80 — 1)2 )

Since w(sg) is maximal we _Iéeiwe S0 > 3.
- 1

Now substituting once more we obtain
eso—8 B e50
w(sp) = 7(50 —TE - e 7(50 —

The function e¥(y — 1)~2 is an increasing function for y > 3. Also so <
B+ 2. Hence

e? 16€?
(B+1)2 — 121
and this completes the proof. O

w(so) < <1

Choose the positive constant ¢ so that

3 -

and for s > 0 define

E (s) = s temmax(s=LA) B (5) =T/2e5, (21.45)
;auxf
Then by Lemmaﬁfin

3-1/‘” (%)5@@ ~1)dt <OE_(s) (s>p) (21.46)
s*l/oo (L)‘SE,@ —1)dt <OE,(s) (s>0)  (21.47)
ax(s,8+1)

. t—1
where
=13

satisfies 0 < 0 < 1.
It is useful to define

FEo.(s) = E_(s), Ea_1(s) = E,(s). (21.48)

By induction on k we have

Gi(s) < 0" Ei(s) (21.49)
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when £ is odd and s > 0 and when k is even and s > . Thus Haq—;
and Hy, converge locally uniformly for s > 0 and s > [ respectively.
Therefore if we can show that for some positive constant C

hy(y,s) < Hy(s) + C1E,(s)(logy) ° (21.50)

when ¢ is odd and s > 0 and when g is even and s > 3, then we have
the following conclusion.

Lemma 21.8 There is a positive constant § such that if% <p<3
and s = (logy)/log z), then

XV(z) ( f-(s) + O(e*(log y)—é)) ~R*<8(a,,2)

< XV (2) (f+(s) + O(efs(logy)f‘s)) + R*

where f1(s) satisfy (@ (@and R* satisfies @ Moreover

f+(s) is differentiable for s > 0,# B + 1, continuous at § + 1, f_ is
differentiable for s > 3, and continuous from the right at s = 3, and

+(8)=B+Df(B+1)s™ (0<s<B+1), (
(s) =0 (0<s<p), (21.52
(sf+(s) =f-(s—1) (s>B+1), (
(s/-(9) = fr(s=1) (s> 7). (
We also have
fe(s)=140(e™®) as s — . (21.55)
The utility of this conclusion depends on the finer details of the func-
tions fi, which we stud mﬁ and we give the ultimate conclusions
in Theorem %@E@ow The three equations (2T.51]), ) and

n.

are immediate from | 1mb and and
follows from (21.39), (2T1.40)), . and lm; Note that we have

extended the definition of f_ to the region 0 < s < 3, since the the-
orem remains true for trivial reasons with this extension. It is clear by

and continuit at 0 for s > sg for some sg > 3, and if
f-(8) >0, then &ZTLL%D and induction on k shows that
sf+(s) is strictly increasing on [ + k — 1,8+ k], and hence positive for
s > . We will eventually

choose (3 so inf{t > 0: f_(s) > 0 for all s > ¢} is minimal. (21.56)

This optimal choice is known as the sieving limit.

E:hHbd

E:1f+1

E:1f+

E:1f-

E:fpminfty

h

a e
-
g
[}
A

E:betach
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Proof of dﬁ We now rove by in_duction on gq. The case
q = 1 is immediate fro@ and )

1
Suppose ¢ > 2 and holds with ¢ replaced by q—1. By m
and and induction, gi(y,s) = 0 when s > 8+ k, and

gy, ) V)™ YT glpme).
pr< - <p1<y'/

Hence

: logy
gx(y,s) =0 for s > min <B + k, 10g2> (21.57)

and

k
gu(y,s) < V(@f”)*,i( > g(:f))) : (21.58)

p<y1/s
Thus we magf suppose that s < %.
By (2I:58)), when 2 <y < 1 and s > 1 we have

gk (y, s) < C /!

: n -defEk
for some positive constant Cs. Hence, by (Eli%} and (Eﬁ%ffwe have

Clc
hqly, s) < o
k>s—B

whence
hq(y,s) < C1E,(s)(logy)°

provided that 2 <y < yo and C = C1(yo). It follows in this case that
we have . Thus we may now assume that

logy
y>yo, s< log 2’ (21.59)

For the time being we suppose that
s > B when ¢ is odd, s> 8+ 1 when q is even. (21.60)

By (T3, EL5), @50 and @59,
k
har—1(y,8) + har(y,8) < V()™ Y ,i,( > g(p)>-
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Suppose that Y > 1. Then by (% and Lemma w

—_k k
he(y,s) < V)™ > Yk,( > Yg(p))

s—B<k<2r p<yl/s

< s Ylogy)YP % exp (Y (loglogy —logs + C)).

Let Y = s%/2. Then by m,
hq(y,5) < Ey(s)(logy)~" for s > (loglog y)*
which again gives @ Thus it remains to consider s with
s<w, w= (loglogy).

and we will deduce slightly more than (@ , namely that there is a
constant 0y with 0 < 0y < 1 such that

s 5) < H(o) + 0oCiE,(5)logy) ™ (2161

Supposg 'fuoorr low, _tﬂl%ermt s %h@”vvhen g is even and s > 8+ 1 when ¢ is
odd. By (2T:21)), (21-22)), (21.34) and with ¢ replaced by g — 1,

hq(y,S) =
V(') V(p) lo
%hq(y,w) + ) g(p)v(yf/s)hqfl(y 20 _1)

)
U eyl p logp

Cw \ wEy(w) 9(p)V(p) logy
<1+ —)—L—+ ——"H,_ -1
( logy) slogy yl/w<zp:<y1/s V(yt/s) 1 1(logp )
Cig(p)V(p logy
Z 19(p)V (p) Eq—l( gy 1).

4
v speyiss V(yLe) (log ¥) log p

The functions Hy_1(s), Eq—1(s) and sE,(s) are decreasing functions of
s for s > 3. Hence by Lemma

1 v CLE, 1(t—1)
palins) < 5 [ (et =)+ 5 )

Cuw? C1E, (s — 1) B
m (Hq_1(s -+ (1 —1/s)%(log y)5> + O(Eq(s)(log Y) )

. 2 . 2 . .
By (BT3% B33 B30 and E150).

s*l/ H,_1(t—1)dt < Hy(s).
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- s -Eminus - k
y €L G137 0 G
/ CiE,1(t—-1)(1-1/t)" St < C1OE,(s).

By LA LA ana LA

Cw? CiEq—1(s—1) _1/2
@(HWNS -+ (1 : 1/5 (10gy)5) < Eq(s)(logy) /2

E:hHhdstrong JE:scan

This establishes 21.61) when (21.60) holds.
Whenq—Qk—l150ddand0<s_/§—|¢)rl

L, Ak (hdstrong +1x[E-oV
We have established (21.61)) when s = §+ 1. By (21.23], ([21.25)), (21:22)
and we have
k
hor-1(y,8) = g1(y, s) + 292“1(1/7 5)
r=2
V(y'/(B+1))

V(y/*) (1+har—1(y, B +1)) — L.

: t
Therefore by W

hor—1(y,s) < —1
1 C 1
N B+ (1 N (B+1)
s logy

0oC1 Eop—1(8 + 1))
(logy)?

C1E,(s)

(logy)?

(14 Hapa (8+1) +

<P P (B 1+

By (B1-25), W—(ﬁ%d (B1.36) we have

$+@Hy@ 1(B+1) = 1= Hy_1(s)

which gives @ O

21.2.2 The differential delay equations

We now need to elicit the finer properties of the functions fi(s) when
F-1f+1 E-1f E-1f— . nft

k = 1. They satisty (21.51]), (21.53)), (21.54) and (Z1.55]). We can separate
the functions by defining

Si(s) = fr(s) + f-(s) =2, S-(s) = f(s) = f-(s)

so that
(sSi(s))/ =451 (s—1).
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These functions Sy (s) are differentiable for s > 3, s # 8+ 1 and con-
tinuous at 8 4 1 and from the right at 8. We have already encountered
the equation for S before. It is satisfied by Buchstab’s function w, vide
(7.38). The Dickman function (7.4) also has some similarities with S_.
Our initial concern is to optimise the choice of 5. To that end we need
to study the conjugate equations

s¢lu(s) = Fo(s+1) (21.62)

and the associated inner product
L) = s55(s)6s(9) £ [ Sa@ule+ D
s—1

It is clear that
o_(s)=s—1

is a solution of @D in the — case.

In the contrary case we define

d4(s) = /OOC exp ( —sx+ /093 e_yy_ ! dy) dz.

This is differentiable for s > 0, and it is readily checked that then @D
holds in the + case and that
1

s+1

: inft
It follows from at

< ¢+(8) < é

Si(s) < e ¥ as s — 0.

We also have
I'(s)=0 (s>pB+1)

so that Iy (s) is constant for s > 8 + 1. Moreover Iy (s) — 0 as s — oc.
Therefore

sSi(s)¢i(8)$/( ) Si(t)pr(t+1)dt =1I1(s)=0 (s> p+1). (21.63) |E:innerp
Hence

B+1
(B+1)S_(B+1)8 = /ﬁ bS_ (1) dt

B+1
= [s-0e-0l;" - [ as-ore-war
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When 8 <t < 8+ 1 we have

(tS-(1)) = —fr(t—1) = =(B+Df+(B+1)(t —1)7"

and so

B+1
BS_(B)(3 — 1) /ﬁ (B+ 1) (B+ 1)dt = (B+1)f4(B+1).

Moreover

BS_(B) = B(f+(B) — f-(B)) = (B+ 1) f+(B+1) — Bf-(B).
Hence

Bf-(B) = (B—=2)(B+1)f+(B+1).
By BL51), (BL59) and (BL.53),
f-(s) > f-(B) (s>B).
Hence, by (T30 Tt is clear that the optimal choice of 3 is
B=2

which we assume hitherto.

271

We are finally concerned with evaluating (8 + 1) f1(8 + 1) = 3f4+(3).

Let
s+1
vs) = sou(s)+ [ ou(0)d

Then v/(s) =0 (s > 0) and v(s) = lim;—, o v(t) = 1, and so
3
20,(2) +/2 p(t)dt = 1.
By L6
3
35,3)0.(3) = = [ Syt 1)dr
3
- [ s 0

3 3 /
= 50000 = [ (151(0) 04 0)
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Hence, as (thr(t))/ = 0 when t < 3 we have

3 , 3
25,2)0:(2) == [ (L O+ O)orOd+2 [ o0

3
= 7/2 [+t =)o () dt +2(1 —2¢4(2)).

Thus
(214 - o, 2) = - [ )y )42 0,2
:3f+(3)/:¢’+(t—1)dt+2—4¢+(2)~
Therefore
3+(3)6:4(2) = 3£4(3) (6:4(2) — 64 (1)) +2
and so

3f+(3)o+(1) = 2.

When s > 0, we have (5¢+(5))/ =¢1(s) — ¢p+(s+1) and so

. %S 11— e Y
= lim sexp | logx — sz — dy | dx.
50+ Jo 0 Yy

By (C.11) we have

Co=-T'(1) =~ [ (ogy)edy.
0

Splitting the integral at x, writing it as

- / (logy)d(1— ™) + / (logy) d(e ™)

and integrating each integral by parts, we obtain

T _ ey 0 -y
C’o:—longr/ ¢ dyf/ e—dy.
0 Yy x Y
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Hence
o0 €T 1 _ e—y
lim s exp( logz — sz — / dy) dx
s—0+ Jo 0 Yy
(o) o0 e—
= lim sexp(—sx—C’o—/ —dy)dm
s—0+ 0 x Yy
oo o0 e—y
= lim exp(fthOf/ —dy)dt
520+ Jg t/s Y

=e o,

Therefore 3f(3) = 2¢%0.

S:RIsieve .
i@ [.2lT Exercises

1. Supposethat0<f<;§1andthat1§B§1+nwhen0<%§%and
that 14 (26 —1)2 < 8 <1+ k when 2 <k <1, and let

p(s) _ KBSS_K(S + 1):{—1/ Kt/{—l(t _ 1)—:16— max(S3,t—2) dt.
Prove that

sup p(s) < 1.
s>

2. Suppose that k = %, that &i—%ﬂ), &f_{Eb, m‘), that

fr(s)=140(e"?) as s = o0,

and that f_(s) =0 when s < 8. Let
Si(s) = f+(s) + [-(s) =2, Si(s) = f(s) — f-(s)
(a) Prove that if s > 3, then
(81/25;(5))/ = :t%sil/ZSi(s -1)
and
, 1 1
sSl (s) = —55;(5) + iSi(s —1).

(b) Prove that when s > 0 the equations

(s6+(5)) = %¢>i(5) F %Q&(S +1)



274 Sieves I

are satisfied by

¢+(5)/Oooexp(sz;/0$1ueu)du)dx

and ¢_(s) = 1 respectively and that ¢ (s) ~ % as s — oo.
(¢) Suppose that s > (. Let

Ii(s) = sS1(s)g+(s) £ ;/s; Si(t)p+(t+1)dt.

Prove that I (s) = 0.
(d) Prove that

Bf-(B) = (B+ D)2 f (B+1)(B—1)'/?

and that the optimal choice of 5 is § = 1.
(e) Now assume that 5 =1 and let

s+1 1

vs) = sou(e)+ [ gl

S

Show that v(s) = 1, that

U 0) + N6+ [ S0+ - O)pul 1)t =2

and that

(f) Prove that
61(1) = e CV2T(1/2),
and that
Fi(s)=s122(e%m)"? (s < 2).

21.3 The linear sieve

We can now state the linear sieve.

. ) . 3
Theorem 21.9 Suppose that and (@ hold with k = 1. Then

there is a positive constant § such that when s = (logy)/log z) we have
XV(2)(f-(s) + O(e *(logy)~?) ) = R* < (4, ,2)

< XV(2) ( fa(s) +O(e~*(log y)*ﬁ)) 4R
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where R* is given by @ Moreover fi(s) is differentiable for s > 0
and f_ is differentiable for s > 0,%# 2, and

fi(s) =2e%s71 (0<s<3), (21.64) [E:1f+1f |

f-(s)=0 (0<s<2), (21.65) |E:1f-1f

fo(s) =2e%s 1 log(s —1) (2<s<4), (21.66) |E:1f-2f
(sf+()) =f-(s=1) (s>2), (21.67)
(sf-(s)) = fr(s—1) (s>1) (21.68) [E:1£-f

We also have

fr(s)=140(e"?%) as s = 0. (21.69)

1f-of
We remark that it is easily seen by integration that @ holds, and
then that f is differentiable at s = 3. In addition

Fi(s) = 26003*1<1 + / log(u=2) du) (3<s<5)  (21.70)

3 u—1

2eC0 * log(u — 3) s—1
f-(s)= S (10g(s—1)—|—/4 — logu_ldu>

(4<s<6). (21.71)

[ca]
=
T
Hh
w

There are some applications where we would like to have an asymp-
totic result rather than just upper and lower bounds. In the next section
we will see that this is not possible when s is small, and that i.nde,endf t:c}%e
above theorem is best possible. However when s is large 0es
permit an asymptotic conclusion.

. ) . 3
Corollary 21.10 Suppose that @Land dﬁﬁ hold with k = 1,

and that
D R(m)| < XV (2)e".
m<y
Let s = %g% and suppose that for some positive number § we have

s>2+0. Then

S(a,P,2) =XV (2)(1+0(e*))
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1 Exercises

RV76 HTI78h
1. [Vaughan| (1976)), Twaniec (1978b)
LetaGZandnEN,n>1,X22,P:Hp<Xp,

a+h a+h
T(hn)= > 1, ShX)= > L

m=a+1 m=a+1

(m,n)=1 (m,P)=1

(a) Prove that
S(h,X) <T(h,n) +w(n)(h/X +1)

(b) Asin §7.3, let g(n) denote the least integer so that amongst any
g(n) consecutive integers a + 1,--- ,a+ g(n) there is at least one
coprime with n. Prove that g(n) < w(n)?(log 2w(n))4.

2. Let p be an odd prime and let G(p) denote the least positive primitive
root modulo p. Prove that if the generalised Riemann Hypothesis
holds, then

G(p) < (logp)°*=.

21.4 The Selberg examples
-_S:SelEx

H siv2
Selberg showed that the inequalities in Theorem @na?best possible,
by the presentation of a pair of extremal examples.

Theorem 21.11 Let X > 2,

a () = {1 FA() (n<X),

0 otherwise,
P be the set of all primes, and
Ty (X,2)=5(44,P, 2),

where X\ is the Liouville function of §1.3. Suppose that

oxp ((log X)*7%) <z < (o

Then
log X
log 2z

Tu(X,2) = XV () fa (122 ) + O(X (log 2) /%)



21.4 The Selberg examples 277

where
V(z) =TI -1/p)
p<=z
and the f1 are as in TheoremﬁtM
We have

T (X,2)+ T4 (X, 2) =20(X,2), T-(X,2)—T+(X,2z) =2E(X,2)

where

E(X,2) = Y. An).
n<X
(n,P(z))=1
As discussed in §7.2, ®(z,y) is the number of integers < x composed
entirely of primes p > y. It’s asymptotics are described by Buchstab’s
function w(u) where u = (log x)/ log y. We could just appeal to Theorem
7.11 when lf; gg )z( < 1, but here we push things a bithfﬂirther. The function
E(X, z) satisfies Buchstab’s identity, Lemma and consequently the
Dickman function p(u), which arose in §7.1 to determine the asymp-

totices of ¥(x,y), is relevant. Both w(u) and p(u) are determined by
differential-delay e uaplil(g?s.
Note that by @Té have

re(z) =1 o(en (- 32))

and so the upper and lower sieve bounds are anyway asymptotic when
z < exp ((log X)Q/g).

When s > 2 + 4, we have f_(s) < 1, and likewise for f,(s) when s > 1
so the above give asymptotic formulee in those ranges.

This theorem illustrates one facet of the parity problem, namely that
sieve methods generally cannot distinguish between numbers with an
odd and an even number of prime factors.

Theorem S;,{il‘lfgws that essentially the linear sieve, as annunciated
in Theorem 1S best possible. To see this, let

y = Xexp ( — (log log X)3)

and

R(m) = ) ax(n) — Xp(m)
n<X
m|n
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with
1
p(m) = m’
Then for m <y

b

STRmMI<y+ Y| Y A

m<y m<ly I<X/m

and by Exercise 6.2.11
Z Al) < Xm™exp (— c(log(X/m))l/z)

(21.72) [E:Setios]

I<X/m
< Xm ™ "exp (- c(loglog X)3/2).
Thus
> |R(m)| < X (log X) 7.
m<y
Moreover
_ log X "
Fals) = fu( o2 ) +O((log X)71/2).
H siv2
Thus Theorem would give
log X B B
xv)r-( Tog 2 ) (1+0((10g X)~%)) + O(X (1og X)~*/2)
<Ty(X,z)
log X
< XV (T2 (1+ O((log X)) + O(X (1o X) /).

. " .
Theorem @Eﬁhows that the functions f_ and f; cannot be replaced

by anything larger or smaller respectively.

Proof To prove the theorem we use an inductive argument. When

XY? <2< X/log X

we have
Te(X,2) =1F A1)+ Y (1FAp)).
z<p<X
Thus
Ta(X,2) = (1) og + O((ngx)?)

— (1 £ 1) XV (2)eCo 1982 0(( X

log X log X)2

(21.73) [Ercasat]

(21.74) [Exmeart]
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and so

To(X,2) = XV(z)fi(lﬁ)ggf> +O((1O;(X)2> (21.75)

where
V(z) = [0 -1/p).
p<z
:Buchld
Now the proof of Lemma @%ﬁeadily adapted to show that if 2 < z <
w, then
Te(X,2) =Te(X,w)+ Y Te(X/p,p). (21.76)
z<p<w
The plan now is to show that for a suitable positive constant C, when k €
N, we have for every pair X, z satisfying X > X, 3 <k < (log X)/? +1
and X1/F < » < X/ (k=1) the inequality
log X _ . )‘ CXk?loglog X
i Ao P
log = = (log X)?

To(X,2) — XV(2)fe ( (21.77)
The relationship in the inductive proof is that if XY/ *+) < 2 < p <
X1k then (X/p)/*F < p < (X/p)"/*=1 and the deduction will be
routine when k£ > 3, but when £ = 2 we have only established the
necessary hypothesis when X'/2 < » < X/log X. That is, we have a
problem when
X/p
log(X/p)

We resolve this minor lacuna by a separate argument to establish the

<p < X/p.

desired conclusion when

1/2
( X ) <z§X1/2.

log X -
. X
Then Tf[ (X, 2) differs from the sum considered previously in case
[2T.73) by just having an additional contribution

Z 1F)x Z pl(f;X

ZSm?pf%X/pl 2<p<X1/?
Xloglog X
(log X)?

and we can argue much as before.
Consequentially we need only treat the case corresponding to k = 2
above when X1/3 < 2 < (X/log X)/2.
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T
In @let w = (X/log X)"/? and X'/3 < z < w. When z < p <w

we have
X 1/2
X3 < S
SP< (log(X/p))
and so
X/p
X/p)r<p< —L—.
(X/p) log(X/p)

-caseF
Thus we may appeal to the initial case (@(with X replaced by X/p
and z by p). Then we have to deal with

i (B0 3 xR 1)

z<p<w

X loglog X :
o(X 2o X). a1y

m
We require an asymptotic version of Lemma

Lemma 21.12 Suppose that 2 < z < w < X2 gnd
1
Viw =] (1 - f).

p<u b
Then
V(w)fi(ll‘(’)ifw 3 V(p)p*h(lﬁ)ggf—l)

z<p<w

=vern () (1+0(55)
Proof The sum above is

Z (V(P)Plf;(ll(())ii — 1) +/pw f%(lﬁ)ggf B 1) log_z( du),

2pew ulog” u

Then on interchanging the order of summation and integration and ap-
plying the identity @V this is

By Meretens’ Theorem 2.7 (e),

V) = Vel (1+0(50))
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Hence the above is
Ve (o)) (- ) = (e 1)
o) (1) )

ng

By the change of variables ¢ =

the integral above becomes

log X

Tog = logz\ ,,
1—t ) t—1)dt
[ ( log X I )

og X
log

and then by integration by parts, @ and (@ the above is

log X
1 gz logz
—— f=(t—1)dt
logz))[ogx longjF( )

Tog w

V1 o)) (12 (48X) - 52 (1)),

V(z)(l-i—O(

Hence
log X _ log X
V(=) + Y v e (s - 1)
log w logp
z<p<w
log X 1
Ve (T7) (17 0(57)
og z
Viz log X
0 (gt (o))
ogw log w
and the lemma follows from the monotonicity of sf4 (s). O
The lemma applied to IM] completes the proof of @ when k =
3. Now suppose that (ET.77) holds for some k with 3 < k < (log X)'/3

and suppose that XY+ « - < XUk Let w = XV* and consider

. As we observed above, when z < p_ < w we have (X/p)l/k <
p < (X/p)/* =1 Hence we may insert (@ with z, z replaced by
X,w or X/p,p into . Thus

Ta(X,2) ~ XV()fe (ZE2) - 3

EV(P).H (10gX - 1)‘

log w i P logp
CXk3 loglog X Z CXk?loglog X
log? X plog®(X/p)

z<p<w
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Now we apply the lemma and obtain

)

TL(X,2) — XV(Z)f:I:(

< CXKk3loglog X C1X(k+1)2 n C1k% loglog X (1 N k )

- ]0g2 X ]0g2 X (k‘ — 1)2(10g X)2 k logX
for an absolute constant Cy. Since k < (log X )1/ 3. it follows that for a
suitable positive constant C' we have with k replaced by k + 1.

To complete the proof of the theorem, suppose

X
exp ((log X)*/?) < 2 < g X

so that (log 2)*/® > (log X)*/% and choose k so that k — 1 < lf;ggf <k,

whence k < (log X)'/? + 1. Hence, by (@7 we obtain the theorem
with an error term

X (log X)loglog X X
< )
(log 2)3 (log z)4/3

as required. O

S:SelEx .
1 Exercises

1. Let ay, S(4+,P,2), T (X, 2), V(2) be as Theoremﬁ_}iet k€N
and define

dPmy= 3 arln)-ar(ng,

M1, Mk
ni--Ng=n

2l =3l (n),

nez
X, = X",
T8 (X, 2) = S(al), P, 2).
(a) Let p, be the multiplicative function with
p (pr) — 1- (1 - :l/p)"i (’I’ = 1)a
" 0 (r>1).
Prove that
> pe(p)logp = klog z + O(1),

p<z
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and that there is a positive constant C; such that whenever 2 <
w < z we have

IT (- < (122) (14 1),

w<p<z

ie. ﬁ holds.

(b) Prove that

Tin)(X/ﬂZ) = ‘S’(’{Zliﬂpa'z)"i - Tj:(Z,Z>K.

(c¢) Suppose further that

X
exp ((logX)Q/S) <z< log X’
and the fil)( ) are the functions f4 (s) satisfying @ @
Prove that
K log X \* —k—1/3
T§(Xeo2) = XV (D (L) + O(Xullog2) ™ 77)
where
Va(2) = [T (1 = ou()).
p<z
(d) Let

Prove that if £k > 1 and m is squarefree, then
A(R) Z Z A(l) (uv) A("C 1)(m/u)
u|lmvlm/u

and

Z Z ) p1(uv)pr—1(m/u).

u|lm vlm/u
(e) Let

=Y (n) — Xupu(m).

n<X
m|n
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Prove that if K > 1 and m is squarefree, then
[Re(m)| < Y (|Ri(wo)|| Ry—1(m/u)|
uv|m
+ [ R (u0) | X1 ps—1(m/w)
+ X1p1(uv)|Ry—1(m/u)|).
(f) Let
y=Xexp(— (10g10gX)3).
Prove that there is a positive constant ¢, such that
Z p(m)?|Re(m)| <, X, exp (— ¢ (loglog X)?’/z),
m<y
so that X, p.(m) does indeed correspond to

S d ().

n<X
m|n

: E
The bound @B% useful here.

(g) Conclude theat functions fi = f) that satisfy inequalities of the

kind when the dimension is £ € N must of necessity satisfy
1) < £ s/r)r £ (s/m)" < £7(s)
when s > k. In particular,

FU9(s)

=0, (s<2k),
s" i’i)(s) > 27eC0R R (K < s < 3k)

where in the first inequality we have also used the fact that if
w > z, then S(ﬂ(_ﬁ),iP,w) < S(ﬂ(_n),(P,z).

Thus the upper bound given by the Selberg sieve or by Theorem
19.12, as in Exercise 19.2.8, and likewise the range for which lower
bound sieves are non-trivial, cannot be much improved in general,
even for large dimension k.

21.5 Some applications of sieve theory

Almost primes. Lower bound sieves are by themselves usually unable
to establish primality, yet for a number of problems we have theorems
that tell us that at any rate there are a plentiful supply of numbers of
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a particular kind which have a bounded number of prime factors. Such
numbers are frequently called almost primes. More precisely the notation
Py, is sometimes used to denote a typical number having at most k prime
factors.

Particular examples of this are the twin prime and Goldbach binary
problems. Thus the lower bound sieve can be adapted readily without
further ado to show that there are infinitely many primes p such that
p — 2 has at most four prime factors, and there is a very simple wrinkle
using the Selberg sieve that shows that the four can be replaced by
three. There are more sophisticated combinations of weights and upper
and lower bounds that can give more substantial lower bounds for the
number of primes p < x for which p — 2 has a most three prime factors.
This in combination with a clever idea of Chen can reduce the three to
two. All of these results have analogues for the Goldbach binary problem.
We start by establishing the following simple lower bound.

Theorem 21.13  Suppose that € is a small positive number, x > xo(e),
a(n) =1 when n+ 2 is a prime p < x and 0 otherwise, P is the set of
odd primes and A > 0 is a constant. Let

y= xl/Q(IOg 1‘)7A74

and suppose that

9 < 2 < yl/@+e),

Then there is a positive number & such that

~f(s) X

ce _(s

(9,9 2 XS o Xy

( 2z log z + (log z)1+9
where X =li(z), s = }ggg, and c is the twin prime constant

c=2]] 7(3]573_1)12). (21.79)

p>2

Proof For a given odd squarefree number m we have
A(m) = n(x,m,?2).

Let
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:Bom-Vindpi
Then, by the Bombieri-Vinogradov theorem in the form %ﬁve
R* = Y |R(m)| < z(logz)~ "2,

m<y
m|P(z)

Also, by Meretens’ theorem in the form Theorem 2.7 (e) we have
_ p(p —2)
Vi(z) =2 H mn(lfl/m

2<p<lz p<z
—Co
ce
= o((1 —2).
log 2z + ((ng) )
: iv2
The theorem now follows from Theorem ﬁm O

1/5

When we take z to satisfy '/° < z we see that the n remaining after
sieving will have a most four prime factors. In particular when we take
z = yY/(+e) it follows from that the number Ny(z) of primes
p < z such that p — 2 has at most four primes factors all > z satisfies

2cxlog(l + ¢€)
(log z)?

There are various sophisticated ways of reducing the four to three and
even, as we shall see, to two. However there is a very simple way of

Ny(z) > + O(x(logm)_z_é) (21.80)

deducing the following

Corollary 21.14 The number N3(x) of primes p < x such that p — 2
has at most three prime factors satisfies

T

It suffices to bound the number Nj(x) of primes p counted by Ny(z)
above such that

p—2=pipepsps and z < p; <pa <p3 <pg < .
P1p2p3

We can do this quite easily via the Selberg sieve. Suppose we are given

P2, P3, pa With z <py <p3 <py < S5
p < x with papsps|p — 2, and pf;;i; € [z, p2] and prime, is equal to the
number of primes [ such that z <[ < ps and Ipapsps + 2 < x is a prime.

This is bounded by

L _  Then the number of choices of

S(B,P,w)

where 8 = {b(n)} and b(n) is the number of integers | with z <1 <

E:pminus2P4
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min (pg, (x— 2)/(;02}93104))7 I(Ipapsps +2) = n, w = 2/ and P is the set
of all primes.
Let pp(p) denote the number of solutions of
I(Ip2psps +2) = 0 (mod p).

Since w < py < p3 < p4, when 2 < p < w we have p(2) = 1/2 and
p(p) =2/p for p > 2. Let
X =) b(n)

and
R(m) = B(m) — Xp(m).
Then |R(m)| < d(m). Now let

_ (p)
g(n) = 1 1—7p(p)

:Selb
Then X < z/(papsps) and by Theorem ﬁlv\/—eer%lave

S(B,P,w) < z/(p2pspa)

> gn)

n|P(w)

As in the proof of Theorem 3.10,
Z g(n) > (logx)?.

+ O(zpy 'p3 'py ' (log z)~10).

n<w
n|P(w)
Hence
T
S(B,Pw) <« ——.
( ) p2p3pa(logz)?

We now obtain an upper bound for Ny x*(z) by summing over the primes
p2, p3 and py, which, crudely, satisfy z < p; < 2273, Hence each sum
over p; is bounded by

log(r273)

Z p~ ! <log —=—"—> 4 0((log2) ") < log(1 + 4e).
log =
2<p;<zz3
Therefore
ez
Ny —_—.
4(17) < (10gl‘)2

-pminus2P4
Choosing € small enough and comparing with (@%s the desired
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conclusion. Chen’s Theorem. Let Na(z) denote the number of primes
p < x such that p — 2 has at most two prime factors.

Theorem 21.15 (Chen 1973)  For every large x

cx
Na(@) > 3log® z
where ¢ is the twin prime constant @E
Proof Let
2= gt/10 = 1/3

and consider

1 1
SXCEND SR (B S SRS o |
p<x z<p1<w P1p2p3=p—2
(p—2,P(2))=1 p1|p—2 2<p1<w<p2<p3
The number My(x) of primes p < z such that p — 2 is divisible by the
square of a prime p; with z < p; < w satisfies

M) < Y 5 <azl.

s<pr<w 1

If p — 2 has at least two distinct prime factors p; with z < p; < w,
then the general term is non-positive. Also if p— 2 has exactly one prime
factor with z < p; < w, then it can have at most three prime factors
in total, and if it has exactly three in total then again the general term
is non-positive and at least one of those prime factors cannot exceed w.

Hence
No(z) > N*(z) = M;(z) — Ma(x) — Ms(z) + O(xzfl). (21.81)
where
My(z)= > 1,
p<z
(p—2,P(2))=1
1
EEED YD S
p<z z<p1<w
(p—2,P(2))=1 p1lp—2
and

Myz)= % >

p<z p1p2p3=p—2
(p—2,P(2))=12<p1<w<p2<p3
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. inpd
We can read off a lower bound for M;(x) at once from Theorem @,}L
Thus

My () > 10ce™% f_(5)— +O(( . )

(log )2 log )29
-1f-£3
and hence, by (@

4 u—3
cx 4 log(1 +t)
M > ———(8log?2 — ————=dtd
1(2) 2 (log x)? (8 o8 +/3 u/o 241 u)

€T
+O(W) (21.82)

A similar argument can be applied to Ma(x). We have

ACEED DD DI

z<p1<w p<z
p=2 (mod p1)
(p—2,P(2))=1

Now we have

Z 1=mn(z;p1m,—2).

p<z
p=2 (mod p1m)

Let
li(zx)
o)

Then we may apply the Bombieri-Vinogradov theorem as before to ob-

R(l) = m(x;1,-2) —

tain

> > |R(p1m)| < m

2<p1<w i <g/2pT (log z)—4

for suitable positive A and ¢. Thus

MQ((E) S

5ce”Cox 1 5logx — 10log py
(log z)? Z p1— 1f+( log )

+O(m).

Mertens’ Theorem 2.7 (d), partial summation and a change of variables

z<p1<w
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gives
Mg(l‘)
5ce~Cog (v S5logz — 10loguy du T
~ (logx)? /Z f+( log x )ulogu JrO((logaz)2+5)
5ce Cog [10 10\ dt x
< — - =) =+4+0(+—=).
~ (logx)? /3 f+(5 t) t + ((10g:c)2+5)

Hence by (ﬁ and @E

4 u—3
cx 10 log(1+1)
< (6log2 - 080 Y did
2(2) < (log z)2 (6 o8 +/3 u(5—u)/0 241 u

+O(m>.

Therefore, by % ,
M (z)—Ms(x)
S 2o <]0g2 - /4 El /u_3 log(1+¢) dtdu)
)? 5 u(d—u) Jy 241t
+ O(@).

The double integral here is
4

! log(1 1 1
/ M dt ( — —) du
0 2+t t43 D —u o w
1 —
/ log(1+1), (2 tl(t 3) 41 < 0.020772694.
0

2+t

Hence
L) (2189

CT
_ > 1.32674
Mi(a) = Ma(a) 2 13267459 1 +0( oz 27755

We now turn our attention to Ms. We have

1
Myfe) < 18(2.9,1) + O/ (2189

where
- {1 n=pipop3 +2<x+2with z < p; <w < py < pa,
a =

0 otherwise,

P is the set of odd primes, and
y = 2'/?(logz)~ 5.
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Here we have used the estimates

Z 1<zt

wSp2<pa< 7

in case p; = z) and
( p )

> 1< 1

Pj>%
T—2<p1p2p3<T
(because x is tidier than x — 2).
Now we sieve the n for primeness. In order to apply the upper bound
sieve effectively we need to deal with

Z a(mn)

n

when m|P(y), and so we need a variant of the Bombieri-Vinogradov
theorem for triples of primes. In this situation the result is rather more
straightforward, not requiring any identity similar to that used in the
proof of the Bombieri—Vinogradov theorem, since now the underlying
bilinear form is already a good Type II form.

As is usual we need to input information about

Z a(mn) = Z 1

n z2<p1<w<p2<p3<z/(p1p2)
p1p2p3=—2 (mod m)

when m|P(y) and m < y. Since we automatically have (m,pipaps) = 1
it follows that

Z a(mn) = Z X((;j)
n x (mod m)
RS )
=2 2

g|lmyx (mod q) ®

~—

> X(p1p2ps)

z2<p1Sw<pa<p3< -

> X(P1p2ps)-

z2<p1Sw<pa<p3< - E-

(p1p2p3,m)=1

Let
X

R(m) =) a(mn) - — (21.85)

p(m)
where

X = > 1=3 a(n) (21.86)

«
2<p1Sw<p2<p3< -
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Then

« E(m)
R(m) = '(m) = 205 (21.87)
where
R (m) = ) x(p1p2p3),
p(m)
1<g|m x mod ¢ z<p1<w<pa<ps< -
(p1p2p3,m)=1
and

E(m) = > 1.

z2<p1Sw<pa<p3< -

(p1p2p3,m)>1

When m < y, the contribution from the p; dividing m is

z x

< zlog x < zlogx
w<ps<(a/x)1/2 P27 708 g

and from the ps or p3 dividing m is

€ x
Z<plgwp1w ogx w log x

Thus

)3 m <az . (21.88)

m<y

We also have

IS DD P

(m) ’
1<g|m x mod ¢ ¥

Z X(plpng)

2<p1Swp2<p3< -

(p1p2p3,m)=1

Z X (P1p2p3)

z2<p1Sw<pa<p3 < -

(p1p2ps,l)=1

Z X (p1p2p3)

«
2<p1Swpa<p3< -

(p1p2p3,l)=1

x mod g

1 1 "
2o 2w

x mod g




21.5 Some applications of sieve theory 293

Hence
logy
*
> IR (m)| < max Z > X(p1paps)|-
m<y 1<qSy x mod ¢ ' z<p1 Sw<p2<ps< -
(p1p2ps,l)=1

The summation conditions imply that py < (x/p1)*/? and so pips <
p}/2x1/2 < 22/3. Consequently, when ¢ < (logz)# for a given constant
A the Siegel-Walfisz theorem in the form of Corollary 11.18 applied to
the sum over p3 gives

It
rlnga;( Z ogy Z

1<g<(log z)4 (P( x mod g

> X(p1p2ps)| -

2<p1Swpa<p3< -

(p1p2ps,l)=1

< z(logz) 1P,

Let a(u) be 1 when u is a prime p; with z < p1 < w and p; t [, and
0 otherwise, and let b(v) = 1 when v = paps with w < py < p3 and
(p2ps,l) = 1, and 0 otherwise. Then

Z X (p1p2p3) Z Z x(uv).

2<p1 Sw<p2<p3 < 8- z<u<w w<v<z/u

(p1p2p3,l)=1

- ximalbiform . L.
By and a division of the sum over u into dyadic intervals we have

3y ﬁ STUY Y aub(v)x(u)

1<q<Q x mod q ' z<u<w w<v<z/u
< (IOgZL')Q(.’E + QI19/20 + Q2£E1/2)

and so, by partial summation, for a suitable choice of A we have

TCD DN 1D D 1D DEND DENIOUGMCD

(log 2)4 <q<y x mod ¢! z<usww<v<a/u

—_

< z(logz) ™10,

Therefore
> IR (m)| < z(logx)

m<y

and so, by ﬁ and (W

Z|R )| < z(log z) ™10

m<y
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. P .
Thu&%@_énd @ and a by now familiar application of The-
orem we have

2Xc
M. <
a(z) < log x

+O(X(logz) 7% + 2(logx) ).

- ChenMai
By @%d multiple applications of Theorem 6.9 we have
(w/u)'/? 2x dv du
2X = O(z(1 —3/2
/1/10 /1/3 (log v)vlog(z/uv) ulogu + (x( og ) )
- | /% log(2 — 3u)
logz 1/10 w(l —w)
< 0.98199041 —— + O(z(log 7)~*/2).
log

[E: NM1M2M3 [E:M1M21b

Therefore, by (ZL.8I)) and (ZI.83) for all large x

dw + O (z(log x)_3/2)

cx
N(z) > —.
(z) 2 3(log x)?
HL22
Conjecture J of [Hardy & Littlewood| (1922). Let
R(n) = card{p,z,y :p+ 2> +y* =n,x € Z,y € Z,p prime} (21.89)

with p a prime and z,y € Z. Then Conjecture J states that

o) ~ ) (21.0) [£5on5)

where for z € Z \ {0}

S(z) =
(1,1;[2 1+ (_(;)ip;)lz)f)) 1—[ (1 ~ p]g;l)(@l)lzfl)/g). (21.91)

By the way, it is readily checked that

ZZS D (azfa)
g=1 a=1
(a,q)=1

where
q
-3 clos?/a)

Moreover 7n is the volume of the region {a, 3 € R: a? + 3% < n}. Thus
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one can see how Hardy and Littlewood read off the conjecture from their
assumption that the major arcs for this question would dominate.

Following work of Hooley, Linnik gave a proof of Conjecture J which
was later simplified via the Bombieri-Vinogradov theorem. For n € N,
let

r(n) = card{z,y: 2® +y* = n,x € Z,y € Z}. (21.92)

and let

_ o 2,
x(m) = {0 o, (21.93)

Then, in view of the formula

r(n)=4% x(m) (neN) (21.94)

(see, for example (16.9.1) and Theorem 278 of WH‘A’%dy & Wright| (2008))),
one might hope to imitate the method used to prove Theorem “How-
ever now the main term is a factor of logn smaller. Whilst this is not a
problem for the divisors m not near /n, those near /n require a more
delicate treatment than a crude application of the Brun-Titchmarsh The-
orem. In particular some use needs to be made of possible cancelation
arising from changes of sign of x(m). Hooley’s idea to overcome this

is, when this range occurs, to replace the primes by a larger set Whiislglés

whilst including the primes, now satisfies the asymptotics of an
so the resulting main terms are cancelling. The delicacy of the situation
is such that this idea also needs to be combined with a careful account-
ing of the primes p for which n — p has slightly more than its normally
expected number of prime factors.

: (n)
Theorem 21.16, (Hooley-Linnik) Let R(n) be as in @%d S(n)
be as in . Then for any number v with 1 < v < % — 761232
= 1.028957 - - - we have
R(n) = 22 &(n) +o( " )

- logn (logn)¥

as n — oQ.

We initiate the proof by eliminating the easy parts. Let B be a con-
stant at our disposal to be fixed later and define

M =n'?(ogn)", N =n'?(logn)?. (21.95)

E:Defr(n)

E:formr (n)
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: r(n)
By EET
R(n) =4X(0,M) +4X(M,N) +4X(N,n) + O(1) (21.96)

where

=Y Y x(m). (21.97)

p<nU<m<V
m|(n—p)

Note that if n should be prime then there is a contribution to the error
term of r(0) = 1.

If p < n, m|(n—p) and (m,n) > 1, then p|n and there can be at most
< logn such primes p. Moreover, then m/p divides n/p — 1. Thus

XO0,M)= Y x(m) > = 1+0@).

m<M p<n
(m,n)=1 p=n (mod m)
Hence, by (ﬁb and trr}ll—% 1£%2¥11 of the Bombieri—Vinogradov Teorem
stated in Corollary we have
X(0, M) = li(n) x(m) +0(n(logn)*?).

S wlm)
(m,n)=1

By a simple elementary argument we show that the main term here gives
the main term of our theorem.

Lemm}? 21.17  Let x be the quadratic character modulg 4, as given in

. and let (n) be the smgular series given in . Then
X ﬂ' -
Z S(n) + O(d(n)M ' log M).
m<M
(m,n)=1

Proof We note that

: Z
m
m
Thus the subject of interest is

1) u(l)? k ‘
X(z;/éz()) 3 x;) S i)

k<M/i il (k,m)

Z X Z p(j x(m)
<M jln m<M/lj mn
(I,n)=1 j<M/l

I<M
(I,n)=1
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By an explicit version of the alternating series test we have
X .
> L(1,x) + O(lj/M) = —+0(z]/M).
m<M/lj

Thus the multiple sum becomes

Z I Z X + O(d(n)M~"log M).

jln l<M/]

Jj<M ()=

We then complete in turn each sum, which gives

ZM i M—&—O(d(n)M*llogM).

jI’I’L =1

The main term here is
™ x(p)) x(p) )
a 1 2 14 A
4(H( P >H<+ oo —1)
pln pin
: J
and the Euler products here match @ O

We now turn to X (N, n). In the inner sum in (ﬁ we replace m by
7P so that

X(N,n) = X(N,n,1) — X(N,n, 1)

where

X(N,n,+1)=>" > 1= )" > 1.

p<n l|(n—p) I<n/N p<n—IN
I<(n—p)/N p=nTFl (mod 41)
(n—p)/l==£1 (mod 4)

Should d = (n F1,4l) be > 1, then p = 2 or p|l|n and so

X(N,n,+1) = ) > 14 O(n®).

I<n/N p<n—IN
(nFl,4l)=1 p=nTFl (mod 41)

. :Bom-VinVari
Thus on applying Corollary %@TﬁﬁThat

X(N,n,+1) = Z litn ~ LN) + O(n(logn)*~ 7).
I<n/N 4'0(4”
(nFl,4l)=1

Now (n F1,41) = 1 if and only if (n F1,2[) = 1 and this holds in turn if
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and only if (n +1,2l) = 1. Thus the main terms are independent of the
sign of 4, and so cancel giving the bound

X (N,n) < n(logn)>~>.

We now come to the more delicate part of the argument: the treatment
of

X(M, N).

As with X (N, n) we expect this to contribute something which is smaller
than the main term, but unfortunately our knowledge of the distribution
of primes in this case lacks the desired precision. There are two features
of the situation which come to our aid. The divisors m of n — p are now
in a very restricted range, M < m < N, and their occurrence is likely to
be relatively infrequent. The heuristic here is that the normal number
of divisors of n — p is about (logn)'°82. Thus of the approximately logn
intervals [e*~1,e¥) with 1 < k < logn only a proportion (logn)©e2~!
can be expected to contain a divisor of n — p, and so the probability
that (M, N|] contains such a divisor is about (logn)'°®2~11loglogn. Thus
the sum over the primes p can be expected to be bounded by something
like n(log n)'°&2=2log log n. The second feature is that we can embed the
primes in a somewhat larger set for which we can establish a suitable dis-
tribution into residue classes for the appropriate modulus m. Moreover
we can separate and enable these two features by the usual process in
analytic number theory when we cannot think of anything better to do,
namely apply the Cauchy—Schwarz inequality. Let

Alk)y= > 1,

m|k
M<m<N
and
k)= > x(m)
m|k
M<m<N
Then

X(M,N)= > E(m-p) <Y(MN)?Z(M,N)"/> (21.98)

p<n
A(p—n)>0

where

Y(M,N)= > 1,  Z(M,N)=)Y E(n-p) (21.99) [E:Defyz]

p<n p<n
A(n—p)>0
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To manage Y (M, N) we divide the sum into two parts dependent on
the number of prime factors of n — p. To mark the division we introduce
a real number o which satisfies

l<a<

21100

N w

and is otherwise at our disposal. Thus

Y(M,N)=Y1(M,N)+Y>(M,N)

where
Yi(M,N) = > A(n—p), Ya(M,N)= > 1.
p<n p<n
Q(p—n)<aloglogn Q(n—p)>aloglogn

The sum Y;(M, N) is bounded by the number of pairs p and m with
p<n, M <m<N,m|(p—n)and Q(n—p) < aloglogn, or equivalently
triples p, l.m with

p<n,lm=n—p, M <m <N, Qn—p) <aloglogn

We have | < n/M = N and the number of such triples with m < N
and [ < M(logn)~2 is < n(logn)~2. Thus, when M (logn)~2 < | we
certainly have

M(logn)™2 <1< N and M(logn)~? <m < N.
We also have

1
min (Q(m), Q1)) < §alog logn.

Hence
Y1(M,N) < Y3(M,N) + (log”n)? (21.101)
where
Ya(M, N) =
card {m,p : g n <m < N,p<n,m|(n—p),Qm) < %loglogn}.

By the Brun-Titchmarsh theorem, Theorem 3.9, we have
n
(M N) < Y

1
M (logn)~2<m<N (P(m) ogn
Q(m)< $ loglogn

Here and later we need some estimates concerning 2.
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Lemma 21.18 For a real number 6 > 0 define y(6) = 6 — 6log 6

(i) Suppose that X is a real number with X > 1 and w is a real number
with 1/2 < w < 7/4. Then

Z ™ <« X (log 2X)7 L.
m<X

(ii) Suppose that 1/2 < <1 and n > e°. Then

1
Z — < (logn)"®~tloglogn.
m

n/2(logn)"B-2<m<n!/2(logn)?
Q(m)<pBloglogn

(iil) Suppose that 1 < < 3/2 andn > e°. Then

1
Z — < (logn)7#),
m

m<n
Q(m)>ploglogn—1
Proof (i) can be proved in the same way as Theorem 7.17. Here the
Dirichlet series generating function is ((s)®n(s) where n(s) is a series
that converges absolutely in a halfplane Res > 1 — § for some § > 0.
(ii) By (i) and partial summation when 1/2 < w <1,

D

n1/2(logn)~B-2<m<n!/2(logn)B

“ < (logn)® *loglogn.

For those terms with Q(m) < Bloglogn, since 0 < 8 < 1, we have
1 < (log n)—Blog 659(7“)

and the result follows on taking w = .
(iii) follows from the bound

>

m<n

om)

< (logn)®

by a concomitant argument. O

. ; : t
By m% have 1 < a < 2. Hence, by (ii) of Lemmaﬁ%ﬁh

B = a/2 we have

n(loglogn)?
Y3(M,N) < (log )2 1(@/2)"

whence, as y(«/2) > 0, by ﬁb,
n(loglogn)?
Yl(M, N) < W. (21102) E:Y1bound
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We now turn to Y2(M, N). We divide this sum into two further parts
so that

Yo(M,N) <Yy(M,N)+Ys(M,N)
where

Yi(M,N) = card{m < n: Q(m) > 10loglogn},

Y5(M,N) = card{p < n: aloglogn < Q(n — p) < 10loglogn}.

: t
By Lemma ﬁﬁ%ﬁ*

Yi(M,N) < Z eM/2(1ogn) =% < n(logn)Ve b <«

m<n

_n
(logn)2’

When p < n, Q(n — p) < 10loglogn and n — p has no prime factors
exceeding exp ((logn)/(201loglogn)) we have n — p < \/n. Otherwise
for p counted by Y5 there exist numbers r and p’ so that n —p = rp/,
p’ > exp ((logn)/(20loglogn)) and Q(s) > aloglogn — 1. Moreover
r < nexp (— (logn)/(20loglogn)). Thus

Y (M, N) < 3 S 14n
r<nexp((logn)/20loglogn)) p,p’
Q(r)>aloglogn—1 ptrp’=n

Let N(n;r) denote the inner sum here. Then the bound

n? n(loglogn)3

o(nr) ( log(n/r))? r(logn)?

is trivial when (n,7) > 1 and when (n,r) =1 follows by the methods

N(n;r) <

of §3.4, or from Theorem or Corollary ya81fting out the
y < n/r with ply(n — yy) for p < (n/r)? for some § < 1/2. Thus
loglogn)3 1
Ys(M, N) < nl/2 4+ ndoglogn)? =
5(M, N) < n' "4 (logn)? Z s

r<n
Q(r)>aloglogn—1

By Lemma % this is
n(loglogn)3
(logn)2—(a)’
Since y(a) > 0 this gives

n(loglogn)3

Yo(M,N) <« ——=—=2
2(M, )<<(1Ogn)2—v(a>
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: d
Comparing this with @ﬁe see that the optimal choice of o occurs
when v(a/2) = y(«), i.e. a = ¢/2. Thus

n(loglogn)3
Y(M’ N) < (]Og n)2fe(log2)/2’ (21103)

and
2 —e(log2)/2=1.057915---

The %ﬁ’nal stage of the proof is the examination of Z(M, N), given by
. Let

z = exp ((logn)/(loglog n)z),

On multiplying out Z(M, N) we would obtain sums over p, my, ms with
m;j|(n — p). We want to replace the primes by an essentially larger set
of r < n such that (r, P) =1 for a suitable choice of P. Let

TZ{p<Z}, P(Z):Hp
peP
and
N={r<n:(r,P(z) =1}

Then the primes p < z contribute < n°/2 to Z(M,N) and Z(n — p) <
ne/4. Thus

Z(M,N) < Z;(M,N) + O(n?) (21.104)

where
Zy(MN)=Y En-r?= Y x(mimg) > L.
renN mi,mso reN
M<m;<N my|(n—r), ma|(n—r)
If m;ms and
ny = H p (21.105) |E:n1
pln,p<z

were to have a prime factor in common, then it would divide r which we
have excluded, so such an inner sum would be empty. Thus

Zy(M,N)= > x(mimy) > 1
(myima,nq1)=1 reN

M<m;<N mi|(n—r), mz|(n—r)

We have mq|(n—r) and mz|(n—r) if and only if [my, ms]|(n—7r). Put
d = (mq,mg) and k; = m;/d. Then

(kl,kg) = 1,M < dk] < N, dk1k2|(n— T).



21.5 Some applications of sieve theory 303

Now we split the sum according as to whether d < D or d > D where

D =n'/8,

Thus
Z1(M,N) = Zy(M,N) + Z3(M, N) (21.106)
where
Zo(M,N) = > X(dhkky) > 1
(k1,k2)=1,(dk1ka,n1)=1 reN
M<dk;<N,d>D dk1ka|(n—r)
and

Z3(M,N) = 3 X(dhiks) Y"1 (21.107) [E:Defz3]

(kl,kQ):l,(dklkg,nl):l reN
M<dk;<N,d<D dk1ksa|(n—r)

In the sum Zs(M, N) we have
dk1ke < N2d7' < n™/3(logn)?5.
Given such d, k1, ks the r in the inner sum arise by removing the a with

a = n (mod dkik2) with a < n which haiv$ a prime factor that divides

P(z). Thus we can apply Corollary or q = dk1ks with (g,nq) =1
let
A={a<n:a=n (mod q)}.
Then
> 1=S(AP,2).
reN
ql(n—r)
A (m)
When m|P(z), in the notation of @ﬁwe have
la,m] n
A(m) = 1= ( +0(1)).
m= 3 > (m ))
a=n (mod q) z=n (mod q)
a=0 (mod m) =0 (mod m)

Moreover, since m|P(z) and (g,n;) = 1 it follows that

Q/im) - 1 (m,q) =1
o 0 (m,q)>1.

ym=n (mod q)
Thus
A(m) = Xp(m) + +0(1)
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where
1
= when (m,q) =1,
X=t pmy= et
q 0  when (m,q) > 1.
Hence with z as above, y = n!/16 and s = izgy we have
gz

v(z) =[] -1/p).

p<z

riq
and
3" IR(m)| < XV(2)e".
m<y
Moreover
H(l — 1/p)—1 = exp ((1Og’n)z_1) =1+ O((logn)_lo)
p>z
plg
and
e * < (logn)~1°.
Hence
ZQ(M, N) =
1 x(d?kykz) n
n == +0 ,
<pl;[z ( p)) (,ﬁ%_l ¢(dk1ks) ((logn)5)
(dk1é27n1):1

M<dk;<N,d>D

We first consider the contribution from the d with d > M. In that case
we have k; < N/M. We also know that

o(dkik) < (dk1ks) ' loglogn

and

H (1 - %) < (logn)~*(loglog n)?.

p<z

Thus the total contribution from the terms with d > M is

(loglogn)? Z 1 Z 1>2<<n(log10gn)6
— - —

<n -
logn logn

M<d<N = k<N/M
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Now consider the terms with d < M. In the multiple sum we replace
(p(dk’lkg)_l by

1 Z p(m)
Pldki)ky 2 p(m)
(m,dky)=1
Then we replace ky by Im so that the contribution from ks and m be-
comes
X(d*kylm)p(m)?
2 p(dk1)lmep(m) -

(kl,lm)zl,(dkllm,nl)zl
M<dlm<N,D<d<M
M<dk <N

Next we replace the condition (I, kin1) = by

> nlw

u|(k1n1,l)

and then write [ = uv. Thus the multiple sum becomes

d*k;
X 2, )

m<N D<d<M M/d<k;<N/d
(m,n1)=1 (d,n1)=1 (k1,m1)=1
p(w)x(u) x(v)
> > et
ulking M/(dmu)<v<N/(dmu)

Since (k1,n1) = 1 the sum over u can be rewritten as a sum over u = hj
with hlk; and j|ny and then k; can be replaced by hr. Thus we obtain

h)x(h
Z# ZM )Z Z#()hX()

m<N jlni D<d<M (h,n1)=1
(m,n1)=1 (d,n1)=1
Z x(d?*hr) Z x(v)
M/(dR)<r<N/(dh) pldhr) M/(dmhj)<v<N/(dmhj)

(rn1)=1
The contribution from the terms with dmhj > M is

< i mm,,

m<nN M/(mhj)<d§N/(mhj)

log1 1
Z eoent Z 5 < (loglogn)®

M/(R)<r<N/(dh) ' M/(dmhj)<v<N/(dmhj)
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and the contribution from those with dmhj < M is

1 1 1 1
€ 2 ) 2 2T 2

m<N L d<M/(mhj)

loglogn v
Z g log Z XE})

M/(dh)<r<N/(dh) M/(dmhj)<v<N/(dmhj)
Here the innermost sum is < dmhj/M. Thus the above is

1 1 1 mhj ,
€ 2t 25 2 a2 ar (OEOET)

m<N d<M/(mhj)

< (loglogn)>.

Thus it follows that

log1 6
Z(M, N) < 1281087 (21.108)

logn

It remains to consider Zs(M, N) given by @ Here we replace
the condition (ki, k2) = 1 by the sum

> ul),

U (k1 ,k2)

interchange he order of summation and replace k; by lh;. The dummy
variable [ plays a similar rdle to that of d in Zy(M, N). Thus

Z3(M,N) = > X(dPhiho)p(@) > 1
(dlhiha,mi)=1 reN
M<dlh;<N,d<D dl?hyha|n—r
We now again divide the summation according as to whether [ < D or
not. The contrary case can be readily dismissed, since the total contri-
bution from such terms is

<> ¥ T l%(logn)3 < (logn)T

I>D M/i<dh; <N/l reN I>D
dl?hyha|n—r

We are left with

SN @B > x(mh) YL

d<DI<D M/dl<h;<N/dl reN,(r,P(z))=1
(h1hadl? ny)=1 di®hyho|(n—r)
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The condition (h2,n1) = 1 is a nuisance and it is convenient to remove
it by the usual resort to the formula

> ulv)
v|(h2,n1)
so that, on writing hy = vw, our sum is

DD @@ > Y uw)x(h)

d<DI<D M/dl<hy<N/dlv|n,

(h1dl?,n1)=1
>, xw) Y, L
M/dlv<w<N/dlv reN, (r,P(z))=1
di?hyvw|n—r

Given d, I, hy, v, w, r let

= n—r
T dRPhyvw’
)PP IRICZLIUNED D BTN
d<DI<D M/dl<hy<N/dlv|n,
(h1dl?,ny)=1
> X xwm >t
u M/dlv<w<N/dlv reN, (r,P(z))=1

dI®>hivwu=n—r
Then for a given ¢ we collect the terms with dl?hivu = ¢. Thus w = 2=~

and the multiple sum becomes

Z Z X (1) (1) p(v) x (h1v) Z X(n - r)

< nDAr‘;nl d.lha v €N, (r,P(2))=1 ¢
- dl*hiv|q 7ﬁggr<nf%

1<r<n

qln—r

where d, [, hy, v satisfy
M N
d< D,l<D, dl<h1< ,vlny, Ndlv > q.

Let

X = max{0, [n — Ng/dlv] — 1},Y = max{0, [n — Mq/dlv] — 1},
so that Y < r < X. We also have
3/4 B

q < n’*nq(logn)
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Thus if

Y X< ——
< (logn)™’

then the innermost sum is

Z X(n;T> < q(logn)7

reN, (rP(2)=1
X<r<Y
1<r<n
qln—r

and the total contribution from such terms is
n

< Qognp?
Thus we may suppose that
n
Y -X>» ——.
(logn)T
The general term in the sum over r is +1 according as
DT (mod 4),
q
that is
r=nFq (mod 4q)
and so is

> 1— > 1.

X<rY X<rY
(r,P(z))=1 (r,P(z))=1
r=n—q (mod 4q) r=n+q (mod 4q)

Given m|P(z) and m <y = n'/%, so that mq < n"/®n;(logn)®

[4g,m]

> 1

X<a<lY =1
m|a r=nz+q (mod 4q)
a=n+tq (mod 4q) z=0 (mod m)
Moreover
[t demlnt
0 (4g,m)tn=*q.

r=1
z=nzgq (mod 4q)
=0 (mod m)

3 (M +0(1),

(21.109)

, we have

Since m is squarefree we have (4¢q,m) = (2¢, m) and so (4q,m)|n + ¢ if
and only if (2¢, m)|n+ q if and only if (2¢, m)|n —q. Hence we may apply
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. (v
Corollary ﬁ%n?the main term will be inde%enden;cir(l)f the sign +.

Thus the main terms will cancel and we obtain once more, and
so we can conclude that

n
Zs(M,N — .
(M, N) < (logn)?

Hence, by &%ZI), (%HT%%D and Hﬁm

Z(M,N) < HM
’ logn

-XCSYZ : d
Hence, by ﬁ and W we have

(loglogn)®
Y(M,N —_—
) < gy

where

)\:§_€10g2
2

and this completes the proof of the Hooley-Linnik theorem.

S:SivA .
i@i :5[5 1 Exercises

1. Let R(N) denote the number of solutions of p4+ P, = N with p prime
and P, a number having at most two prime factors. Prove that if IV
is even and large, then

= 1.028957 - - -

NGS(N)
N e AP
R(N) > 3(log V)2
where

p—1
s = ][ 2=

p|N

p>2

and < is the twin prime constant.
2. (V ghan 1973) Prove that at least one of the following two state-
ments is valid.
(a) For infinitely many primes p, 3p + 2 is prime.
(b) For infinitely many n, d(n) = d(n + 2).
3. (a) Let S(X) denote the number of n < X such that n? + 1 is prime.

Prove that there is a positive constant § such that

2X6
log X

S(X) <

+ O(X(log X)*lf‘;)
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where
4

6= WEIQO_ (p((z)llf)l(f’l))

P

(b) Prove that the number S4(X) of n < X such that n? + 1 has at
most four prime factors satisfies

X
log X~

HR74
4. (Halberstam & Richert||1974) §9.5) Let a(n) be the number of solu-
tions of n = 1241 with 1 <[ < X and define for z = X1/4, w = X7/107

WP e = 3 a(n)(l— 3 ;)

Sa(n) >

(n,P(x))=1 PEpw
(a) Show that
W(/q; :])7 Z? w) Z
Y (log(X/u)y  du

+ O(X(logX)*lf‘s)

where V(z) =[], . (1 —p(p)) and p(2) = % and

-1

po(p) =1+ (-1)=  (p>2).
(b) Show that
SeCo

Viz) = o 2 + O((log 2)~?)

:thinl
where G is as in Exercise E%f B
(c) Let S3(X) denote the number of n < X such that n? + 1 has at
most three prime factors. Prove that

26X (log3 0 gy s
X) > 082 _ _ W X(log X
Sa( )_logX< 4 /1/4 80(1—v)>+0< (log X))

. 6X
- 8log X

log g +O(X(log X)™179).

5. Let a be a given nonzero integer and

N@= 3 rp+a)

0<p+a<z
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: (n)
where r is as in d@_ﬁove that

N(;E) N T

:DefSJ
where G(a) is as in @

&(a)

log x

21.6 Almost primes in polynomial sequnces

In exercises above we sieved a thin set, namely the sequence n? + 1 to
limit the number of prime factors. Thus there are n for which n2 + 1 is
an almost prime; in this case a P, or a P3. Suppose we have a sequence
¢(n) of positive integers, increasing for large n, roughly of size n? where
d € N, d > 1, and we want to consider those ¢(n) with n < X which
remain when those terms with a prime factor p < w are removed. Except
possibly in very special cases one cannot expect sieving techniques to
deal with prime factors p significantly larger than X and the expectation
is that one will need to restrict to the situation when w = X% with 6 < 1.
We can hope to cope with a 6 satisfying

% <0<1, (21.110)
but not with a larger . Thus the best we could conclude is that there are

n so that c(n) has at most d prime factors p with p > w. It remains to.
see what can be said for smaller prime factors. In exercise Wi

a suitable set of weights and 6 = 1—70 it can be shown that some of these n
have at most one prime factor p < w and so there are infinitely many n
such that n?+1 has at most three prime factors. This argument is readily
modified to deal with general irreducible quadratic polynomials. For
polynomials of higher degree, d > 2, the requirement that olds
becomes too demanding for the system of weights to give a concomitant
conclusion. We require more sophisticated weights and to this end we use
those introduced by [Richert| (1969). These lead to an elegant conclusion.

Theorem 21.19 Suppose that d € N, d > 2 and g € Z[z] is irreducible

over Q and has positive leading coefficient. Let
Ny(X) = {m < X : Q(g(m)) <d+1 and (g(m), P(z'/*)) = 1}.

If for every prime p there exist integers m such that (g(m),p) = 1, then
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Let a(n) denote the number of m < X such that g(m) = n, let r(m)
denote the number of solutions of g(x o= 0 (mod m ) and let p(m) =
r(m)/m. Then in the notation of we have and

[R(m)| < r(m).

Thus we need to understand the behaviour of r(m), certainly when m
is squarefree. It is also useful to understand r(p?). A substantial part of
the input here is from algebraic number theory.

Theorem 21.20 Suppose that g € Z[x] is irreducible over Q and r is
as above.

(i) There is a positive constant cq such that whenever' Y > 2 we have

Z r(p) =1(Y) 4+ Oy (Y exp(—cg4/log V). (21.111)

p<Y

(ii) Suppose that p does not divide the discriminant Dy of g. Then for

every k we have
r(pF) < d. (21.112)

(iii) Suppose that m is squarefree. Then

r(m) < d*™, (21.113)

Proof We begin by dismissing the second and third statements. The
function r is multiplicative and since the polynomial ¢ is irreducible
it does not have a fixed prime divisor. Hence, by Lagrange’s theorem
r(p) < d and (iii) follows. Moreover, when p { D, and there is an x such
that g(z) = 0 (mod p) we have ¢'(z) #Z 0 (mod p) so by Hensel’s lemma
2 lifts to a unique solution modulo p?, and likewise modulo p3 and so
on. Thus (ii) holds.
To prove the first part we require a classical result on prime ideals.

Lemma 21.21 (Dedekind—Kummer) Let K be a number field of the
form K = Q(0) with 6 € O and suppose that f is the minimal polyno-
mial of 6 over Z[z]. For any prime p not dividing [Ok : Z[0]] consider
the factorization in F,[x]

B) = b ()™ ()

where the hj(x) are monic irreducible polynomials and each d; € N.
Then the ideal (p) factors into prime ideals p;

() =it i

and N(p;) = pi®"i where N is the norm of K.



21.6 Almost primes in polynomial sequnces 313

This can be hard to m down in standard expositions of algebraic
number theory, but see Wklrch (1999)), Chapter 1, Proposition 8.3 or
Hfg (1970) Chapter 1, Proposition 25.

We note also that

dydeghy + -+ dpdeghy =d

and so k < d.

Let ax be the leading coefficient of g and let h(z) = af 'g(za;').
Then h € Z[z] is monic and irreducible over Q. Moreover when p { ay
we have

r(p;g) = r(p;ih).
Let 6 be a root of h and let K = Q(6). Since f is monic we have 6 € Ok.

Hence by the lemma we have

(pg) degh

for each prime ideal p; factor of (p). Moreover r(p; h) is the number of h;
in the factorisation of h over IF,, which are linear, i.e. degh; = 1. Hence

= > L
pl(p)
N(p)=p

Therefore if we choose Yy so that when p > Yy we have p { a;[Ok : Z[6]],

then
o g = >, 1- > L
Yo<p<Y Yo<N(p)<Y pl(p)
Yo<N(p)=p"<Y
2<r<d

By our observations immediately after the lemma, the second sum on
the right is

<Y d<yl2

p" <Y
r>2

The theorem then follows from the prime ideal theorem, Theorem 8.9.
O

Proof of Theorem%L Let X be large and

1 log3
= XV w= XYY ve(1,4), A e (5, 12?4). (21.114) [E:vparans

There is some flexibility in the choice of v and A and determining what
values are possible is quite instructive. Whilst we leave the exact values
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of v and A open at the moment we will ultimately choose v close to 1
and then any A satisfying the above will work. If we wish to maximise
the lower bound in our theorem then we should take A close to 1/2.

With a(n) as defined immediately after Theorem we let
o) = * Alog(w/p)
W(Xig)= > aln) <1 - > ogw (21.115)
(n,P(z))=1 z§1|)<w
pln

where Z* indicates that we exclude n with a repeated prime factor p
in the range z < p < w. Note that no n counted by W can have more
than 4d prime factors.

First we observe that the sum over n with the condition Z* can be
replaced by the sum over n without this condition with an error

<<Z Z a(n)d

n z<p<w
p’ln
=2 >
z<p<w m<X

g(m)=0 (mod p?)

X 2
« ¥ XS
2<p<V'X P VX <p<w

Since p > z > D, by Theorem . rill the above is
< d*X27 4 dPw.
Hence
W(X;g9)=5(4,P,z)

- Ms(,qp,?,z)Jro(X(logX)’Q) (21.116)

2 log w
where P is the set of all primes. Now we have
A(m) = Xp(m) + R(m)

where

and
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Let
X 1
Y (log X )d+3 ’
say, so that
loglog X
0<n< % (21.117)
and assume that
v>14mn,

so that w < y.
By the third part of Theorem

5™ w2 r0m)| <y IT (1+ ") < y(togy)”

m<y p<y p

rho

and by the second and third parts

ST S wm)?R(pm)| < y(logy)H.

z<p<w pm<y

Thus, by Theorem@rM
S(4,P,2) > XV(z)f,GZiy) +O(X(log X)"17%).  (21.118)

Here
V(z)=]] (1- o) (21.119)
p<z
and by w and partial summation this satisfies
1
V(z) > e (21.120)

Note that as gll%sQ no fixed prime divisor we have r(p) < p. Similarly by
Theorem

Z MS(JZIP,T,@ <

log w
z<p<w &

DS p(p)Alog(w/p) f+<10g(y/p)> +O(X(log X)),

Z<p<w log w log 2z
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By d%_%fﬁ the properties of fi given in @% by partial summa-

tion we have

r(p)Alog(w
T (p)Alog(w/p)

L5 plogw log z

f (10g(y/p)

)

- [ sty

log(y/t)
t(logt) logw I+ (

Tog - ) dt + O((log X)7?).

By the change of variable t = X'/® we have

/w Alog(w/t)

log(y/t)
t(logt)logw T+ (

log z

)dt

For a € [v,4] we have

4 4 4
0< ———<——-1<3.
147 o= 147
1f+1f
Hence,by(@ﬁ
4 C 4
AMa — 4 4 2e~0\ —v)(1
/ la v)f+( ——)doz: ¢ /(a v)( Jrn)doz.
v a? 1+n7 « 4 ), ala—1-—mn)
The integrand here is
3_1}—1—77
a a—1-—n

so the integral is

3—n

4
vlog— — (v —1—n)log ———.
v

. B
Now we advert to (% ‘We have

logy _
logz

Hence, by @

logy
/- (log z

) =2e“0(1+41n)

v—1—n

4

1+7n

log T57

4

: if [E: B . d
Thus, by d% m and (@%e have established that
c

0
W(X;g) > - XV(2)=2

+O(X(log X))
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where

4 3 —
E:logS—)\(vlogf—(v—l—n)login).
v v—1-—n

We can choose v so that v — 1 — 7 is as small as we please, so the term
3S—n
v—1—n

- und
can be made as small as we please, and then, by @ﬁ will also be
close to 1. Thus we can make = close to

(v—1-mn)log

log 3 — Alog 4,
which this will be positive as long as we choose the constant \ to satisfy

]
A< 083 794
log4

We now examine W from a different direction. Consider an n counted
by for which the term

b(n) =1— Z Alog(w/p)

vapaw log w
pln
is nonnegative. Let p1,--- ,p; be the primes counted in this sum and let

k be the number of prime factors ¢ of n with ¢ > w. Then the expression
above is

log(p1 1)

1—-XAj+ A
log w

We also have
p1op; <nw P < CXwk

for some constant C' > 2. Hence

log(C X 4w=F)

1=+ A ,
log w
so that
1 vlog C
Qn)=j+k< = d
(n)=7+ _)\—i-v + Tog X
By@%vehave
log 4
BE A<

log 3
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Since X is large the last term is negligible, and as v can be taken arbit-
rarily close to 1 it follows that given any € > 0 we have

1
Q(n)<X+d+5<d+2.

Thus

and so, as b(n) <1,

S am = Y almbin) = W(Xig) > XV(:) > o

log X
(n,P(2))=1 (n,P(2))=1
Q(n)<d+1 b(n)>0
as required. O
21.7 Notes

. S 1
Section 21.1 For background on the exercises 23 see the notes to
:PrimesAP3 H 2
Chapter and for later work see Cha; Vter
Section 21.2 The argument of ﬁ% readily extended to all dimen-

sions k. There are considerable complications of detail, although no new
ideas of principle are required. In some cases the analogues of ¢4 are
most conveniently represented by a contour integral. For the full details
see the standard work on the subject, [Friedlander & Iwaniec| (2010). It is
not clear that questions requiring dimension x > 1 are not better served
by other methods. For example the core method applied in Chapter 22
uses a form of the Selberg idea. o
- S1V

Section 21.3 For the best bound for G(p) in @Lﬁercise 2, and
some history, see Shoup| (1992).

Section 21.4. Exercise 1. It seems quite possible that this is the ex-
tremal example for sieves of arbitrary dimension x € N. This observation
does not seem to be in the extant literature. However it may not be ex-
tremal for sieves which are mot products of sieves of lower c_limensizon.

Sn)e)]gcdion 21.5. The account of Chen’s theorem, T he%%r} ] 1S based
on [Ross| (1974). The weights are essentiall those of [Kuhn| (1941, [1954)).
[Hooley| (1957) established Theorem v assuming the Riemann
Hypothesis for Dirichlet L—function§VTf2gmed from Dirichlet characters.
This requirement was removed by [innik| (1963) using his dispersion
method. Then it was observed by [Elliott & Halberstam| (1966)) that this
can be simplified by using the Bombieri—Vinogradov theorem, Theorem
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. _V' H/i6A
@“S% also Theorem 5 of (1976)). Hooley’s use of the asymp-

totic sieve has never been superseded and is combinatorially quite in-
tense, which in the interests of digestibility we have expanded somewhat.
Hooley’s paper was also the first appearance of a A function, which is
now usually written in the form

A(n) = maxcard{m|n : u < m < eu}. (21.121)

P 4 H79
It appears in this modern form in (1974), and then in

, about 20 years after Hooley’s work described here, and was de-
veloped then either for its own intrs or by Hooley for applications
in additive number theory. See also Vaughan .
This lead to a substantial body of work, for which see [Ha Tenenbaum
, and is still of ongoing interest. See the Wikipedia article on the
Hooley Delta function.

Concerning Exercise 21.5.1.2, f%% some history of questions related to
the equation d(n) = d(n + 1) see [Erdds, Pomerance & Sarkozy| (1987).

Section 21.6. The first part of Theorem Wmany expositions of
sieves is rather airily said to follow from the prime ideal theorem, The-
orem 8.9. However as we_show here, there is more to it than that. Some

details were iven by (1952). For other sources and background
ﬁié“ se

to Lemma e

https://encyclopediaofmath.org/wiki/Kummer_theorem or
https://en.wikipedia.org/wiki/Dedekind-Kummer_theorem or

https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf .

pdf )

Weights improving on Kuhn’s were ﬁrst introduced by m
dmdand developed further by [Richert| (1969) (see also
(1967), Halberstam & Richert (1974) and |Greaves| (2001))).

In the special case n? + 1 Twaniec| (1978a)) has pushed things further
and shown that there are infinitely many n such that this polynomial
has at most two prime factors. This depends significantly on a deeper
analysis of the error term leading to an expression as a bilinear

;SumsPrimes

form where ideas can be employed similar to those in Chapter

We have only touched the surface of possible applications of sieves,
even the linear sieve and applications to almost primes. There is a long
and complicated history of such results going back to the 1920s. Let P,
denote a number having at most r prime factors. Then it can be shown
that for each large x there are y,.(x) so that the interval (x — y,(z),
contains a P,. In the case r = 2 the current best result is due to @


https://encyclopediaofmath.org/wiki/Kummer_theorem
https://en.wikipedia.org/wiki/Dedekind-Kummer_theorem
https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf
https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf
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(2010) where it is shown that

_ 101
T 232
is possible.m%?\ofariant of this is to establish such a result just for almost all
x. Thus in[Matomaki| (2022) it is shown that there exists a constant ¢ > 0
such that the following holds. Suppose that z > 2 and 2 < h < X1/100,

Then
Z 1>ch

z—hlogr<n<z
(n,P(X'/%)=1
Q(n)<2

y2(z)

for all z € (X/2,X] apart from an exceptional set of s of measure <
X/h.

Another class of questions which has been studied is, given k& € N and
l € Z with (I,k) = 1 to find exponents e, such that there are P, =1
(mod k) with P. < k¢r. Thus in [Cai, Li & Zhang| (2023) it is shown that

LITe

es = 1.8345 is possible, improving on [waniec|(1982)) who had e; = 1.845.
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22

Bounded Gaps Between Primes

22.1 The GPY sieve

An important role is played in the most recent developments on gaps
between primes by suitable sets of prime k-tuples. Thus before proceed-
ing with this chapter thﬁ3 Sreader would be well advised to review the
contents of Section e principal idea is to use artifacts from sieve
theory, especially the Selberg sieve, not directly in the form of a sieve
but as a means to increase the likelihood that certainly constellations of
k-tuples have relatively few prime factors.

As a preliminary observation consider the startin, poingcelfor the Sel-
berg upper bound sieve (see Section 3.2 or Theoremg@ﬁsche form
2
> (X )
aca q<R
qla

H ber,
and from the argument above Theorem @Lﬂﬁﬁ one is planning to
minimise this under the assumptions that A(1) = 1 and that

Ad)=>"1

acAa
dla

can be approximated by an expression of the form
Xp(d)

where X is a good approximation to A(1) and p is multiplicative. The
minimising choice of A(q) is given by

_ S(R.q) 1
Aa) =) g g7y 11 <1 — p(p>>

plg

323



324 Bounded Gaps Between Primes

where

S(Rq)= > wa)? o)

1—
r<R/q plg p(p)
(r,q)=1

Typically we apply this when the sieve is of dimension k, i.e. when
log p
S o) 2 = klogy + 0(1).
Py p
Under this kind of condition one might expect that
S(R,q) ~ C(log R/q)* T] (1 = p(p)),
plq

and so A(q) could be replaced by

Ok O
A(q)u(q)llgog(,f%]éq) (q)(l lgq)k-

- B log R

Indeed this is correct, and whilst we encounter some loss in precision in
the final conclusion, there is one significant advantage, namely that this
choice of A(g) can be applied quite effectively to any sieving question
where the dimension is k.

Let 15 denote the characteristic function of the set of primes P. Then
our basic idea is to construct an expression of the form

) (ijﬂﬂﬂ’(wrhj)—@)( > A(q))2 (22.1)

N<n<2N \j=1 a<R
q|Z(n;h)
where Z = Hle(nJrhi). Since our object is to construct a large number
of primes in a short interval, the k-tuples h thaets we consider will always
‘l(ﬁ“)pev (gﬁdmissible in the sense defined in wrinkle introduced by
iGoldston, Pintz, & Yildirim| (2006) is to use a more general A(q) of the
form

M) = nf (2 h)

E:GPYsievel

' sievel
where f is at our disposal. If one can show that the expression in @T

positive, then it follows that there are n such that the number of primes
amongst the n + h; is at least | o] + 1. Such a sieve application is now
known as th‘e1 MqlfY sieve.

Following [Maynard| (2015]) we will use a more sophisticated version of
this. Let n + h denote the k-tuple (n+ hy,...,n+ hi) and let d denote
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the k-tuple (dy,...,d;). We generally use the notation z to denote the
k-tuple (z1,...,2r). Moreover, given two k-tuples d and r of integers,
we define d|r to mean that d;|r; for all j. We also let [d, e] denote the k-
tuple (lem[dy, e1], - -+ ,lem[dy, ex]). Finally, whenever we name a k-tuple,
say a = (a1,as,...,ax), we are implicitly setting a = ajas - - - ai.

First of all we perform some initial sieving for small primes so as to
simplify some later expressions. A simple way to do this is to restrict
our attention to a given residue class ¢ modulo g where

q= H D, Q = logloglog N (22.2)
p<Q

and N is a large integer parameter. Since the k-tuple h is admissible,
there exist residue classes a (mod ¢) for which (a + hj,q) =1 for 1 <
j < k. If we restrict n to the arithmetic progression n = a (mod ¢), and
look for primes among the k-tuples n + h, then the heuristic approach
we used in would predict that the frequency of k-tuples of primes
encountered would be governed by the singular series

G(h):pH (1—ﬁ)(1—1)k~1

p p

for large N.
Now we consider

> (iﬂﬂ’(n"’hj)_Q)( > A(d)>2. (22.3)

N<n<2N j=1 d<R
n=a (mod q) d|n+h
(d,g)=1

In the first instance we ought to consider

A(d) = p(d)g(d)

for some suitable g. However we shall be carrying out diagonalisation of
quadratic forms in the A and this leads to a natural representation of
the A(d), when d is squarefree with (d q) = 1, in the form

M log log 7
A(d d)d ( ey ) 22.4) |E:Deflambda(d
Z logR’ " logR ( ) | eflanbda(d)

(7q) 1

We further suppose that

suppf =R={x € [0,1]F 1z +--- + 24 < 1}. (22.5)

There are two major tasks to be undertaken. The first is to obtain a
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: Sieve : lambda(d)
good approximation to 155% with 1552 for a wide class F of f. In

practice this means good approximations S*(f) and T*(f) to S(f) and
T(f) where

with

S=5=Y whn)( X A@), (220

N<n<2N d<R

n=a (mod q) d|n+h

(d)Q):l

2
TH=T= 3 (X Axa). (22.7)
N<n<2N d<R

n=a (mod q) d|n+h
(dvlJ):l

The second is then to maximise the ratio

S*(f)
T*(f)

over the class F. The optimal solution to this latter task is not known,

although the former can be carried out for a very wide class, for example
for f for which the partial derivatives are continuous on R, and even this
requirement can be relaxed somewhat.

Since we have to deal with T'(f) as well as the S;(f), we are pretty
much forced to choose A(d) corresponding to a k-dimensional sieve, al-
though in S;(f) since one of the variables is prescribed to be prime we
would only need a k — 1-dimensional sieve. On the other hand the norm-
alisation we choose means that the logarithmic powers are essentially the
same, and since the prime factors p of the d satisfy p > Q = logloglog IV,
any factors such as

pk _ kpk71
_ 1)k

o P
will be close to 1, at least on average and so will not differ in any im-
portant way from the k — 1 version.

A major input into the approxin_latgl%lilflc‘)’ra rsi*]( f) will be the Bombieri—
Vinogradov theorem (Corollary EE)%; or a variant thereof. We define the
level 6 of distribution for the prime numbers to be the assumption that
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for every sufficiently small positive § and every A > 0 we have

Z max sup |w(y;r,a) — li(y)

—A-
<05 (a,r)=1 y<zx (p(?")

<5,4 z(log x)

The Bombieri-Vinogradov theorem asserts that 6 = % is permissible.
However it is useful to be able to see at once the consequence of the
Elliott—Halberstam conjecture(f = 1) or some intermediate improve-
ment in the Bombieri—Vinogradov theorem.

Let R; denote the set of (k —1)-tuples (t1,....t;—1,tj41,...,t) with
t € R for some t;. We define J to be the class of functions f, not identic-
ally 0, defined on R such that for each j, if t* = (t1,...,¢—1,tj41,. .., tk)
with ¢; > 0 and ¢1 4+ -+ +tj_1 +tj41 + -+ -+ tx < 1, then the function
f1(t;) = f(t) is absolutely continuous on [0,1 —#; — - —t;_1 —tj11 —
-+ —tg]. Given an f € J it is useful first to extend its definition to [0, 1]*

by taking it to be 0 outside R and then to presume that
F(f )—sup|f |+Z sup /1‘W(t))dtj. (22.8)
1 t7€R; Jo 3tj
is bounded.

Theorem 22.1 (Maynard) Let k > 2. Suppose that the primes have
level of distribution 6 where 0 < 0 < 1, let 6 be a sufficiently small

positive number and let N bqe a large positive integer. Put R = Ng_é
define Q and q as in and f and R as in @—% assume f € F.

Let h be an admissible set and choose a modulo q so that (a+hj,q) =1
for each j. Let

1 2
Ij = / (/ f(t)dtj> dtl"'dtj_ldtj+1"'dtk,
[0,115=1 \Jo

J:/ f(t)%dt,
[0,1]*

DefS_j(f) E- (
and let S(f) and T(f) be as in W@T—?ﬁen as N — oo,

(1+ o(1))p(q)"N (log R)***
¢**t1log N

k
D1

S(f) =

j=1
and

0 k
T(f) = (1+o0(1))p qiglN(logR) g
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In particular,

S:GPY .
1 Exercises

(1974)). Let P be the set of all primes, let X > 2 and let A ={n:
Y <n <Y + X}. Further suppose that z > 2,

2=11»

peP
p<z

and

A(E) = p(k) L (k < 2),
0 (k> z).

(a) Prove that |A(k)| < 1 for every k > 1, and that

ZM |<<

k<z

-STI
(b) Prove that, in the notation of Chapter @?ﬁ

AR)A(D) 22
PA =X T +0 ()

(¢) Prove that if @ > 1 and A > 0, then

Z @ IOg% - % + 0(071/2(7“)(1% QQ)fA)'

n<Q
(n,r)=1

(d) Prove that

=

2

(log 2)

k.l )

(e) Prove that

X X + 22
5(4,P,x) < log = +O((1ng)2>.
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(f) Let P(2) = ][,<, p- Conclude, in the notation of Section 3.1, that

S(X,Y, P(z)) < lo2gXX (1+O(log1X>>’

and that

2X X
(X +Y)-—m() < Tog X +O<(logX)2>'

Compare with this with Theorem 3.3 and Corollary 3.4. Thus,
although the A used here are not exactly optimal for the method,
they yield the same estimates.

2. Let P be the set of all odd primes, let z > 2, 2 ={p—2:p <z} and
X =li(x). Further suppose that

3<z2< x1/4(10gx)_3

for a suitable positive constant B and P(z) and X are as in the pre-
ceding Exercise. (Note that 2 is now omitted from P).

-STI

(a) Prove that, in the notation of Chapter ﬁ*
S(a,?,z) < XZ +0(X (log X)72).

(b) Prove that if @ > 1, ’I"|P(Z) and A > 0, then

Z g CH*—FO o_12(r )(10g2Q)_A)
n<Q
(n,2r)=1

where

C—2H(

is the twin prime constant
(¢) Prove that

(log2)? ) MEAD) _ > “ir)? +0(1)

where
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and so, for squarefree r,
r)=r]J(-2/p).
plr

(d) Prove that
1
wu(r 08z .

r<z )
2tr

(e) Prove that

dex z(loglog x)
< .
S(A,P@) < (log )2 + O( (log x)2 )

(f) Conclude that the number Na(z) of primes p < z such that p —2
is prime satisfies

dex z(loglog x)
M) < gyt + O ogar )

. S‘
Compare with Exercise %ﬁ? Again, these A\ work quite nicely
for another sieving problem of dimension 1.

22.2 The Proof of Maynard’s Theorem

The proof of Theorem %pllsa—:ﬁ%vided into several stages. Fortunately
tge {reatments of S(f) and T(f) are similar. Initially we do not assume

ut suppose only that the A\(d) are general real valued functions
with support satisfying dy ---dp = d < R, (d,q) = 1 where ¢ satisfies
dﬁ%ﬁﬁnd d squarefree. Thus it can be supposed that (d;,d;) = 1 when

i # 7. We begin with the normal diagonalisation process. To this end it
is useful to define the multiplicative function ¢s(n) by

Zu o(n/m),

m|n

S:MaynardThm

so that

=Y pa(m)

m|n

and in particular pa(p) = p — 2 and @2(p') = (p — 1)?p'~2 when t > 2.
When ¢9(n) appears below, n will be odd and squarefree.
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Lemma 22.2 Forj=1,...,k let
A(d)
() = nlrealn) 3 S
la

where Zj indicates that the summation variable is a k-tuple, say d,
which is restricted by d; = 1, and let

() = 1)) T st}
v
Then
A(d) = p(d)p(d) Zj ij ((:; (22.9) [E:lambda(a)Formulat
dir
and
A(d) = u(d)d; Z((’;g . (22.10) [E:Tambda(d)Formula2
dir

Proof 'This is Mobius inversion. Consider

)
Z: @a(r)
d|r

On substituting the definition of x; this becomes

J (s) ]/\8
ZWZ 6= 2 o)

r
d|r r|s dhﬂs

The innermost sum is a sum over rq,...,7j_1,7j+1,. . ., "'k with d;|r;|s;,
and the general term is p(r) = p(r1) - - p(rj—1)p(rjs1) - - - p(rg). Thus
the sum over r; is pu(di) 32 |, /a,) #(ti) = 0 unless s; = d; in which case
it is p(d;). Thus d; = 1 and

iki(r) o Ad)
% o) ~ M@

- 1nmbda(d)Formu1a1

which is equivalent to
da(d)Formula2

The inversion formula ollows in the same way. [
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. . . - lambda(d) . .
At this point we observe that if Eg? were to hold, then it follows in
the same way that

_ log log ri -
k(r)=f (10gR7 g R (22.11) |E.kappa(r)Form

and then any bound for f predicated on @ﬁ%ith f € F will hold for
Kk also.

Lemma 22.3 Let

K; = max|k;(r)|, K =max|s(r)|.
8 8

Then for any firted A > 0,

S;

i Hj(r); +O(

N K}p(q)" 2N (log R)* 2
~ plg)logN ZT: pa(r )

*+1Q

and
2

N slr) K?2N(log R)*
T=7 o(r) +O< 9Q )

Proof We set the pattern with S;. Not only do we need to substitute
#; for X in the main term but we need suitable bounds for the A(d) in
any error terms which arise. Moreover, we need to do so in terms of k

and k; rather than A.
We square out and invert the order of summation. Thus

Si= > MdAe) > Lp(n+hy).

d,e N<n<2N

dj=ej=1 d,e]|n+h

n=a mod ¢q
We recall that for A(d) # 0 we have d squarefree and (d, ¢) = 1. Therefore
(du,dy) =1 when u # v. Likewise for e. Also if p|n+h,, and p|n+h,, then
p|hy — hy, and this is impossible since p > logloglog N > max |h, — hy|.
Thus, when u # v, ([dy, €], [dv,e,]) = 1, whence (d,,e,) = 1. Since
d; = ej = 1 we have [d;,e;] = 1. Hence in the inner sum we are left
with the system of congruences n = —h; (mod [d;,e;]) i # j and n = a

(mod ¢g). Then the innermost sum can be rewritten as

> 1..

N+h;<p<2N+h;
thjfhi mod [di,ei] (l?fj)
p=a-+h; mod q
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By construction (a + hj,q) =1 and (h; — h;,de) =1 when i # j. Let

k

m = q[lds eil, (22.12)

i=1

2N+hj dt
X = =
Ntn, logt

and
li(z)
p(m)

E= Z* [A(d)A(e)] max  sup

m(x;m,b) —
1o (bym)=1gz<2N+H

where Y"" indicates the restrictions d; = e; = 1 and (dy, e,) = 1 when
u # v, and H = max; h;. Then

o * AM(d)A(e)
S; de:e ~om) +O(E).

E-lambda(d)Formulal . .
By (22.9)), on taking the maximum over d with d; = 1 we have

* Kjp(r)? p(d) —* pls)?
max |A(d)| < max ¢(d 227 — K. max .
B N < oo, old) D = = Kymgx 5 D o
dlr (s,dq)=1

(d,q)=1
Thus

o(d) 1 k-t k—1
max |A(d)| < K; max 1+ —— < K;(logR .
s V< Kmp Ty T (14575) - < KitosR)

ptd

A concomitant argument shows that

max [A(d)| < K (log R)*. (22.13) |E:max|lambd(d) |Est

Now consider the number of ways that the modulus m/q can arise in E.
By this is squarefree and so a prime p dividing m/q can divide
exactly one of the [d;, e;]. Since then @ # j, there are k — 1 choices of 4
and for any one choice there are three possibilities, p|(d;, e;); p|d; and
ptei pte; and ple;. Thus there are at most (3(k— 1))w(m/q) < (3k)w(m)
possible d, e which give rise to m. Therefore

li(x)
E < K?(log R)** m)2(3k)“™) max sup |w(z;m,b) — .
0w R 3 w00 e, s [t ) =
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Crudely we have

Z n(m)?(3k)% (™) max  sup

m<qR? (bym)=1z<2N

li(z) ‘

m(x;m,b) — ()

< Y u(m)* 3k Nm ™ < N(log N)©GH”,
m<qR?

Thus, by Cauchy’s inequality and the form of the Bomblerl —Vinogradov

Theorem for 7(z;m,b) given by Corollary mv:lem aife

2 -A
E < KjN(logN)

It remains to deal with the main term for S; and it is desirable to
rid ourselves of the condition that (d,,e,) = 1 when u # v. That this
is possible without undue effect on the main term is due to the prior
sieving resulting from the choice of the residue class a modulo ¢q. Thus
any primes p which can potentially divide (d., e,) satisfy p > Q.

We have

1 o((di €i))

el ~ pldpey Pldned) =" > ealn),

and p(m) = 9(q) [1,; #((ds. ). Hence

1 1
o)~ 2@)p(dele) nlenIewz(n).

nildi,nile;

We substitute this in the main term and invert the order of summation

to obtain
X * Ad)\(e)
EOPIREUD =
n|d,n|e

We now take the first step in dealing with the condition (d,,e,) =1 for
u # v. We replace it by
z p(Suv) -

Suvlduysuv‘ev
There are various observations we can make with regard to the s,,. We
have n,|d,. Thus (d,,n,) = 1. Hence (Suy, ny) = 1. Likewise (Syq,Ny) =
1. Also, when w # v, Sywlew and (ey,e,) = 1. Hence (Syy, Suw) = 1.
Likewise, (Suv, Swy) = 1 when w # u, and so in summary

(suvanu) =1, (Suvan'u) =1, (SumSuw) =1, (Suvvswv) =1 (2214)
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Thus
J * Ad)A(e)
2 0™ 2 S
n|d,n|e
i Ad) i Ae)
- et z I (z “”(Cl))(Zl M)
nld nle
Suw|du Suvley

t indicates P holds cubsti ,
Where > 1nd1cat§s that @—]’Eldb. We now substitute the &, defined
in Lemma or the A\. Thus the above becomes

_HOuv) (b
o2 (I g )s@n®)
uFv
where a = (ay,...,ar), b= (b1,...,b;) and

au:nuHSUAM bv:anSuv~
v U
vFEU uFv

J

In particular a = b = ns where s = Hu;év Syuv- Thus the main term is

X 71 AC a)K;
<P(Q)zn: 4,02(77,)2 @2(5)2”1( )k (b) -

Suwv

uFv
Since n; = 1 the terms with s > 1 contribute

2

K}N 3 dy—1(n)p(n)* 3 di—1) ()1(5)”
(@)log N P2(n) = Pa(s)?
(n,q)=1 (s.0)=1

The inner sum is

<<—1+H< !

p>Q

~—

1
) QlogQ’
and the sum over n is

< JJ @ 1)/(p—2)) < (p(q)(log R)/q)*
Q<p<R
Thus the total contribution from the terms with s > 1 is
2 k—2 k—2
K3p(q)" *N(log R) .
*1Q
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For the remaining terms we have a = b = n. Thus they give

X J PN 2
Z()

elq) & w2(n)

We recall that

2NThi gy N N
[ X (v
N+n, logt logN (log N)

Moreover
Z ( )? sz H (14_#)1671
pla) 5 pal <2 ospcr S P2
o i (e@)" *log R)*

qkfl

This completes the proof of the approximation for S;.

The proof of the approximation for T is essentially the same, except
that we do not use Bombieri’s theorem and we do not have the restriction
that d; = 1 to contend with. Thus on the initial application of the
Chinese Remainder Theorem the main term is

N

9

m

) : lambd(d) |Est o
and the error term is O(1). By 152‘ l }3) we see that the total contribution

arising from this error is
< K?R*(log R)** 2,

which is acceptable. Then just as the function ¢ now plays the role
that @2 played earlier, so the x; is replaced by its understudy . Then
the process of replacing A by k is identical, as is the elimination of the
restriction (dy,e,) = 1. O

The functions x; and & introduced in Lemma [2Z are clearly,
to each other, as can be se?nSForBllcltly by (22.9) ( Thus
when we insert the ;E?l@g info the definition of x; and invert the order

of summation we obtain (when r; = 1)

() = n(r)pa(r) 3 58 37 )
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Write e; = d~/7“i and t; = si/ri. Then the inner sum is

Z /~L (r)ru(t/t;) _ rp(s/s;)
e(r)e(t/t;)  e(s/s))

e|t

Ejzl
On using the notation 7t for (rity,...,rxt;) we find that

_ Tpa(r) n(t)e(t;)p(t))
kj(r) = e zt:n(rt)W.

The terms with ¢t > ¢; contribute

<K Z p(t Z (’f—l)w(n)ﬂ(“V’

t;<R J) n>1 p(n)?
(tJ7q) 1 (n,q)=1
we have
w(t;) H 4 ) (q)
Z < log R
t;<R p(t; ) o<p<r P~ 1
(t] q)=1
and
(—1+H< )>)<<Q1
Q>p
Since also
T@Q(T)2 -1 + O(I/Q)
o(r)
it follows that, when r; = 1,
k(1) (Kw(CJ) log R)
Kj(r) = +0 | ——————— 22.15) |E:kappa_j(r)Est
=200 «Q (2215) |
where ' = (7“1, o ,Tj_l,t]',Tj_H, e ,’I“k).

Having come this far, we should take stock. The ultimate aim is to
maximise the ratio

" i ()2
;ZT: ©2(r)

a(r)Form
We henceforward make I‘p eassumtpt(lon that @_h_olﬂf with f € F
which, by [£Z.10), gives (22.1);
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The final step of the proof of Theorem@ﬁ%btain smooth approx-
imations to the main terms in Lemma e have standard methods
of carrying this out when k£ = 1, i.e. » = r1. We adopt the simple expedi-
ent of establishing a suitable one—-dimensional approximation and then
applying it k times.

Suppose that g : [0,1] — R. Then we call g [-piecewise absolutely
continuous on [0, 1] when associated with g there is a partition ag = 0 <
a; < ...<a; =1of[0,1] such that for 1 < j <1

L. gy(aj—1) =limg 4, ,4 g(x) and g_(a;) = lim, 4, g(x) both exist,
and
2. g is absolutely continuous on [a;_1, a;] when we replace g(a;—1) and

g(a;j) by g4(aj—1) and g_(a;) respectively.

We define §(I, G) to be the class of [-piecewise absolutely continuous
functions g on [0, 1] such that

1
sup Jg(v)| + / 19/ (0)|dv < G
vel0,1] 0

We observe in passing that in practice it suffices for our application that
¢’ is continuous except for at most one x in [0, 1] where g and ¢’ have
jump discontinuities.

Lemma 22.4 Suppose thatn : N — R is multiplicative with its support
on the squarefree numbers, that 0 < n(p) < 2, and that there is a constant

C such that whenever p > C' we have

Suppose also that g € §(I,G) and m € N. Then

logn
Z n(n)g ( lo x)
n<z &
(n,m)=1

- e(m)/olg(w dvlogHO(ZG(l t2 loffp) IT (1 zlo))

plm plm

where

&(m) = @ [T @+n0p) (1 —~ %)
ptm
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We also have

plm).

S(m) < -

In order to make a comparison with the main term, which is of size

1
= Mlogm/ g(v)dv,
m 0

it is useful to observe that the error term is

< Gm(log log 3m)3.
m
Proof We begin with the case when g is identically 1. Also we may
suppose that n(p) = 0 when p|m. Let p be the multiplicative function

with p(p) = 1(p) —1/p, p(p*) = —n(p)/p, p(p') = 0 (t > 3) and let v = 0
or 1. Then

uln u
and
Z(log 20" |p(h)] < Z (log 27"st)”M(T728t2)2C“’(5) Z Ciw
<y T'st2§y rst ult Y
r|m,(st,m)=1
logp 1
< (1+ — 1+ —).
(255 IT0+)
Also
> oDl < o S0 Do)
z<I<y l
Therefore
S = 3 25w (10e 2+ o)
n<x u,v v<zx
- wv<x -
logp 1
_ G(m)logx—l—O((l-i-Z . ) I1 (1+ p)).

plm plm

Now we apply this to general g € (I, G). Let

E(z) = Z n(n) — &(m)logx

n<x
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and choose a; as provided by the definition of §(I,G). When z% -1 <

n < x% we have
logn %
s(ir) =)~ [ g

Tog =

except possibly when n = x% in which case the two sides differ by
< G. We multiply by n(n), sum over the n € (z%-1,2%], interchange
the order of summation and integration and apply the formula for E to
obtain

(&(m)(logz)(a; — aj—1) + E(z®) — E(x%"))g-(a;)

—/aj (&(m)(logz)(v —aj_1) + E(z") — E(z%~")) g (v) dv+ O(G) .

j—

We integrate the main term by parts to obtain

/aj &(m)(log x)g(v) dv

.
which on summing over j gives the desired main term. We insert the
bound for E given by the first part of the proof and sum over j. This
completes the proof of the lemma. O

H nardl
We are now in a %Osgt(i?ﬁ- (‘)cromcomplete the proof of Theorem %W?

make the choice or some f in F. To simplify some of the formulae
we then extend the definition of f to [0, 1]¥ by taking f to be 0 outside

R. Again we concentrate on S; rather than 7. We recall that x;(r) = 0 { (£)Est
unless 1, = }, gr, %) = 1 and r is squarefree, in which case, by E?l%; B
: a(¥)For

and @Wﬁm

Kj(r) =
Z,u(tj)Qf(logrl logr;—1 logt; logrji1 logrk>
— p(t;) "\logR’ """ logR "logR’ logR ' "logR
J
F log R
+0( ¢o(q)log )
qQ
where ' = (r1,...,7j_1tj,7j11,..., 7). Thus

K; < FEIQ) log .

‘multf
Moreover, by Lemma @:ﬁth n(p) = 1/p and m = gr we have

e £l o (Pela)losR
(1) = (log ) 2.5 fj(r)—i—O( & )
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where

1
log 1 logr;_1 log 741 log r
; = . i . d
1i(r) /0 f(log]?,7 " logR A logR ’ ’logR) Ui

This holds when r; = 1, (7,q) :bérand r is squarefree, and otherwise
kj(r) = 0. Thus, by Lemma@l—g

~ p(g)N(log R)* ~—~i pu(r)*p(r)* F20(q)* N (log R)*
55 = ¢?log N Z: pa(r)r? Fi(r)* + ( g t1Q )

(TsQ):l

The general arithmetical factor in the main term in the sum can be
rewritten as

k
Hlirz z
=1

provided that the sum over r is restricted to r with (r,,7,)=1 when
u # v. However if (r,,7,) > 1, then there is a prime p > @ such that
p|ry, and p|r,. Therefore when we remove the condition (r,7,) =1 the
total error in so doing is

F2¢(q)N(log R)? o(p)* w(n () o
c ARy A (o M)

P>Q p) p n<R
(n,q)=1

F2¢(q)* N (log R)*
qk+1Q
Thus the sum in the main term can be replaced by

Z f] QHNTz 7"@

r
21('02Z

<

(hq)

iyl tf
Here we apply Lemma ﬁto*neach variable 7; in turn, i.e. kK — 1 times,
with
-1 1. 1
np) = —n5=-+ 53—
P=2p*> p pP(p—-2)
and m = ¢. In each case we have

S(q) =1+ 0(1/Q).
Thus

S; =

@(q)’“N(logR)’““I,JrO F?p(q)" N (log R)*
qk+1 logN J qk+1Q
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H nardil
where I; is as in Theorem %L’T%Ts gives the first part of that theorem.
The second part follows in the same way.

S:MaynardThm .
i@?:%lﬁ 1 Exercises

[E-lambda(d)Formula2

1. Prove (22.10].
lambd(d) |Est

2. Prove
3. Prove the last part of Lemma 22.3.

22.3 Consequences of Maynard’s Theorem

Theorem 22.5 (Maynard) Suppose that when k > 2, w%ggdkle fedF

and then I; = I;(f) and J = J(f) are as in Theorem . Le
¢ = sup E:?:llﬁ(f)
rer J(f)

Then for k sufficiently large,
¢ >logk —logloghk —1.

Corollary 22.6 (Zhang) There are bounded gaps in the sequence of
primes.

Corollary 22.7 (Maynard, Tao) For each m € N we have

liminf (p,1m — pn) < m2e™.
n—oo

Corollary 22.8 (Maynard) Let m € N and let § = {g1,...,q1} be
a set of 1 distinct nonnegative integers. Let M(m,1,G) be the number
of admissible m—tuples contained in G and let N(m,l,G) be the number
of admissible m-tuples h contained in G such that there are infinitely
many n for which each member of the m—tuple n+ h is prime. Then for
l >>lo(ﬂ1)

™ > M(m,1,G) >, ™

and
N(m,1,9)

——— > 1.
M(m.1,9)

de Polignac’s conjecture (1849) asserts that every even integer is the
difference of infinitely many pairs of primes. That the conjecture holds
for a positive proportion of all even integers follows on taking m =
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2 and g; = 2j — 2 in the previous corollary, for then the number of
solutions of g;, — g;, = 2d is at most [ and so there must be > 12/l =1
different differences g;, — g;, arising from the admissible pairs counted
by N(2,1,9).

Corollary 22.9 There is an infinite subset D of N with positive lower
asymptotic density such that for each d € D there are infinitely many
pairs of primes p1,ps such that ps — p1 = d.

Proof of Theorem %}@% have to construct a suitable f. For simpli-
city of construction we will take f to be essentially a product of single
variable functions. That is, we separate the variables. In part this is mo-
tivated by putting most of the mass of f near the axes. This has the effect
of minimising the importance of the boundary condition t1+- - -+t < 1.
It also means that f is symmetric, which one might suspect would be
true for an extremal f.
The function

v:(l,o0] 2 R:v(a) =a/loga
has its minimum at o = e and is increasing for @ > e. Thus for £ > 2
we have

i >e
logk —

and
o k/logk
~ log(k/log k)

satisfies x > e > 1. Hence we can define £ to be the positive solution to

(22.16)

1+ &z = €. (22.17)
Then
v(ef) >z = v(k/logk)
and so by monotonicity
logk —loglogk < &.
Also for large k
& =log&+loga+log(l+1/(xf)) ~logé +logk — 2loglog k
and so

& <logk.

E:xix
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Let g : [0,00) — R be defined by
1
oly) = { e USVST
0 Tz <y.

We need to compute various integrals which we denote by «, 8,7, T as
follows.

a= /OOO g(y)dy =1, (22.18)

B = /OOO 9(y)* dy = % - 5% (22.19)
v= /ODO yg(y)* dy = % - giz + 52% (22.20)

r= /OOo y2g(y)? dy = 5—2 - 522 T gig - 53165 . (22.21)

We now take

T, gkt teR,
o= {0 teR.

Since f is symmetric we have I;(f) = I(f) for every j < k. Thus

oz D (22.22)

and we now proceed to estimate Iy (f) and J(f). Since we are concerned
with only a lower bound for p, lower and upper bounds for I (f) and J
respectively will suffice. An upper bound for J(f) is easy. We have

k
J(f)g/[o [To(kti)? dt = k%", (22.23)

100)F 57

<

Thus we can concentrate on I(f). Let 8 denote the set of (k— 1)-tuples
(Y1, Yk—1) with y; >0 and y1 + -+ + yx—1 < k — x. Then we have

k-1 1ty ——tp_1 2
kl(f) = k/ﬁ < g(kti)2> (/O g(ktk)dtk> dty---dty_1
k=1 N\ =1

k—1
> k‘ko?/ 11 9w)*dy
8 i=1
and so

kIi(f) > ka3 — B (22.24)
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where
k—1
E= k_k'a2/ Hg(yz) dy
T i=1
and
8* =1[0,00)F"1\ 8.
Let
1—¢ e te s 1 1
e e A

345

(2229

The condition y € 8* is equivalent to y1 + -+ + yx—1 > k — = and this

in turn is equivalent to

k—a—o(k—1)

Y1+ Yk-1

(L-o)k—D—z+1

k—1 k—1 k—1

For k sufficiently large we have
l-0)k—1)—2+1>0

and

so that

In particular if y € §*, then

(22.26)

Yyito Ykl )22
AT T Ikl >1
( k—1 7)¢ =
Hence
k—1
_ + Yo 2
E < kFa2c2 (yl _) )2 dy.
sttty et Hg(y) y

We now square out the expression

(y1+"'+yk71 _0)2
k—1

k—1
1 ) 2 2 )
_(k—l)QZZ:;y”L(kfl)Q 2 v kquﬁ"’

1<i<j<k—1



346 Bounded Gaps Between Primes

and evaluate the various integrals with reference to the integrals evalu-
ated above. Thus

1 k—2
Egk‘ka2C2<k 1T5k—2+k IVQﬁk—3_2075k—2+026k—1)'
: b
By the definition of o, W
2
E< k2206378 =7 —kp202gk—2_T
S B LR A

Thus, by Wmﬁ and dLZ.TI.JQ%ﬁ
¢ > 6‘1(1 — <277)

| Ak —1)
By @210 and (219

logk — loglogk < & =logk — loglogk 4+ O(1),

by BZ1)
by BZ56)
by (B2:21)

BT =€+ 0(¢k logk),

¢ =&+0(),

T=2£2+0(67%),

and we have

1 _
m = -+ O(k? 2)
Thus
¢ _ i £+0Q)
a0 - O = e ok 1og )
1 1
- log k +O((logk)2)'
Hence

¢ > f(l—i—O(lng)) (gl—l+O((logk)_2)) > logk—loglogk—1

k log k
(22.27)

if k£ is sufficiently large. O
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( (f?r every large k there ex1str 4
admissible k-tuples. Then by ‘W' 111”} and Theorems we

have

3 (an»rwh —9)( > Mg )>0
N<n<2N <R
ql Z(nsh)

where

0 -
0= (5-9)s (22.29

and 0 is arbitrarily small, # is the level of distribution oiz; 1%126 primes in
arithmetic progressions , and ¢ is as in Theorem ince we know
that 0 > %, and ¢ is large for large k, it follows that for sufficiently large
k there are admissible k-tuples h for which there are arbitrarily large IV
such that for some n with N < n < 2N the k-tuple n + h contains at
least two primes. This establishes the first corollary. O

Proof of Corollary 22.7 Let C be a constant chosen so that for every
m € N we have

4m
Cme 244m

>
4m + logm + log C

Hence for k > max(3, Cme*™) we have

> 24+4m
logk — c

and so

logk —loglogk —1>4m+ 1.

Thus if k is large enough, then

1
- — =) log 1 -1
(4 k)(ogk: ogloghk —1) >m
'];a‘lgn the level of dlstrlbutlon 0 to be = and choosing § = + we see by
22.27) and At

p>m,

and so every admissible k-tuple h has the property that there are infin-
itely many n suglcl that the k-tuple n+ h contains at least m primes. By
Theorem ere is a an admissible k-tuple of diameter < klogk <

mie*m. ]
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Proof of Corollary 22.8 Let k = fmaX(Evi Cme‘“”(}] with C suitably
. :MaynardTa L.
large be as in the proof of Corollary [22.7 and let h be an admissible
k-tuple. By considering all possible m-tuples h' = (R}, ..., k! ) that are
subsets of h we see that at least one has the property that there are

infinitely many n such that n+h],...,n—+h,, are simultaneously prime,
i.e. the prime m-tuple conjecture holds for this m-tuple.

Starting from § we construct a subset G’ by successively removing
elements from §. Given a prime p and a finite set £ of integers we can
construct a subset as follows. Let L(p;h) = {n € £L : n = h (mod p)}
and L(p; h) = cardL(p; h). Choose an h for which L(p; k) is minimal and
take L' = L\ L(p;h). Then cardl’ > (1 — 1/p)cardL. We apply this
operation successively to G for p < k giving a subset G’ that satisfies

1
l JE—
card G anrdS” (1 p> >l

p<k

Thus on taking ! to be sufficiently large we have s = card §’ > k. Every
subset h of G’ of cardinality k is an admissible set since it omits a residue
class modulo p for every p < k. There are (Z) such h and, from above,
each one contains at least one m-tuple k' for which the prime m-tuples
conjecture holds. Subsets b of G’ of cardinality & that contain h’ are
exactly those in which the k — m remaining elements of b are chosen
at random from the s — m remaining elements of §’. Thus there are

S—m

precisely (kfm) such b. Hence there are at least

() _eomineeey

S
— S g™ S |m

(S—m> (k—m+1)--(k— 1)k

k—m

admissible subsets of G of cardinality m that satisfy the prime m-tuple
conjecture. On the other hand there are (7;) < ™ subsets iatrgfn% of
cardinality m, and this completes the proof of Corollary

S :MaynardCon .
i@i:é[ 1 Exercises

1. Suppose that k > 2. Let R;, C [0,1]* be defined by Ry, = {t : t; >
0,t1+ - -+tx <1},andlet m € Nand f(t) = (1—t;— - -—tx)™. Given
(t1y ooy tjm1stjrty oo tr) €0, 1P with ¢ 4+t 1+t 01+ +
ty <1let A; denote the interval [0,1—¢q —---—tj_1 —tjq41 —- - —tg]
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(and take it to be the empty set otherwise) and define

1 1 2
Ij(f):/0 /0 (/A f(t)dtj> dty...dtj_idt;, ... dty

I = [ f?t.

Ry

and

kE(2m + 2)!
(2m+1+k)(m+1)%
(2m)!
2m + k)

k
(a) Prove that ZIj(f) =

j=1
(b) Prove that J(f) =
(c) Prove that

k
Zj:llj(f)_4(1_ 1 )(1_ 2m +1 )
J(f) 2m + 2 2m+1+k/
(d) (Goldston, Pintz, Yildirim) Prove that if the level 6 of distribu-
tion of the primes satisfies 8 > %, then there are infinitely many
bounded gaps in the sequence of primes.

Let Ry be as above. For t € Ry, let ap(t) =t1 + -+ tx and Si(t) =
B+t

(a) Suppose that a and a; are nonnegative integers. Prove, by induc-
tion on k or otherwise, that

/Rku — () T £ dt =

Jj=1

k
a! Hj:l aj!

(k+a+ Z?Zl aj;)! .

(b) Suppose that a and b are nonnegative integers. Prove that

alb! ke (20))!
/Rk(l—ak(t))“ﬁk(t)bdtz Giratan) Zb: Hl (bj!) :

j=
byi+--+br=b

(The multinomial theorem applied to 32 is useful here.)
(Maynard)
(a) Let k = 5. In the notation of the preceding Exercise, when t € R,
let

F(8) = (1—05(0) 5 (8) 1 (115 (0)+ 1 Bs(t)? — (1-5(8)).



S:NotesPISI2

350 Bounded Gaps Between Primes

Prove that

Yoo () 1417255
J(f) 708216 °

(b) Prove that if the level of distribution € is 1, then

liminf p,+1 — p, < 12.

n—

22.4 Notes

Section % In the .ﬁrst couple of decades of the .twenty ﬁrs‘(gpggggtury
there have been a series of major advances. In a seminal paper [Goldston,
Pintz, & Yildirim| (2009) proved that

— Pn

lim inf Pnt1 = Pn

= 07
n—oo  logp,

IGPY10a

and |Goldston, Pintz, & Yildirum/| (2010) showed that

Prt — pn < (log pn)*/?(loglog p, )? (22.29)

for infinitely many n. They also showed that if the level of distribution
exceeds %, then there are infinitely many bounded gaps between primes.
Indgelg{, if the level of distribution can be taken to be 1 (as in Conjecture

, they were able to show that infinitely often p,11 — p, < 16. All
subsequent work is batsﬁ%_l1 on their method. There have been two sen-
sational developments. [Zhang| (2014]) proved a version of the Bombieri—
Vinogradov theorem in which the moduli of the arithmetic progressions
are restricted to being numbers with only relatively small prime factors
but, crucially, the level of distribution exceeds % by a small amount.
Then, although the moduli are restricted, nevertheless the modified
Bombieri-Vinogradov theorem contains enough information to enable
an adaptation of the Goldston, Pintz, Yildirim machinery to work. Thus

Zhang showed that

liminf p,11 — pn < 70,000,000 (22.30)

n—00
|IM15

method that predates their 2009 paper and which had been aborted as
unsuccessful, was able to adapt their method to establish that infinitely
many bounded gaps between the primes exist even if one only assumes
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a positive level of distribution for the primes. In particular, by using the
Bombieri-Vinogradov theorem Maynard showed that

liminf p,41 — pn < 600. (22.31)

n—

These most recent methods involve quite heavy computations to.obtlglxin

the sharpest bounds. For exam leh ;?dfhe notation of Exercise
Maynard considers Theorem %ﬁﬁ

d
T#®) = 3 ai(l = en(t)" Bu(6)"
i=1

:Mayn ©22.3.1.2
and finds that (c.f. Exercise ﬁgéf. lﬁ;

E?ﬂ Li(f) a™™a

J(f)  a™a

where the d x d positive definite matrices M, N depend on the exponents
b;, c;. He shows that this ratio is maximised when a is an eigenvector of
MN~! corresponding to the largest eigenvalue. He then takes k = 105
and considers all choices of b;, ¢; with b; + 2¢; < 11, so that d = 42. Tt
transpires that the largest eigenvalue is

4.0020697 . ..

and so an appeal to Theorem %lishes that for any admissible
105-tuple h there are infinitely many n such that n+ h contains at least
two primes. He then displays a known admissible 1a(357tuple of diameter
600 discovered by T. Engelsma to establish - Maynard also found
that if the level of distribution of primes is 1, then

liminf pp1q — pp < 12, (22.32)
n—oo

:Mayn 22.3.1.3
for Whiﬂgr}}1 see Exercise E‘Z'l:%f I ﬁf
The [Polymath| (2014) project was led by Tao to combine all the meth-
ods, especially those of Maynard and Zhang, and this established un-

conditionally that
liminf p,41 — pn < 246. (22.33)

n—

The methods described here are very flexible, a‘LT%%ng‘)ffer many poten-
tial applications. One is to a conjecture made by [Dickson| (1904) which
that states that if the g;, h; are integers and Hle(gin+ h;) has no fixed
prime divisor, then theg% are infinitely many n such that the g;n+ h; are
simultaneously prime. [Pintz| (2016]) has investigated questions involving

E:Maynard

22.3.1.2

E:Polymath
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consqg}"l‘;c‘i(ygz primes in arithmetic progressions. In yet another applica-
tion, |Goldston, Graham, Pintz, & Yildirim| (2011]) have considered n for
which d(n) = d(n+ 1), w(n) = w(n + 1) and Q(n) = Q(n + 1) simul-
taneously. There are also applications to cognate problems in algebraic
number fields. vre
In the opposite direction Maynard| (2016) has developed the GPY

sieve so as to show that there are exceptionally large gaps in the primes.
In Theorem 7.15 we established Rankin’s estimate

. Pn+1 — Pn

hﬁnfo‘ip ((log pr)(loglog py, ) (loglog loglog py,) ) 2 ¢

(log log log py, )2

for a suitable positive constant ¢, and in the Notes to §7.3 described the
state of play as of 2007. Maynard showed that ¢ can be made arbitrarily
large, thereby winning the Erdds prize of $10,000 described in the Notes
locﬁ: Tc12£ This was also established ind%;g%ldently by a different method
by [Ford, Green, Konyagin, Tao| (2016)). [Ford, Green, Konyagin, Maynard,
Tao| (2018)) then showed that

Tim sup Pn+1 — Pn >
n—00 ((logpn)(log log pn)(log logloglog py) . )
log log log pn, g

for some positive constant c. In the spirit of Erdds, Tao has offered
$10,000 for a proof that this ¢ may be taken arbitrarily large.
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Topics In Harmonic Analysis I1

| C:AppEHarmAnalII |

E.1 Uniform approximation of continuous functions

Let C(T) denote the set of continuous functions with period 1. Our
object in this section is to show that if f € C(T) and € > 0, then there
is a trigonometric polynomial T'(x) such that |f(z) — T'(z)| < € for all
x. This is elegantly achieved by using the Cesaro partial sums of the
Fourier series of f, namely

N

on(@) = on(fe)= 3 (L [nl/N)fn)e(na).  (E.1)

n=—N

Here e(x) = 2™ = cos 2mx + i sin 27z is the complex exponential with
period 1, and the numbers f(n) are the Fourier coefficents of f, which

are defined to be
1
n) = / f(@)e(—nz) dx
0

for integers n. The functions e(nz) form an orthonormal System and
the integral above is an inner product where Zf, g) fo x) dz.
From the formula for the sum of a geometric progression we see that

1—e(Nx) B e(Nz/2) —e(—Nzx/2)
;0 )=y = W=D =

sinTt Nz

— (N — 1)z/2)

sinmx

Hence

N 2 sin tNx\2
‘ Z e(nz)‘ - ( sinmTx ) ’
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On the other hand, the left hand side above is

—1N-1 N
Z Y e((m=n)z)= > (N = |n|)e(nz).
m=0 n=0 n=—N

We divide through by N and set

An(a) = Y (= lnl/Nelna) =

n=—N

(E.2)

sintNz )2
sinwz /

This is the Fejér kernel. (‘Fejér’ is pronounced fay-air, because he was
Hungarian, not French.) We note that if f € L}(T), then

N

/0 fWAN(z —u) du = n;N(l = [nl/N) /0 fluw)e(n(z —u)) du

- Z (1- |n|/N)f(n)6(m$) = on(z).

n=—N
Since fol An(z)dx =1 and Ay (z) > 0 for all z, it follows that oy (x) is
a weighted average of the values of f. Also, max An(z) = An(0) = N.
Let ||z|| = min,ez | — n| be the distance from x to the nearest integer.

(This is the natural distance function, when working modulo 1.) As
|sinma| > 2||z||, it follows that

1
0 < An(x) < min (¥, W> (E.3)

It is useful to note that the pointwise estimate above implies that if
0 <6 <1/2, then

1-5 1/2 1/2
s N
<o / du= 5r. (B.4)
Theorem E.1 If f is a continuous function with period 1 and on(f, x)

is defined as above, then on(f,x) — f(x) uniformly in x, as N — oo.
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Proof We note that
f(z) —on(= /ANQC—U f(@) = f(u) du

:/0 AN(u)(f(x)—f(x—u)) du

5 1-5
=/ +/ =5L+1,
—5 Js

say. Hence by the triangle inequality, | f(x) —on(z)| < |I1]+]|I2|. Since f
is continuous, it follows by compactness that f is uniformly continuous,
which is to say that for any e > 0 there is a ¢ > 0 such that |f(z) — f(y)|
< & whenever ||z — y|| < . By the triangle inequality it follows that

|Il|</ Ay (u)|f(x) — (x—u)|du<£/ An(u)du < e.

Since f is continuous, it also follows by compactness that f is bounded,
say |f(z)| < M for all . Hence [f(z) — f(z —u)| < [f(2)] + |f(z — u)|

= -DeltaNint
< 2M. Thus from @v&?—eﬁl@duce that

1-6

M

L <2M A d —

2| < : () du < <.
This quantity is < € if N > M/(d¢). Then |f(z) — on(z)| < 2¢ for all z,
as desired. O

E.2 Quantitative Trigonometric Approximation

For f € [}(R), we let f(t) denote its Fourier transform,

t) :/Rf(x)e(—tx dx

Let I = [, 3] be an interval of R with x, its characteristic function, and
suppose that § > 0 is given. Our object is to construct functions S; (z)
and S_(z) such that

S.(t) =0 when [t| > 6,
S_(z) < x;(z) < Sy(x) for all z,

and such that the integrals

[si@-x@de [ @ -5-@ds
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are small. We do not attempt to determine exactly the extreme values
of these integrals, but the functions we construct are elegant and close
to optimal. With Sy and S_ in hand, we use the Poisson summation
formula to derive corresponding trigonometric polynomials 7 that ap-
proximate closely the characteristic function of an arc of T = R/Z. These
T, are useful in a nu_mb,erP glf (éonnections. We employ them in discussing

the large sieve (in g 1)), in_discussing quantitative measures of uniforITnhﬂ1
S - o

EstUD
distribution (in ,and in proving Kronecker’s Theorem (in

We begin by defining Beurling’s function,

™ z

B() = (sinﬂz)2(2+§%(z_ln)2—i(z_:n)2), (E.5)

n= n=1

whose basic properties are as follows.

Theorem E.2  The function B(z) above is an entire function such that
(a
(b
(c
(

) B(n) =1 for all integers n > 0, B(n) = —1 for all integers n < 0;
) B'(n) =0 for all integers n # 0, B'(0) = 2

) B(x) > sgu(x) for all real x;

) B(x) —sgn(x) < min(1,z~2) for all real z;

)

)

)

o,

)
(e) B'(z) < min(1,272) for all real z;
(f) B(z) —sgn(z) < |z|~2e2™ W where z = x + iy;
(g) [ B(x) —sgn(x)dz = 1.

oo

e

-

An entire function f(z) belongs to the class E? of functions of ex-
ponential type o if for every constant € > 0 the inequality |f(z)| <
exp((o+¢)|z|) holds for all z with || large. Thus we see that B(x) € E*".
Other examples of functions of exponential type are provided by ob-
serving that if f € L'([—c, c]), then its Fourier transform

o~

For= [ swe = au

is an entire function of the class E?™¢. In the case of B(z), we note
that B ¢ L'(R), and also that there is no f € L}(R) of which B(z) is
the Fourier transform (since B(xz) / 0 as © — 00). Nevertheless, the
estimate (f) above may be thought of as asserting that supp B C [—1,1].

Proof We first establish further formulee for B(z). We recall the partial

fraction formula
oo

T \2 1
(sinwz) - Z (z—n)?’

n=—oo
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Figure E.1 Graph of Beurling’s function B(z) for —3 < z < 3.

(This may be proved by noting that the difference between the two sides
is a bounded e%%l{f} chunnction that tends to 0 as z — 00.) On combining
this with we find that

B(s) =1+ 2(sinﬂjrz)2 (% 7 g (z—l—%)g) (E.6)

Suppose that z ¢ (—oo, 0]. The integral test suggests that the sum above

is approximately
> 1
/ (u+2)"2du=—.
0 z

Hence the second factor on the right hand side is the difference between
this approximation and the sum. To express this quantity more explicitly,
we observe that if f has continuous first derivative on an interval [«, ],
then

B B
/ F(w) du = F(B)(5 — a) - / F(u)(u — ) du

by integration by parts. By taking a =n — 1, 8 =n, f(u) = (u+ 2)72,
it follows that

n

/:1(“ 42 2du=(z4+n)2 + 2/ (2 + u)~*{u} du

n—1

provided that z ¢ [-n,—n + 1]. If z ¢ (—o0, 0], then we may sum over
n=1,2,..., and thus we deduce from (E.2) that

B(z) =1+ 4(“7”2)2 /OOO (u{f}z)?’ du. (E.7)

| E:BeurFcnForml

| E:BeurFcnForm2
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Similarly from (E.1) and (E.2) we find that

sinmz\2/1 > 1
B(z):—l—‘r2< - ) (Z+Z_;)(Z—TL)2)7 (E8) |E:BeuchnF0rm3
and that if z ¢ [0, 00), then
B(2) 1+4(Sinm) /DO L= {u) (E.9) [E:BeurFcnForm4
= — . . T n rm
T 0 (u7z) eu C [e]

. . . L. :DefBeurFcn

The assertions (a) and (b) are immediate from the definition o Form
B(z). For x > 0 the inequality (c) and the estimate (d) follow from )
since the value of the integral lies between 0 and %x’Q. For = < 0 these

. L. :BeurFcnFormd . .

assertions follow similarly from ince B(x) is continuous, these
relations therefore hold also when z = ( 0 e obtam the gstimate (e) it
suffices to differentiate the formulae 1_5"] QH’
quantities that arise. As for (f), we note that (sinwz)? < e*71¥, and

that if Rez > 0, then |u + z| > max(u, |z|) > (u + |2|)/2, so

© (u) o
L arpt< | g <A

. -BeurFcnForm2 L. -BeurFcnForm4
Thus we obtain (f) from 1'@?) when Rez > 0, and similarly from 1'?%)

when Rez < 0. As for (g), let

an en estimate the

V(z) = (Sinﬂ-z)Q(g + i (Sgn(n))’ (E.10) |E:Deraa1echn

v z z—n)?
=—00

so that B(z) = V(z) + (sinmz)?/(rz)2. Since V(x) and sgn(z) are odd
functions, we know that

X
/ V(x) —sgn(x)de =0
-X

for any X. Hence
X

/jo B(x) — sgn(x) dx = XlgnOO . B(x) — sgn(x) dx
b's
= Xlgn V(z) — sgn(z) + (sinmx)?/(nz)? d
o J_x

X

sin mx \2
= lim ( ) dx
X —o0 X ™

:/ (smmc) do — 1.
_ T

oo
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This last definite integral can be evaluated by means of the calculus of
residues. 0
Although the proof is now complete, it 1s 1nstruct1ve to note that (c)
:BeurFcnFdiEmReurFcnFor
can be derived from (E-6)) and ([E-8|] by appeahng to the integral test.
For example, if > 0, then

§:1</°°du_1
— (z+n)? o (z+u?

We now use the function B(z) to construct approximations to the
characteristic function x, of an interval [a, ].

Theorem E.3 Let I = [a, 8] be a finite interval, and suppose that
d > 0 is given. Then there exist entire functions Sy(z) and S_(z) such
that

T) Ka.p,6 min(l,272) for real x;
S_(z) < x;(z) < Sy(x) for real x;
1= S()dm—ﬂ—a:tl/é;

S t) = 0 when |t| > J;
S1(z) is of bounded variation on R.
i(t)‘ <B—a+1/0 for all real t.

0.5 1

-1.5 Vl -0.5 0 0.5 I 1.5

Figure E.2 Selberg’s functions Si(z) and x, (z) for I = [~1,1] and § = 5.

Proof We take

F:SelbergFcns
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these are the Selberg .ungtéggfsﬁc’ghen the assertion (a) follows immedi-
ately from Theorem . To obtain the inequalities (b) we note that

S4(x) > 5 sam(6(r — o)) + 5 sen(5(5 — )

-PropBeurFcn . . .
by Theorem ¢). Here the right hand side is x;, (z) unless ¢ = « or

z = . If a < B, then we may conclude that Sy («) > 1, S4(8) > 1,
because S is continuous. If o = 8, then Sy (a) = 1 because B(0) = 1.
Similarly we see that S_(x) < x, () for all z. As for (c), we note that

Y

/Z Si(z)dr = /le(m)dx+/zs+($) = x;(z) dz

= 5—@—&-;/_(: B(0(z — ) —sgn(d(z — a)) dx

1 (o]
5 [ BE-0) - 565 - 2)) da
=B—-a+1/d,
: B Fcn
by Theoremi%?i%ﬁ‘g },e(g;i,cand similarly for S_. Since the functions Sy are

in I!(R), we can define their Fourier transforms,

S (1) = /_ " Sy (@)e(—t) da.

Here S z %foﬁﬁi is an entire function, and if ¢ > §, then by The-
orem lEI?(f; we see that this function is <4 g, |2/ in the lower half-
plane Im z < 0. We consider the integral above to be a contour integral
in the complex plane, and on replacing this path by a semicircle in the
lower half-plane we conclude that S (t) = 0 if ¢ = 3. Similarly St(t)=0
if t < -4, so we have (d). Also, from Theorem e) we see that B(x)
is of bounded variation on R, and hence the same is true of Sy. Finally,

Si(t) = X; (1) + (§i(t) — X, (t)), so by the triangle inequality

|S:(8)] < [5G (O] + |Se(t) — G ()]
< lIx e + 1S+ = X, e w)
=f—a+6L

O

We now derive analogous results for approximations in T = R/Z by
trigonometric polynomials.
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T:TrigApproxModil | Theorem E.4  For any arc I = [a, 8] in T with length 8 —a < 1, and

for any positive integer N, there are trigonometric polynomials
N A~
Ti(z)= Y Te(k)e(kz) (E.11)

k=—N
of degree at most N such that:
(a) T_(z) < x,(z) < Ty (z) for all real ;
(b) fy Te(z)dz = —a+1/(N+1).
(c) |T\i (k)| <B—-a+ ﬁ for all integers k.

Proof _Tallﬁe ) anév + 1, and let S+ be the functions described in The-

oremw
Ty(z) = Z Si(z+n).

: ergFcns
From Theorem iﬁ?ﬁa) we see that this series is uniformly convergent for
2 in a compact set, so that Tﬁtgl‘) is continyous. The inequalities (a)
- er, cns - [ cns

follow from Theorem . From Theorem a),(e) we see that the
Poisson summation formula, in the form given in Theorem D.3, applies
to S+. Thus
K
T = 1l St (k)e(kx).
w(z) = lim k_Z_K +(k)e(kz)

we find that T4 is a trigonometric polynomial, as in . Also, the
integral in (b) is

But §i(k) =0for |k| >0 =N+1, and T(k) = §iqék f(_lgrmall k, so

~

7.(0) = 50 - [ " Sa(x)dn,

F
and the stated result fo]lolevse frlggllsTheorem ﬁ%g%hceﬁﬁnal assertion
follows from Theorem . O

Majoraants and minorants constructed as above are optimal if and
only if (K + 1)|I| is an integer. Hence the estimates in (a) are optimal,
while those in (b) are not.

In the above situation, the interval I is short, § is large, T4 (z) has
period 1, and the S (k) become Fourier coefficients. With an alternative
application of the Poisson Summation Formula we reverse this, so that
1 is long, ¢ is small, §i has period 1, and the Sy are Fourier coefficients.
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\ N\

(a) (b)

Figure E.3 (a) Graph of x;(x) and T (z) for I = [1/3,2/3] with K = 11;

(b) I = [3/8,5/8], K = 5.

Theorem E.5 Let M and N be integers, N > 1. Suppose that 0 < § <
1/2. There exist functions W (x) with period 1 and absolutely convergent
Fourier expansions W (x) =Y w4 (n)e(nz) such that

(a) w_(n) < X(M41.M4N] (n) <wy(n) for all integers n;
(b) Wa(z) =0 if [[z]| = 63
() Y, we(n) =W4(0)=N-1£1/6.

Proof Let Si(u) be the Selberg functions for the interval I = [M +
1, M+ NJ, and set w4 (u) = S (u). Thus we have (a). We apply the Pois-
son Summation Formula to f(u) = Sy (u)e(ux). Hence by Theorem D.3
we see that

Z wy (n)e(nx) = Z Sy (k— x),
n=—oo k=—c
and then properties (b) and (c) are immediate. O

E.1.1 Exercises

1. Suppose that I = [a, ] is an interval on the real line, put K =
(8 — @), and suppose that K is a positive integer. Suppose that
f € L*(R), that f is continuous, that f(z) > X; (z) for all z, that f

~

has bounded variation on R, and that f(t) =0 when [¢| > 4.
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(a) Show that

o~

> f(n/s+x) =5f(0)

for all z.
(b) Show that x can be chosen so that n/d + x € I for K + 1 values
of n.

(¢) Deduce that
/OO f(u)du > B —a+1/6.

: . . . +SelbergFcns
That is, the function S; described in Theorem iéfg 1s optimal
when (8 — «)d is an integer.

2. Prove the following identities:

(a) (27 = [ e

T
. 2 1
(b) (sinmz)” = 7r/ sin 27t dt;
x 0
ol cosm(2N + 1)t
—nt) = —icotmt +i— 0 27
(c) n:Z_ngn(n)e( nt) tcotmt + i g ;
2 [>1
(d) sgn(z) = 7/ — sin 27tx dt.
m™Jo t

: VaalerFcn
3. Let V(z) be Vaaler’s function as defined in 1‘%)“%), and put

. N
e - (S (2 32 2

(a) Using the identities in Exercise 2, or otherwise, show that

1
Vn(z) = 2/ ((1 —t) cot wt + 1/7) sin 2wta dt
0

2/1 cosT(2N + 1)t
0

- (1 — t) sin 27t dt.
sin 7t

(b) By using the Riemann-Lebesgue lemma, show that

1
Viz)= 2/ (1 —1t) cot t + l) sin 27tx dt.
0 ™
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(c) Let
1 if t =0,
d(t) = w(1 — |t])tcotwt 4 [t| if 0 < |t| <1, (E.12)
0 if [t] > 1.
Show that

Vi(2) =2 /_ olt)e(at) .

(d) Show that ¢(t) is nonnegative, continuously differentiable on R
and that is is strictly decreasing on [0, 1].
(e) Show that V'(z) is an odd entire function, and that

V(z)=1- 6(5111%2)2 OOO W du

provided that z ¢ (—o0, 0].
(f) Show that V(n) = sgn(n) for all integers n, that V'(n) = 0 for all
integers n # 0, that V/(0) = 2, and that 0 < V(z) <1 for z > 0.
(g) Show that if « > 0, then

V(z) — 1 < min(1,27%),
V'(z) < min(1,27?).

(h) Show that all zeros of V’(z) lie on the real axis.
(i) Show that

(b(?zt_ ! e(tz) dt.

Vi) = senl) = [

0.5 1

Figure E.4 Graph of Vaaler’s function V(x) for —2 <z < 2. F:VaalerFcn
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Figure E.5 Graph of ¢(t) for —1 <¢ < 1. F:Varphi

Exer:Approxs(x) | 4. Let

o0

> V(K +1)(n+2)),

n=—oo

K+1
Plz) = =5 —

Q@) =3 Y VI +1)n+2)) —sgnln+2),

R(z) = Q(x) — {z} + 1/2.

(a) Show that P(z) is a trigonometric polynomial of degree K, with
coefficients. P(k) = ¢(k/(K + 1)) where ¢(t) is defined as in

(b) Show that Q(x) has Fourier coefficients

S b)) — 1
AR G o
@k) 2mik
for k # 0, and that Q(0) = 0.
(¢) Show that R(z) is a trigonometric polynomial of degree K with
coeflicients

k
CRS =1

for k # 0, R(0) = 0, and that R'(z) = P(z) — 1.
(d) Show that for all z,

Ag41(z) Agi(z)
SRR o9 fr) < A
e I G T -y
5. Let P(x) and Q(z) be as above. Suppose that f is of bounded vari-
ation on T.

R(z)
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(a) Show that if f is continuous at z, then

1 1
f(x):/o f(x+u)P(u)du+/O Q(u) df (z + u).

(b) Suppose that f is a real-valued function of bounded variation on

T. Show that
"Agyi(z—u) !
- [ S ) < @) - [ e+ wPda
' Agqa(z - u)
gl;afjﬁ—wmn
for all x.

(¢) Show that fol f(z + u)P(u) du is a trigonometric polynomial of
degree at most K with coefficients ¢(k/(K + 1)) f(k).
(d) Show that fol Ak i1(z —w) |df (u)] is a trigonometric polynomial
of degree at most K with coefficients
L]

- 1
ST [ el )

(e) Let

Ak —u)

1
7o) = [ flar Pt [ ST )

Show that Ty is a trigonometric polynomial of degree at most K
such that T_(z) < f(z) < T4 (z) for all z, and that

1 1
Vary(f)
Ti(u)du = w)du + —————=.
[ et = [ gn
(f) Show that if f = x then the Ty above are the same as in
:TrigAppro@Mdd1 ; i .
Theorem and hence that the trigonometric polynomials in
that theorem have coefficients
|k]

- ko sinmk(f—a) 1— ok
Tah) = () Iy LT (5 — )

xe(—k(B+a)/2)
for 0 < |k| < K, T:(0)=B8—a+1/(K+1).

6. (a) Suppose that T'(z) is a trigonometric polynomial of degree at most
K, and that N > K. Show that for any real «,

1 !
an_:lT(oH—n/N):/o T(z) dx.
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(b) Suppose that I = [a, (] is an arc of T, and that (8 — )N is an
integer < V. Show that if a function 7' € L(T) has the property

that T'(z) > x, (x) for all z € T, then

N

ZT(oH—n/N) > (B—a)N +1.

n=1

(¢) Suppose that T'(x) is a trigonometric polynomial of degree at
most K, that (8—a)(K+1) is an mteger < K+1, and that T'(z) >
Xa }( z) for all z € T. Showthatfo r)dr > B—a+1/(K+1).

(d) Suppose that T(x) is a trlgonometrlc polynomial of degree at
most K, that (8—a)(K+1) is an mteger < K+1, and that T'(z) <
X[aﬁ]( x) for all z € T. Showthatfo r)dr < f—a—1/(K+1).

7. (B.artf%guglgc%l 2000) Let B(z) be the Beurling function, as defined in
uppose that M is a positive integer, and that o and [ are real

numbers such that § — a = M. Show that B(z — «) + B(S —
for all real 2.

E.3 An additional trigonometric majorant
Let s(x) denote the sawtooth function
_ =12 (247,
s(z) =
0 (x €Z).
In Lemma D.1 we showed that

s@== 2, 62(7]:;) + O((min (1 K|1\x||))‘

0<|k|<K

S . QuanFEfergApproxs (x)

x) >0

(E.13)

(E.14)

In Exercise k.2l THwe find sharp trigonometric magorantb and minorants
for s(z). These, as well as the estimate apply equally to s(x),
to {z} — 1/2, and to —{—=z} + 1/2, since these functions differ only
only in the value taken at 0, which is either 0, —1/2, or 1/2, while our

approximants are continuous. To estimate expressions of the sort

Zaks(mk)
k

E:Defs(x)

E:FSsawtooth



T:TruncTrigEst|

370 Topics In Harmonic Analysis IT

the majorants and minorants are applicable if the a; are real and of one
sign, but are ulsuc;%%@cs if the ay are complex or of indeterminate sign. From
Lemma we see that

K . 1
Ze(kx) < min (K, m) (E.15)

k=1

Thus we encounter the same expression, but now divided by K, in the
current context. Let

() = min (1, 1) (B.16)

k() =min (1, —— ). .
Klz|

When fg(x) occurs in an expression (perhaps repeatedly with various
values of ), one may derive an estimate by expanding f in its Fourier
Series, and then estimating the contribution of each Fourier coefficient.

We now show that it suffices to consider the contribution of the Fourier
coefficients fx (k) for —K <k < K.

Theorem ]E;SQ Let K be a given integer, K > 2, let fx(x) be defined
as in , and put

= > Jrk)(1— |kl/K)e(ka).
k=—K

Then

uniformly for |k| < K, and fx(z) < gi(x) uniformly in x and K.

. 5 awtooth
From this we see that the error term in can be replaced by

gk (z), and that the right hand side of @mﬁe replaced by Kgg ().
The advantage here is not so much that we expect to obtain stronger
results, but rather that we need not consider the contribution of f(k)
for larger k.

Proof ~ Clearly fK( ) < (log K)/K. Since fk is real-valued and even, we
know that fK( k)= fK( ), so it suffices to estimate |fx (k)| for k& > 0.
If 0 < k < K, then

R 1 1/k /2,
Ir(k <<<1+ dx+‘/
*) K /K T 1

E:GeoSumEst1
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0.2

—0.4 —0.2 0 0.2 0.4

Figure E.6 Graphs of fig9(z) and gio(z) for —1/2 <z < 1/2. F:g K

By integration by parts we see that the second integral above is

e(kz)|1/2 1 (Y2 e(ka) 1 (Y2
= de < 14 = —dr < 1.
{27rikx‘1/k+27rik' /1/k 22 T k/1/k x? v

Thus we have the stated bound for |fK (k)|. In establishing the second
assertion, we may suppose that 0 < z < 1/2 since fx and gk are even
functions with period 1. Let

Ag(r) = i (1 - %)e(kx) _ %(Sinmk'x)z

sin rx
k=—K

be the Fejér kernel. Then

1
gic(e) = (F+ 8)(@) = [ Al fice — u)du (E.17)
0
Since Ak (x) is decreasing for 0 < z < 1/K, it follows that

/1/(2K) A du> Ak (1/(2K)) 1 > 2
0

2K © 2K2?sin’71/(2K) T w2

because sind < § for 6 > 0. Since fx and Ag are nonne agilxégK and fx
is (weakly) decreasing in [—1/K,1/2], if follows from @_ﬂq—at

1/(2K)

1
gK(:E):/O AK(u)fK(x—u)duZ/o Ag(u)fr(z —u)du

1/(2K)
ZfK(x)/O A (u)du>> fi(x).
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O
E.2.1 Exercise
E
1. Suppose that K > 2, and that fx(z) is defined as in .St
(a) Show that
~ 2 K
fx(0) = E(l + log 5)
Write
R 1/K 9 12 cos 9k
fK(k):2/ cos 2mkx dx + — Mdm:ﬂ + Ty,
0 K ik =
say.
(b) Suppose that k& # 0. Show that
T - sir127rl<:/K7
wk
- sin 27k /K 1 V2 gin 2rka e
k ThK )ik @?

(c) Deduce that if k # 0, then

~ 1 1/2 sin 27k
k)= —— —dux.

(d) Conclude that fx (k) < K/k? for k > K.

(e) Show that if (8 — «)d is not an integer, then S (z) > x,(z), and
hence that S is not optimal, because there is a ¢ < 1 such that
cSi(z) > x,(z) for all z.

E.4 Maximal inequalities

S:MaxIneq

Sometimes we may have an estimate for the size of a sum, say | EnN:1 cn‘
< My, but it would be convenient to have a similar upper bound for
the maximum size of its subsums, max, <y | 22:1 cn| < My, hopefully
with My not much larger than My . Such an upper bound M} is known
as a mazximal inequality.
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E.4.1 Elementary estimates

As in Appendix D, if f € I[}(T), then its Fourier coefficients are f(n) =
Jp f(z)e(—nzx) dz, the partial sums of its Fourier series are sy(x) =
ZTIL_N J/c\(n)e(n:z:)7 and the Dirichlet kernel is

K

sin(2K + 1)mzx
D = =
K (@) Z e(kz) sinmx
n=—K
Thus sk (z) = (f * Dg)(x) = [; f(u)Dg(x — u)du. Unfortunately,

|Dg (x)| decays only like an inverse first power, with the result that
J1 | Dk ()] da < log 2N Let

FEx(z) = min(2K + 1,1/ z])). (E.18)

(Note that this is a totally different function than the one with the
same name discussed in Appendix D.) The letter ‘E’ is suggested here
because Fk (x) provides an envelope of Dg(x): |Dg(z)| < Ei(x) and
E is monotonically decreasing for 0 < x < 1/2. Thus

s ()] < /T ()| Ex ( — u) du.

Put

Sicla) = max [sn(o)]. (E.19)

1<k<K

Since Ex(x) < Ex(z) if 1 <k < K, it follows that

i@ < [ 1) Ex(e - ) du. (E.20)
T
Hence

max sk (z) < || f|loo log 2K, (E.21)

which is best possible, since it might happen that f(x) = sgn Dg (), in
which case sk (0) = [1.|Dg ()| dz < log 2K. By Cauchy’s inequality we
see that

</|f ) Ex(z —u) du) /|f VP Ex(x —u) du/EKx—u
<</|f(u)|2EK(a:—u)dulog2K.
T

By integrating this with respect to  we find that

/ 5 (2)? dr < (log 2K)? / £ ()2 du. (E.22)
T T
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asic
Finally, it is also evident from @L%lf_att
/ $te() dz < (log 2K) / ()] d (E.23)
T T

We turn now to additive characters. Let f be an arithmetic function
with period g. Our convention is to define the Discrete Fourier Transo-
form by setting

> f)e(=nk/q).

This yields the discrete Fourier expansion

Fn) =" F(k)e(kn/q),

1

>
Il

as in (4.3). Hence if 0 < N < ¢, then
q
D f)="fk) > elhn/a).
0<n<N k=1 0<n<N

Here f(O) is the mean value of f, so

S fn) = NFO)= > F(k) D elkn/q).

0<n<N 0<k<q 0<n<N

It is easy to write the sum on the right over n in closed, form. but it

umEs
suffices to observe that it is < min (N, ||k/q||™), by us the
above is
< Y |k min (N, [[k/ql 7).
0<k<q

We note that this estimate is much more sensitive to the size of f(k:)
when k is near a multiple of ¢ (i. e, 0 or ¢) than otherwise. In any case,

max | 30 f(n) - NF(O)| < (qlog2q) max |F(R)].
<n<N

0<N<q
Suppose that f(n) = x(n) where x is a nonprincipal character modulo q.
Then f(k) can be expressed in terms of Gauss sums, and from Theorems

9.7 and 9.10 we see that f(k) < q~'/2, and then the above is the Pélya—
Vinogradov inequality, as found in Theorem 9.18. The reasoning above
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is éust a C%eneralization of the proof we gave of that theorem. In Exercise
r:IncCharSum

1t 1s shown that if x is a primitive character modulo ¢, then
q
S| Y x|
N=1 0<n<N

Thus the bound provided by the Pélya—Vinogradov inequality is never
more that a factor log g larger than the truth.

Let
D(s)=> ann™*. (E.24)

In a manner analogous to the above arguments, we now bound the max-
imal partial sum of D(0) by an integral involving |D(iu)|. We begin by
noting that

U . U .
5, SN QU cos fu sin au
/ ethu du = / —du
-U

U U u

B 1 /U sin(a + B)u + sin(a — B)u d
o 2 U u v
la4+-BIU
= sgn(a + f) / SN
0 u
la=B|U
+sgn(a — ) / R (E.25)
0 u

We recall that [;° #2% du = 7/2, and that the sine integral si(z) is
defined to be
si(z) = —/ S

U
. : Est4
Thus the expression 1S

sen(a + 8) (5 +silla+ BU) ) +sen(a— B) (5 +silla - B0) ).

Let x, denote the characteristic function of the interval I = [~a, o],
and note that si(z) < min(1,1/x) for z > 0, as was recorded already in
(5.6). Thus the above is

:wxl(ﬁ)-i-O(min (1@)) + (min (1(”%%))
For integers K, 0 < K < N, we take a = log(K + 1/2), 8 = —logn,

E:DefDirPoly

E:IntEst4
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multiply by a,,, and sum over n. Thus we find that
K U .
Z ap = / D(iu) S
n=1 U w

+O<; [@n | min (1’ U|10gn/(1K—|— 1/2)|)) |

Now (sinau)/u < min(|al,1/|u|), and |logn/(K +1/2)| > 1/N. Hence

U
max an| < D(iu)| min(log N, 1/|ul) du
| on] < [ 1000 mingiog . /1)

o (E.26)
Fr

Here we can replace a, by a,n~" and integrate with respect to ¢, with

or.witIl}sout squaring, depending on the objective. The above is used in

E.4.2 The Hardy—Littlewood maximal inequality

Suppose that f € L}(T). The Hardy-Littlewood mazimal function of f
is

1 Tty
My(x)= sup 7/ | f (u] du. (E.27)
o<ly|<1/2 Y Jz

Thus My(x) is the maximum of two suprema, namely
17 1 [ty
swp = [ (plde. s o[ ) du
0<y<1/2 Y Ja—y 0<y<1/2 Y Jax

At first sight, it would seem remarkable that we consider such a non-
linear operator, but its value is immediately apparent when we consider

THE HARDY-LITTLEWOOD MAXIMAL THEOREM. Suppose that f €
LNT) and that My is defined as above. If r > 1, and [ |f(x)|" dz < oo,

then
/TMf(a:)’"dxSr(ril)r/jr|f(x)|’“dx.

To exhibit how this theorem is useful, recall from . e Cesaro

| E:MaxPSEstDirSer1

| E:DefMaximalFcn
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-Defsigmall
partial sums oy (f,z) of a Fourier series, given in 1'%% ), are obtained by
convolving f with the Fejér kernel . Let

. 1
Fy(z) = min (1, 74N||x|\2)'
-EKE
Then (ﬁ%serts that

Here Fi(z) is even and monotonically decreasing for 0 < z < 1/2; so

1/2

o= wlEw(w) < M5(a) [ | o) du < M ),

1/2

on(z) <</

-1/2
Hence supy |on(z)| < My(x). Thus if » > 1 and f € L'(T), then
| supy [on ][l (ry < [l - (T)- This line of reasoning succeeds when we
have an even envelope that decreases on [0, 1/2], and has a finite integral.
Abelian weights give rise to the Poisson kernel, which is g}?%?f%}}r?’ SO
there is no need to construct an envelope. See Exercise

E.4.3 The Rademacher—Menchov device

We now seek to bound the quantity

v
max ’ g Cn
1<v<N

n=1

by breaking the sum into short subsums. Let R = [(log N)/(log2)].
Numbers of the form %N form an arithmetic progression with common
difference N/2% < 1, so each interval of the form [n,n + 1) contains at
least one number of this form. Let X denote the set of all dyadic rationals
of the form x = Zle e,(x)27" where £,(z) = 0 or 1. Hence

n=1 1<n<zN

ForzeXand 1 <r <R+1wesetd, =d.(x) =), es(x)27° Then

Y-y Y e

1<zN r=1 Nd,<n<Nd,41

By Cauchy’s inequality,

2 R
DIy

1<zN r=1

Z Cn

Nd,<n<Ndy41
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Here d,. is of the form s/2"~1, and either d, 11 = d, or d,41 = d, +1/2".
Here s depends on z, but since we do not know its value, so we sum
over all 2"~! possible values of s. It is somewhat astounding that this
can lead to anything useful. In any case,

R 27711

790 SH D SR

r=1 s=0 71<n< +ﬂr

(6.29)

max ’ g Cn,
1<v<N

ST

For fixed r, n runs through intervals I, = (N2'7"s, N217"(s + 1/2)].
These intervals I are disjoint, their union is a subset of (0, N], and the
sum of their lengths is N/2.

To see how the above might be applied, replace ¢, by ce(nz), and
integrate. It is immediate that

2
121}/32(]\[ ’ Z cne(ne ’ < (log N) Z len] .
Here the e(nz) are orthonormal, but other families of functions for which
we have a Bessel-like or bilinear form inequality can be introduced. The
bounds obtained in t_h12s way are typically weaker than optimal by a
factor of R2 See g 37

While 1s inferesting and useful, it does not reveal the potential
of the Rademacher—Menchov device. We now consider an application in
which the power of the approach is fully realized.

Theorem E.7 (Montgomery & Vaughan 1979) For Dirichlet charac-
ters x modulo g, let M(x) = maxi<n< | 25:1 x(n)|. Then

> M) <k e(g)dk

X7#Xq

for any positive real k.

Thus M(x) < ¢'/? for most x mod ¢, in the sense that if C' is large,
then M (x) < V¢'/? with the exception of <}, ¢(q)/V?* characters Y.

Proof By Holder’s inequality we see that the assertion becomes stronger
as k increases through real values. Hence it suffices to prove the assertion
for a sequence of k tending to infinity. We consider integral k > 2. In the
proof we allow implicit constants to depend on k. We shall show that
for ¢ > 1 we have

Z* M(x)** < p(q)d". (E.29) [E:SumPrimChar1

X
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To deduce the Theorem from this, let x be a character modulo ¢, let x*,
modulo r, be the primitive character that induces x, and let s = ¢/r.
Then

3 M0 <Y dg/n)* S M)

X#XO 7"\dl x mod r
r>
<Y d(g/r)Frro(r) < ¢ olq) D d(s)?/s*
rlq slq
< ¢*o(q).

Let
A:{aZ_R : aGZ,0§a<2R}

where R is an integer to be chosen later. For « € A we write a =
Zil €277 with e, =e,.(a) =0 or 1. Let vy =0 and for r > 1 let

r—1
vp = vp(a) =27 Z em2” ™.

m=1
Then v, < 2" and the interval (0,a] is a disjoint union of intervals
(v,27" (1/7«—|—6,») il for 1 < r < R. Choose N = N(x) so that N < g

and |Zn x(n)| = . Then there is an a = a(x) € A such that
N<ag< N+qgF Hence

M(X)S‘ > x(n))+q2‘R- (E-30)

1<n<aq

d PrimCharil
We take R = |(log q)/(2log2)]|. Thus to prove @mes to show

that

Z ) > n‘ < ¢(q)d" (E.31) [E:SumPrimChar2

1<n<aq

(where of course, @ = a(x), as above). By Holder’s inequality

> x| =\ﬁ > x(n)

1<n<agq 1y, 2=-7q<n<(vr+€,)27"q

‘2]{)

R
< (Zﬂk/(zzﬂm) (ZT%’ Z X(”)’%)- (E.32) |E:ShortCharSuml

r=1 r=1 vr27mq<n<(vr+er)27"q

In our discussion of the Pélya—Vinogradov inequality in §9.4 (note, esp.
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pages 309-311), we showed that if x is a primitive character modulo ¢,
q > 1, then for real u and v with v < v we have

S =t 3 x @) o6 i g ).

2mih
ug<n<vq 0<|h|<H

Thus
> x(n) < g2 ST x(he(hn /2 )a(h)
vr2-"g<n<(v,4€,)27"q 0<h<H
a2 S xWethvn /2 )a(h)
0<h<H
+1+qH 'logg
where

a(h) = a(h,r) = Mh)_l < min (Q_T,h_l). (E.33)

Thus by @ r’tCharSuml
R
Z < Z Zr%qk’ Z X(h)e(hVT/ZT)a(h)‘

X n<aq r=1 0<h<H

2k

+ Z* ZR:T%(l + (qH_1 log q)%).

X r=1

Here the second sum over x is
< (@) R* (1 + (qH logq)™").

This is acceptable provided that H = ¢'/?(log q)°.
In order to obviate the dependence of v, on x, we sum over all possible
v. We make no further use of x being primitive, so we also p%lginmigha éco

run over all characters modulo g. Therefore, to establish 1t suffices
to show that
R 27-1 ok
Y r2k’ 3 X(h)e(huT’”)a(h)’ < (q). (E.34)
X r=1 v=0 0<h<H

We now write

S welhvaa(h)

0<h<H 0<h<HF

Defa(h)
where by (@ifh
b(h) = by (hyr,v) < dj(h) min (27%" A71). (E.36) |E:b(h)Est

Il
=

>
~—
X

>
~

©3)
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In Exercise 4.2.1.2 we used the orthogonality property (4.15) to show
that

a 9 q

S x| =¢l) Y leal?
x n=1 n=1
(n,q)=1

for arbitrary complex numbers ¢,. Hence

M+N q
TIS ol 0 | 2

n=M+1 n=h (mod q)

2

S )|
X O<h<Hk

q k

< (g Z(de h—|—mq)mm(2 b (h 4 mq)~ 1))2.

For m < ¢* we have di(h +mq) < ¢°. On considering separately the
cases m = 0 and m > 0 we obtain

Z‘ Z x(h)b( ‘ < (g Xq: *min (2 2kt p %)
X O0<h<HF h=1
q

k
q

+elg) Y (q‘”a > 1/m)2

h=1 m=1
< (p(q)Z—krer—l T q3s

since

Z di(s R (log 21)

s<z

We have assumed that £ > 2 and we have chosen R so that 2F < ¢1/2,

alReduct

Thus the left hand side of 1S
< Zr2k2r 2 kr k -1 +q35) < C,O((]) +q452R < QO(Q)

as required. O
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E.4.4 The Carleson—Hunt Theorem

The most memorable form of the Theorem states that if p > 1 and
f € IP(T), then the Fourier series of f converges to f almost everywhere.
However, this is in fact a corollary of a much more fundamental result,
namely that if p > 1, f € IP(T) and

~

K
s =sup | S Fike(ke)

K>1 e

)

then
[lr@lar <, [ i@
T T

We note in particular that the case p = 2 implies that there is an absolute
constant C'y such that

v N
/ max Z ane(mv)’2 dx < Cg Z |an)? (E.37)
T n=1 n=1

1<v<N

.LargeSieve
for any choice of the complex numbers a,,. In Chapteri g thisis used to
derive maximal versions of the large sieve.

S:MaxIne .
.5 Exercises

-DefE_K - %
1. Let Ex(z) and sk (x) be defined as in @Txnd @gﬁppose

that p and ¢ are real numbers with 1 < p < oo and 1/p+1/q = 1.
Use Holder’s inequality to show that

sk () < (log 2K)|| f | 2 (m)-

Exer:IncCharSum| 2. Suppose that y is a primitive character modulo ¢ > 1. Then Y(—1) =

7(x), so ‘)2(—1” =q'/2.
(a) Let s(u) = >°5_,<, x(n). By Riemann-Stieltjes integration by
parts, or otherwise, show that
. 2 [1
(1) =25 [ stwetufa) du
1
(b) Deduce that

1 q 1/2
f/ Is(w)| du > L.
q.Jo 2
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M(chi)
Let M (x) be defined as in Theorem “Conclude that M(x) >
q'/?/(2r) for all primitive characters modulo g.

3. Let f be an arithmetic function with period q.

(a)

Suppose that M and N are integers, with 0 < N < ¢. Explain
why

M+N q M+N
S fmelan/q) =S Fk) S elnla+k)/g).
n=M+1 k=1 n=M+1

Show that the above is

Z k)| min (N, 1/[[(a + k) /q))-

Deduce that

M+N q
max | > fme(an/q)| < 30 F(k)] min (.1/](a + )/gl)-
1<N<g n=M+1 k=1
(5.39)
Show that
M+N N
. (E
s [ Y Sn)elan /)| < atton20) mpx | (1) (30) [E:Troncsunts]
1SN<q n=M+1
1<a<q

Note that by taking M = 0, N = ¢, and a suitably, the left hand
side can be made as large as ¢max |f(k)|, so the above is within
a factor log 2q of being best possible.

Show that
q M+N q
.
;::1 ;Sn%q ) EM:—H f(n)e(an/q) ‘ < q(log2q) EZ: (E.40) |E:MaximalEst2
Show that

Q

Z k)| min (g,1/][(a+ k)/qll)

q

< (alog20) (X2 79" win (1 + /)
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(g) Deduce that

il M+N .
Z énl\%)g(q ‘ Z f(n)e(cm/q) < (qlog2q) Z
a=11ZNZq n=M+1 Pt

(E.41) |E:Maxima1MeanSqr1

Note that if M = 0 and N = ¢, then the left hand side is
> > |f(k)|?, so the upper bound is never larger than the truth
by more than a factor of (log2q)?.

4. Let B be a real number, and set f(x) = |z ~'(—log ||z|)?.
(a) Show that f e L}T) if B <

MaximalFcn .
(b) Define My (z) as in @_S'h—fﬁat if 8 # —1, then
Mj(z) =p |||~ (— log |z[)"*7.
(c) Conclude that if —2 < 8 < —1, then f € L!(T), but that My ¢

IMT).
5. For 0 < r < 1, the Poisson kernel is
Poz)= > rMe(kz) =142 r* cos2mka. (E.42)
k=—o0 k=1

In this context, r — 1! corresponds to K — oo for a discretely
indexed kernel.

(a) Let r be fixed, 0 < r < 1. Show that the series defining P, is
absolutely and uniformly convergent, that P.(x) is a continuous
function of z, and that I‘:(k) = rl*l for all integers k.

(b) Show that

1—r2
P, = .
(z) 1 —2rcos2mx + r?
(c) Show that
1— 2
Py(z) = -

(1 —7)2 4 4rsin® 7z’

(d) Show that [, P.(z)dz = 1.
(e) Show that P.(xz) > 0 for all .
(f) Show that if 1/2 <r < 1, then

Pr(:r)gmin(l—’_r 1-or )

b) . .
1 -7 sin’7z
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(g) Show that if f € I}(T), then

oo

(f* P)(@) = Y rM fkye(ka).

k=—o0

(h) Show that if f is continuous and has period 1, then (f x P.)(z) —
f(z) uniformly as r — 17.

(i) Show that for fixed r, the function P,(x) is decreasing for 0 <
x <1/2. ,

2 MaximalFcn

(j) Suppose that f € L'(T), and let My be defined as in @._SW
that (P * f)(z)| < M¢(x) for all z.

(k) Show that if f € I'(T) with r > 1, then || sup, .y [(Pr-*f)|| (1) <
£l my-

6. (a) Show that

M+N

Y et e+ [ Y1) S
X n=M+1 ?;git%

where the y run over characters modulo ¢ and the ¢,, are arbitrary
complex numbers.

(b) Show that for any integers M, N > 1, ¢ > 1, and complex num-
bers ¢,

E.5 Notes

S:NotesHarmAnal |

Section E.1. The notation e(x) was introduced by the Russian number
theorist I. M. Vinogradov. It is particularly useful in analytic number
theory where z is often a complicated expression with superscripts and
subscripts, which become scriptscript size in e2™ but are larger in e(x).

As the nineteenth century drew to a close, it was already clear that
many functions in L (T) have Fourier series that fail to converge, and the
prospects for the future of Fourier analysis looked bleak. But there was
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a Hungarian teenager, Lip6t Fejér, studying in Berlin, who submitted a
manuscript in December, 1899. The Cesaro partial sums oy (x) have all
the lovely properties that one wishes the unweighted partial sums sy (z)
would have (but generally do not). For example:

L. If f € I}T), then ||f(x) — on(f,x)|1 = 0as N — oo,

2.1f f € I}T), then on(f,x) — f(x) a.e. (a theorem ofl_ﬁesgue 1905)).

Aclditiona‘lT H)s;(%f;ul kernels were invented, and the entire subject was re-
born. See [Kahane| (1981)).

Section E.2. In the late 1930’s, Arne Beurling showed that if F' € E?7,
F(z) > sgn(z) for all real z, then

/ F(z) —sgn(z)dz > 1,
R

-DefBeurF
and that equality is attained only when F'(z) = B(z) as defined in (ig% R
He also showed that if G € Es,, then

/ |G(x) — sgn(z)|dx > 1/2
R

with equality if and only if

G- Sinjﬂ'z (1og4—|— i (—1)"sgn(n)(% + 221_n))

n—=—oo

This function gives a better approximation in the L' norm, but does not
lend itself to one-sided approximations. Beurling never published his
work on this subject, and thu§A§qelberg rediscovered Beurling’s function
B(z) in the early 1970’ s: see Selberg] (1991, p. 226). For full proofs of
Beurling’s theorems see TV_Iér (11985).

Beurling’s work has since been extended to find optimal I} majorants
and minorants for various weights, often with applications to inequalities
occurring in analytic number theory. Let A be a positive real number
and put E(\,2) = e~ for x > 0, and E(\,x) = 0 for z < 0. ham
& Vaaler| (1981)) found the unique I! majorants and minorants (whose
Fourier transforms are supported on [—1,1]) for E(\, z), sgn(z)e =,
and e~ and derived a precise form of the Wiene‘zg Ikeh%r% tauberian
theorem, Whlch improves on a less precise version of [HEmLandau
(1933alb). [FI_TF& Vaaler| (1996) generalized Beurling’s analysis by find-
ing bandlimited functions S* such that S~(z) < sgn(z) < S*(z) and

J75 (ST (x)— 5~ (@))|z[>*! dw is minimized. Here v is a real parameter,
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v > —1. They also used de Brange’s theory of Hilbert spaces of en-
tire functions to construct approximations to the characteristic func-
tion of a ball in Euclidean space. ﬁ%%%m 2010alb)) give
best possible bounds for some hermitian forms, and they determine

the unique trigonometric polynomial uy(z) of degree N and period 1
such that logle(x) — 1| < uy(x) for all z with [, uy(z)dx as small as
possible. The least such value is (log2)/(N + 1). Suppose that Fy(z)
is a monic polynomial of degree N whose roots lie on the unit circle.
Then max|.|—; log |Fy(z)] is small if the roots of Fyy are approximately
equally-spaced. An upper bound for this maximum is given with sharp
constants, in terms of the power sums of the zeros. This 1 is
the harmonic conjugate of discrepancy as discussed in [F.2[ [C
|& Vaaler| (2010b) determine best possible L'(R) approximations to a
wide class of even functions by entire functions of exponential type.
Corresponding results are then derived for functions with period 1; in
particular the best approximation in I!}(T) by a trigonometric_polyno-
mial of degree at most N to the function log|l — e(x)|. i%
m used extremal approximations to refine Work of thtle—
wood concerning the size of the zeta function, assuming RH. [C
[Soundararajanl (2011) give an improved estimate for |((1/2+it)| assum-
ing RH. [Carneiro, Littmann, Vaaler| (2013)) find extremal functions for
majorizing, minorizing, and approximating the function e~ AT
‘F‘i{l}% iunctions of exponential type, and provide numerous applications.
|ICarneiro, Chandee, Milinovich| (2015) give two proofs that the estim-
ate |S(t)| < (1/4 + o(1))(logt)/(loglogt) follows from RH.
m extend bounds for the zeta function to a Wlde class
of L- functlons assuming the relevant Riemann Hypothesis. K
[Chandee, Milinovich| (2015)) give a new and simple proof of the best
known bound for [S(t)| assuming RH, and give generalizations to L-
functions. [Carneiro & Chirre| (2018) give sharp bounds for S,,(¢) assum-
ing RH.

Suppose that Fiy € L}(R) are functions such that F_(z) < x

< Fy(x) for all real 2, and supp F. C [—6,6]. Then

max/]RX[iL/ZL/Q] (x) — F_(x)de = L — 6L f_(LJ),

by en-

5.5

min/RFJr(x) = X{_1/2.L/2] (z)dx = L+ 07 f(L6)

for some functions fi whose values we would like to know. Selberg’s
construction using Beurling’s function demonstrates that 0 < f_(z) <1
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and 0 < fy(x) < 1 for all z, that they are both equal to 1 when x
is a posive integer, and that they are less than 1 when z is not an
integer. announced that he had identified the function fy,
but he never published his proof. Donoho & Logan| (1992) settled the
issue when 0 < L < 1; they showed that

. 2 sinmLéy\—1
maX/RX[fL/z,L/z] (z) dz =0, mm/RFJ,(x) dr = 5(1 + W) .

(2013) has identified the extremal F, and has shown that

/]RF+($)_F_($)dl‘:§(1+ %Dﬂ

when L§ > 1, but it seems to be difficult to derive useful formulae for
the fi from his analysis.

Section E.4. The proof of the Hardy—Littlewood maximal inequality
involves considering the equidistributed rearrangement of a given func-
tion. While we speak of the Hardy—Littlewood maximal inequality, in
fact it is a family of seven thegrems, three for an interval [a, b], three for

T, and one for the real line. l 1968, pp. 29-33) gives detailed

proofs of all of them. oo
The Rademacher-Menchov devi ghlilgjts its origins in [Rademacher| (1922)
and (1923)). Theorem [E-7[originates in Y ontgomery & Vaughan|

(1979) where it is also shown that

N o2k
Z max‘ Z (—)’ <y m(P)P*
N p
2<p<P n=1

for all real numbers k > 0.

The papers of%Sar eson (1966|) and Eunt 1068) are quite difficult to
ﬂ

read. [Lacey]| (2004) has given a more accessible account of the I? case.
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Appendix F

Uniform Distribution

In this appendix we consider the uniform distribution of various quant-
ities, the simplest being that of a sequence of real numbers considered
modulo 1. We find that the distribution modulo 1 of a sequence {u, } can
be described in terms of the asymptotic size of the associated exponential
sums 25:1 e(ku,). Here k runs over integral values, and e(f) = €27
is the complex gxgucl)nr%ential with period 1. This motivates us to develop
(in Chapter methods for estimating exponential sums.

F.1 Uniform distribution (mod 1)

Let wy,us,... be a sequence of real numbers, and for 0 < a < 1 let
Z(N,«a) denote the number of n, 1 < n < N, such that 0 < u, < «
(mod 1). We say that the sequence {uy} is uniformly distributed (mod
1) if

. 1

lim NZ(N’ a)=a (F.1)

N —oc0

for all @ € [0,1]. To characterize uniformly distributed sequences we
have

Theorem F.1 (Weyl’s Criterion) The following are equivalent:

(a) The sequence {uy} is uniformly distributed;
(b) For every integer k # 0,

N —o0

| X
lim N ;e(kun) =0;

391
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(¢) For each function f with period 1 that is properly Riemann-integrable
on [0,1],
1 & !
Jin, 2 T = | r@ e (F2)

Proof We note that (a) is equivalent to the assertion that @g%clds
whenever f is the characteristic function y, of the interval I = [0, q]
(mod 1) }l}ie%e 0 < o < 1. Similarly, (b) is equivalent to the assertion

~.2) olds when f(2) = e(kz) for all integers k (including k = Qorit
since (2] holds trivially when f = 1). Moreover, the relation @7
is linear, so that if it holds for several functions, then it holds for any

linea%rciombination of (finitely many of) them. Hence (a) asserts thatcrit

olds for step functions with period 1, and (b) asserts that

holds for trigonometric polynomials with period 1. We complete the
proof by showing that (¢) = (b) = (a) = (¢).

The implication (c) = (b) is trivial, since trigonometric polynomials
are Riemann-integrable. L£-T| approx

To show that (b) implies (a), we appeal to Theorem ﬁ_ﬁ%se
the characteristic function of the arc [«, 8] is not continuous, so we first
construct a continuous one-sided approximations to the characteristic
function, whose integrals are close to 8 — a. Specifically, let Ly (x) be
the piecewise linear function with period 1 whose graph has the vertices
(0,1+¢), (o, 1+¢€), (a+te,€), (1—¢,¢), (1, 1+€), and similarly let L_(x) be
the piecewise linear function with period 1 whose graph has the vertices
(0,—¢),(e,1 —¢), (¢ —¢,1 —¢),(a, =€), (1, —¢). (We may suppose that
0 < @ < 1 and that € is so small that 2¢ < o < 1—2¢.) Then the L are
continuous, L_(x) +¢ < x,(x) < Ly(x) — ¢ for all z, and the Ly are
good approxim tl_Qﬁli t(%ggl in the I*-norm, since fol Li(z)dr = a+2e.
By Theorem %’Eﬁ%’ﬁst trigonometric polynomials T (z) such that
|Li(z) — Ti(x)| < € for all z. Hence T (z) < x,(v) < Ty (x) for all x,

fol T (z)dx > a — 3e,and fol T (z)dz < o+ 3e. But then

Z(N,a) = x; (un) <> T (up),

and by the hypothesis (b) we know that

1

N 1
_— _ <
]\}gnw N ;TJr(un) /0 T, (z)de < a+ 3¢,

so it follows that limsupy_, ., Z(N,a)/N < a+3e. By arguing similarly
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with T_(z), we see that liminfy_,oo Z(N,a)/N > a — 3e. Since € may
be taken arbitrarily small, we have (a).

Finally we show that (a) implies (c); our method is the same as the
one just completed. If f(z) is properly Riemann-integrable on [0, 1],
then for any e>0 there ex1st step functions Si( ) such that S_(z) <
flx) < Sy (x fo (z)dz < e, and fo Sy(z) — f(x)dr < e. By
proceeding as above, but Wlth X; replaced by f and Ti replaced by S4,
we see that

hmsup—Zf (un) < hm —E:SJr (un)

N—oc0
1
:/ S+(z)dx</ f(z)dx + ¢,
0 0

and similarly for the lim inf. Hence we see that (a) implies (c), and the
proof is complete. O

n=1

When we consider a real number z (mod 1), or equivalently the frac-
tional part {z} of z, we are treating z as a representative of a member
of the circle group T = R/Z. Similarly, a function with period 1 may be
thought of as having domain T. Thus Weyl’s criterion can be considered
to be a statement concerning the distribution of points uy,us,... in T.

We find it fruitful to cast Weyl’s criterion in the language of measure
theory. We call a measure p on T a probability measure if both u(8) > 0
for all measureable sets 8 C T and also u(T) = 1. Let §, the Dirac delta,
denote the probability measure that assigns unit mass to the point 0.

DiracDelta| Thus d(8) = 1 or 0 according as 0 € § or not. The measure ¢§ and
% also Lebesgue measure A\ are examples of probability measures on T. If

U1, U, . .. is a sequence of points in T, then for each N put

N
() = 5 D0 ). (F3)
n=1

Thus uy is a probability measure that places mass 1/N at each of the

points w1, us, ..., un, and hence

/f duN—Ni

In general, if i is a measure on T, then for integers k we define its Fourier
coefficient (k) to be

k) = /T e(—ka) dp. (F.4)
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Thus for the special measures 11y we see that fiy (k) = + 22[21 e(—kuy).
Hence Weyl’s criterion asserts that the following assertions are equival-
ent:

(a) un([0,a]) = @ as N — oo for all @ € [0,1] (i.e., uy — A weakly);
(b) For each integer k # 0, fiy(k) — 0 as N — oo;

(¢) If f is properly Riemann-integrable on T, then [ fdun — [ fdA
as N — oo.

Here the restriction to measures of the special shape %
dropped, since it is easy to see that the proof of Theorem applies
equally to any sequence of probability measures p1, o, . . ..

As a first application of Weyl’s criterion we have

Theorem F.2 If 6 is irrational, then the numbers nf are uniformly
distributed (mod 1).

We note that the converse of the above is obvious.

H SumEst
Proof From Lemma ﬁ%&f—eﬁow that

N 1
Z_: e(na)| < min (N, —)

2|ex]
On taking a = k@ in the above, we see that

1 & 1

— knf) € ———.

Nn;e( n0) < TN
Since 6 is irrational, it follows that kf is not an integer, so that the
above is < 1/N with an_im ligri‘gtconstant that depends on k and on 6.
Thus we have Theorem E fF %i, and hence the sequence nf is uniformly
distributed (mod 1). O

Suppose that 6 is irrational. Since the numbers nf are dense modulo
1, it follows that they are dense. That is, for any real 5, and any € > 0,
there exist n (even infinitely many n) such that |nf + 5| < €.

1 Exercises

1. Suppose that {uy,} is uniformly distributed (mod 1), and let ¢ be a real
number. Put v, = u, + ¢. Show that {v,} is uniformly distributed.

2. (a) Suppose that f € I}(T). Show that for every € > 0 there is a
trigonometric polynomial T'(x) such that [ |f(z) — T'(z)|dx < e.
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(b) Suppose that f is real valued, has period 1, and that for every
€ > 0 there exist trigonometric polynomials 7%y and 7_ such that
T_(z) < f(x) < Ty (x) for all x and [Ty (z) —T_(z)dz < e.
Show that f is Riemann-integrable on [0, 1].

. Suppose that f has period 1 and that limy_,o %25:1 f(up) ex-

ists whenever {u,} is uniformly distributed. Show that f is properly
Riemann-integrable.
(a) Show that

1 e —el/?
limsup — card{n : 1 <n < N, {logn} € [0,1/2]} =
N—o0 N e—1
(b) Show that
liminf — card{n: 1 <n < N, {1 o
iminf = car {n:1<n< ,{ogn}€[0,1/2]}—ﬁ
(¢) Show that
N .
1 N?2mik log N
= klogn) = -~ .
N;e( ogn) 27m'k+1+0<(|k|+1) )

(d) Show that the sequence {logn} is not uniformly distributed
(mod 1).

. Suppose that {u,} is a sequence such that lim, yoo Unt1 — Uy =

a. Show that if « is irrational, then {u,} is uniformly distributed
(mod 1).

. Let I and J be arcs of T, and suppose that « is an irrational number.

Put w,, = na. Show that for each nonnegative integer m the limit
.1
dp = ]\}gnoo ﬁcard{n €[1,N]:up €1, up_m €3}

exists. Prove that

1 M
37 2= 1]

F.2 Quantitative estimates

Suppose that a sequence {u, } is given, and let Z(N, «) be defined as in
the preceding section. For 0 < o < 1 put

D(N,«a)=Z(N,a) — Na.



396 Uniform Distribution

The discrepancy of the sequence {u,} is the quantity

D*(N) = sup |D(N,a)|.

0<a<l

“eylCrit
As a companion to (a)—(c) of Theorem i% “ consider the assertion
(d) D*(N)=0(N) as N — oc.

On one hand, this is equivalent to assertin .thag C@Qﬁ%lds uniformly in
a. Hence (d) implies part (a) of Theorem %Lrﬁtabhsh the converse,
we first observe that D(NV, «) has a sort of one-sided Lipschitz property:
Ifo0<a<p<1, then

D(N,B) = D(N;a) 2 =N(8 — )

because Z(N, o) is an increasing function of ae. Hence if | D* (N, m/M)| <
eN for m = 0,1,2,..., M, then g(N,a)| < (e+1/M)N for all a €
[0,1]. Thus we see that if olds everywhere pointwise, then it
holds uniformly, and hence 1t(}:1191 1:assertion (d) above is equivalent to the
assertions of Theorem

Since the discrepa%(é¥ of a sequence provides a measure of the rate at
which the limit is attained, it is reasonable to ask for quantitative
connections between the size of the discre -anc¥c§‘£;d of the exponential
sums considered in part (b) of Theorem %ISW links can be estab-
lished in both directions, but since we shall shortly be developing meth-
ods for estimating exponential sums, the most useful tool is a bound for
the discrepancy in terms of exponential sums.

Theorem F.3 (The Erdés-Turdn inequality) Let uy,us,...,uy be N
numbers in T, let I = [a, B] be an arbitrary arc of T of length f—a <1,

and let K be an arbitrary positive integer. Then

|card{n € [1,N]:u, € I} — (8 —a)N| <

Z e(kuy,)

By taking a = 0 and allowing (8 to vary, we may make the left
hand side above as close as we like to D*(N), and hence this inequality
provides the desired bound for the discrepancy.

K

N 1
3 —
K+1+ ;k

H 1Crit
Proof We proceed in the same manner as in the proof of Theorem iE E
but now we employ quantitative one-sided trigonometric approximations
to x, that are sharp in the L'-norm. Specifically, suppose that T_(x) is
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X :TrigApproxModl
chosen as in Theorem en

N
card{n € [1,N] : u, € I} = le(un)

N

P
= > T(k)_ elkun).

=K n=1

igApproxModil ~
By TheoremlEii%ié) we know that T (0) = f—a—1/(K+1). To estimate
the Fourier coefficients T_ (k) for k # 0, we recall that if f is in L}(T),
then

Fl = | [ re—ka)de| < [ If@)ldo = 171

Since

%, (k) = e(—k(a+ /I Z0) )

. - TrigApproxModil
by taking f = x, —T- we see by Theorem ié% é) that

e(~kat I 3 <o kr0),

and hence that

~ 1 sinmk(8 — «)
IT_ (k)| < K+1+] o ] (k #0).
Thus
N
card{n € [1,N] :u, € I} > (8 — a)N — il

(#.9

1

sinwkii — ) D

Z e(kuy,)

But |sinu| < 1 and 2(1(#Jrl + ) < 2(3 + 5%) < 3/k, so this gives the

desired lower bound. The corres Qndiin ull())%(ggd}:l)ound is proved similarly,
using the T (z) from Theorem i%%ﬁ O

The Erdés—Turan inequality provides a good estimate for the discrep-
ancy in terms of exponential sums, but for short intervals we can do
better.

1
P (K+1
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Theorem F.4 Let ui,us,...,un be given, and suppose that K is an

integer such that
N
e(kuy)

n=1

K

k=1
Then any arc I = [, B] of T of length § —«a > 3/(K + 1) contains at
least %(ﬁ — a)N of the points u,,.

. . . -ErdTurEst1
Proof Since |sinu| < |ul, the lower bound in i%%) 1S

< N/8.

=

which gives the result. O

S:QuantEstUD .
iE E?[ 1 Exercises

1. Let A be a dense subset of [0,1], and suppose that a sequence {u, } isDef
given. Show that if the relation olds for all & € A, then @7
holds for all «, and hence {u,} is uniformly distributed (mod 1).

2. Let p be an odd prime, and put u,, = n?/p for 1 <n < p.

(a) Show that

3
“ME
LN

(k) :{p if k=0 (mod p),
" VP ifk#0 (mod p).
(b) Show that D*(p) < p'/?log p.
()
3. (a)
(b)

This is a special case of what familiar inequality?
Show that D*(N) > 1/2 for any sequence {uy} and any N > 1.

b) Show that if N points u,us,...,un are equally spaced (mod 1),

then D*(N) < 1.

4. (a) Suppose that ui,us,...,up and vi,ve,..., vy are two sequences,
with discrepancies D*(M;u) and D*(N;wv), respectively. Let wq, wa,
...,wp+nN be the concatenation of these two sequences (i.e., w,, =
U for 1 <m < M, wpryn = vy, for 1 <n < N), and let D*(M +
N;w) be its discrepancy. Show that D*(M + N;w) < D*(M;u) +
D*(N;wv).

(b) Show that if |ju, —v,|| < ¢ for all n, then |D*(N;u) — D*(N;v)|
<N forall N > 1.



@] 5

6.

F.2 Quantitative estimates 399

(c) Suppose that u, = nf + 3. Show that if |§# —a/q| < A/¢* and
(a,q) =1, then D*(q) < A+ 1.

(d) In the remaining parts of this exercise, let 6 denote the ‘golden
ratio’, # = (1 + /5)/2, and let F}, denote the h'" Fibonacci
number. Show that Fj,0 = Fy.q + (—1)"T16=". Deduce that
|0 — Flup1 /Fp| < Fp 2

(e) Show also that (Fy, Fpy1) = 1.

(f) Deduce that if N = Fy, for some h and if uy,us,...,uy are any
N consecutive members of the sequence {nf}, then D*(N) < 2.

(g) Show that any positive integer N may be written in the form
N =Fp, + Fp, +---+ F},, where hy > ha > --- > hp.

(h) Show that if u, = nf where 6 is the golden ratio, then D*(N)
< log N.

(i) Show that

Fy,

1
—— < Fy log F},.
2

(j) Deduce that

Ko

= (1 2,
Zk\k@” (log K)
k=1

(k) Conclude that the Erdés-Turdn inequality gives a bound weaker
than in (h), namely D*(N) < (log N)2.

Suppose that a sequence {u,} is given, and let

D(N)= sup |card{n€[l,N]:a<wu, <f (mod 1)}—(8—a)N].
0<a<pLl

(a) Show that D(N) = supy<,<; D(N,a) — info<a<i D(N, ).
(b) Show that D*(N) < D(N) < 2D*(N).
(¢) Suppose that v, = u,+c for all n. Show that D(N;u) = D(N;v).

Let p denote a probability measure on T. Show that if I = [«, §] is
an arc of T, 0 < 8 — a < 1, then for any positive integer K

B I
il 1) (9] < 5 533 )

-Defmuh
where [i(k) is defined as in 1‘% i%;.mu =

In the next exercise we establish a quantitative version of the implic-

ation (d) = (c) for a restricted — but important — class of functions.
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7. Suppose that {u,} is a given sequence, and that f has bounded vari-
ation on T. Show that

N 1
3 1) - / f(z) da

(Careful! The Riemann-Stieltjes integral [ f(a)dD(N, ) does not
exist if f is has a jump discontinuity at any of the points w,,.)

< D*(N) Varr(f).

Next we establish a quantitative version of the implication (d) = (b).

8. Let {u,} be a given sequence.
(a) Show that if k # 0, then

N 1
Z e(ku,) = —2m'k/ D(N,a)e(ka) da.
n=1 0
(b) Show that if k # 0, then
N
> e(kun)| < 2[k|D*(N).
n=1

(¢) Now show that the constant 27 in the above can be improved:
Wri]‘E]e Zf:;l e(kuy,) = pe(8) in polar coordinates, so that p =
| > ey elkuy)| =, 1 cos2m(kuy, — 0). Show that

N

Ze(kjun)

n=1

1
= 271'k:/ D(N, a)sin 2 (ka — 0) da < 4]k|D*(N).
0

(d) Construct examples to show that the inequality above would be
false if the constant 4 were replaced by a number < 4. Suggestion:
Consider sequences of N terms where N is even, N > 4, 1 <
k < N/2, € is sufficiently small, and the sequence starts with
k repetitions of e, followed by &, 2, ..., 2 — £ 1 4 £ 14

N 2 N2
k4l N—2 N—1 d then k entri f1
N TN TNy Al en k entries of 1 — €.

9. (a) Suppose that the points u, are distinct from 0 (mod 1) and from
a (mod 1). Show that

N
D(N,«a) = Z s(up — a) — s(uy)
n=1
where s(z) is the ‘sawtooth function’ as in Lemma D.1, namely

sy [l =12 e
0 (x € Z).

(F.G) | E:Defsawtoothfcn
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(b) Show that

[ Povaria =34 - fu

(¢) By using Lemma D.1, or otherwise, show that if « is distinct
(mod 1) from the points u,, then

D(N,a) = <§: % - {un}>
" N

bom dim S (D el )eha),

0<|k|<K n=1
(d) Deduce that

o0

2
1 1
k=1

n= 1

2

N
Z e(kuy)

10. (a) Suppose that J is given. Show that if & and o+ are both distinct
from the w,, (mod 1), then
D(N7a+5)_ (Nva)

1

2’/TZ K—>oo
0< k<

(ﬁ:e kun) (ko) — De(ka).

(b) Deduce that

! 9 sind
/O(D(N,a+6)—D(N,a)) do=3" (2 k)z

2

N
Ze(kun)

k#0 n=1
(c¢) Show that
K | N 2
S elkun)| < 27°K?D*(N).
k=1'n=1
11. (a) Show that
1 N N
> (-5 Z = 3 S Axclum — ) > NK
k<K n=1 m=1n=1

Fejerkernel where Ak () is Fejér’s kernel,

St = 3 (1= )t = (e
|k|<K
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(b) Show that
N

D ! 2 elhun)
- = n=1

12. Suppose that 0 < u; <ug <...<wuy =1, and put 4, = u, — n/N.
(a) Show that

> (N/2)Y/2,

max D(N,a) = —N min_d,.

0<a<l 1<n<N
(b) Show that

inf D(N,a)=-1— max d,.
0<a<l1 1<n<N

(¢) Show that

/DNa da—Z/ (n—1— Na)?da

n—1

where ug = 0.
(d) Deduce that

2_ 7 _
Za N/D )2 da + /DNada+6N

(e) Show that if N > 1, then

N N
D elun) = (ed Je(n/N).

n=1 n=1

(f) Deduce that

N
Z e(un) <27TZ|6|

13. Take the u, to be the Farey fractions a/q € [0,1) of order Q. Thus

(a) By considering the contribution of the interval [1 —1/Q, 1), show
that



14.
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(b) Use properties of Ramanujan’s sum ¢, (k) (as defined in §4.1) to

show that
q

Q
Y > elak/q) = dM(Q/d)
q:1( :)1: d|k

where M(z) = >, ., n(n) is the summatory function of the
Mébius function.

(¢) Show that D*(N) = o(N) as N — oc.

(d) Show that for every @ > 1,

/D P da > M@

27?2

(e) Show that if @ > 1, then

1
/ D(N,a)? da
0

=t S (o -r2)( X SM@/es))

r<Q plr s<Q/r

(f) (Franel 1924) Show that the Riemann Hypothesis is equivalent
to the assertion that

/ D(N,a)?da <. Q¢

for every € > 0.

:delt
() (Franel 1924) Let the numbers d,, be defined as in Exercise il?fr e

Show that the Riemann Hypothesis is equivalent to the estimate

N
> < QT
n=1

(h) (Landau 1924) Show that the Riemann Hypothesis is equivalent

to the estimate
N

Z ‘5n| <. Q1/2+6-
n=1
Let b be an integer > 1, and suppose that the representation of = in
base b is * = 0.a1az2a3 ... where 0 < a,, < b for all n. Suppose that
c1,C2,...,Cx are integers such that 0 < ¢, < b for all k. We say that
x is normal base b if
1

1
]\}gnooﬁcard{ne [LLN]:apir=c(1<k<K)}= oK
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for each K > 1 and each of the b¥ admissible choices of the ¢.

(a) Show that x is normal base b if and only if the sequence {xb"} is
uniformly distributed (mod 1).

(b) Show that the numbers normal to base b form a set of first Baire
category (i.e., the set can be expressed as a countable union of
nowhere dense sets).

(c) Show that
1
J

(d) Let D*(N;u,) denote the discrepancy of the sequence {xb"}2_,.
Show that

N

Z e(xzb™)

n=1

2
dr = N.

1
/ D*(N;u,)dx < NY?log N.
0

(e) Show that almost all real numbers z are normal base b, in the
sense of Lebesgue measure theory. This is interesting, since as a
set of first Baire category one might expect it to be small.

15. Gréssencharaktere for Q(\/fl), continued from Exercise 11.3.14.
Show that the number of pairs (a, b) of integers such that a? +b? < x,
a® + b? is prime, and 0 < arg(a + ib) < 0 is

2?9 li(z) + O (z exp(—cy/log z))

uniformly for 0 < 6 < 2.

F.3 Kronecker’s Theorem

We now generalize Theorem ﬁ@t%mﬁmdimensions: We describe the
distribution of the points ({gr1},{qr2},...,{qrm}) in [0,1)™. Since it
is a nuisance to have to take the fractional part of real numbers, we
simply consider p, = (gr1,qra,...,qry) modulo Z™, or, equivalently,
we consider p, to represent a member of the m-dimensional circle group
T = (R/Z)™.

For 1 <i < mlet I; = [ay, ;] be an arc of T with 0 < 8; —a; < 1,
so that B =11 x I3 X --- X I;, is a box in T™. In the same way that
we write a sum or product of numbers as >\, a; or [\, a;, we may
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sometimes write a Cartesean product of a sequence of sets as X;_; ;.
Thus B = X[, I,. For a given sequence w1, us, ... of points in T™, let

Z(N,B) = card{n € [1, N] : u,, € B}

and set

D(N,B) = Z(N,B) — N [[(8; — ).
i=1
We say that the points u,, are uniformly distributed in T™ if D(N, B) =
o(N) as N — oo for every such box B C T™. This is all in parallel with
our treatment of the case m = 1, and we can also define a discrepancy
function,

D(N) = sup |D(N,B)]

where the supremum is over all boxes as described above. Weyl’s criterion
extends to this situation in an obvious manner:

Theorem F.5 Let ui,us,... be a given sequence of points in T™.
Then the following assertions are equivalent:

(a) The sequence {u,} is uniformly distributed in T™;
(b) If k is a non-zero lattice point (i.e., k € Z™, k # 0), then

N
> ek - uy) =o(N) (N — 00);

(c) If f is properly Riemann-integrable on T™, then

Proof The arguments of ﬁ%y over to the present context without
change, except for the issue of constructing trigonometric majorants and
minorants in several dimensions. We consider the majorants first. For
1 <4 < m suppose that T;(x) is a trigonometric polynomial such that
X;, (x) < Ti(z) for all z, and that fol T;(z) dx < B; — a; + €. If we set

m

Ty (z) = [ Tu(wa),

i=1
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then x,, () < T4 (x) and

/m Ty (@) dz < [[(8: — @i + ) < vol(B) + (1 +)™ — 1).
=1

This suffices as a majorant. As for minorants, we observe that I; and
its complement I{ partition T into two subsets. Hence the cartesian
products of the I; and their complements partition T" into 2" boxes,
say By, Bs, ..., Bom where we take B; = B. Thus

2m
Z XBk(a:) =1.
k=1

If X () < Ti() for all @ and [}, Ti(z) de < vol(By) + ¢, then
2'"l 2'[’77/
Xp(@) = 1= xy (@) > 1= Ti(x) = T-(x),
k=2 k=2
say, and [, T—(x) dx > vol(B) — (2™ — 1)e. This suffices to construct

the required trigonometric minorant. O

We consider several forms of Krogelckfrl;[s) theorem, the simplest being
- a. al
a natural extension of Theorem

Theorem F.6 Let r1,72,...,7 be real numbers. If the points p, =
(gri,qra,...,qrm) are dense in T™, then 1,71,79,...,7m are linearly
independent over Q. Conversely, if 1,7r1,72,...,7m are linearly inde-

pendent over Q, then the points p, are not only dense in T™ but are
uniformly distributed in T™.

Proof We first show that if the numbers 1,71,...,7,, are linearly de-
pendent, then the points p, are not dense. Suppose that

Uy + Ty + Ure 4+ -+ Uy Ty, = 0

where the u; are integers, not all 0. Clearly at least one of uy, us, ..., U,
is non-zero; without loss of generality, we may suppose that u,, # 0. If
llgr:|| < e for 1 < i< m, then

m—1 m—1 m—1
< D Mwigrill < ) fuilllgrsl < € ) Jual.
=1 =1 =1

Suppose that ¢ is so small that this last quantity above is < |5u,, |~ .

m—1
||umq’rm|| = H Z Ui qri
=1
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Then the box
1 1
1< 50—
22U, 5|t

loall < e llwall <& lomall <& ||@m —

contains no point p,, so the P, are not dense.

Suppose now that 1,ry,73,...,7, are linearly independent over Q.
He;ncesgn Ekste Z™, k # 0, then k - r is not an integer. Consequently by
ollows that
Q 1
etkp)| = | > elgk )| < = —0(1)
E 2P M7

where the implicit constant depends on k %nd on r. This is o(Q) as

@ — 0, so condition (b) of Theorem 15 satisfied, and hence the p,
are uniformly distributed in T™. O
Let &1, xo, ... be a sequence of points in T™. We may define a prob-

ability measure py by placing a mass 1/N at each of the points x,, for
1 <n < N, and put

N
k) = / ek @) dp(e Z kem).  (B)

eyl
Then Theorem Cowd be formulated in terms of the un, and in-
deed both the theorem and its proof apply equally to any sequence of
probability measures. That is, the following assertions are equivalent:

(a) If B = X", I is a box in T™, then limy o0 gy (B) = vol B;
(b) If k € Z™, k # 0, then limy_,o fin (k) = 0;
(c¢) If f is properly Riemann-integrable on T™, then

im [ f@)duv(@) = [ f(z)de

N—oc0 Tm Tm

(d) limpy_yo0 Supg |ptn(B) — vol B| = 0 where the supremum is over all
boxes B =X, I, CT™

In particular, if p(¢) is the position vector of a continuous curve in T™,
then we can define a probability measure

ur(8) = %meas{t €10,7] : p(t) € 8}.

Thus if f is Riemann-integrable over T™, then

f() dyur(a / f(p

Tm

E:Defmuhat?2
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and hence we see that the curve p(t) is uniformly distributed in T™ if
and only if

/0 e(k-p(t))dt =o(T) (T — )

for every non-zero lattice point k € Z™. A situation of this kind arises
in our second formulation of Kronecker’s theorem.

Theorem F.7 Suppose that r1,7a,...,Tm are real numbers and let
p(t) = (tr1,tre, ... try) € TT

where t is a real parameter. If the set P = {p(t) : t € R} is dense in
T™, then r1,7r9,...,7m are linearly independent over Q. Conversely, if
71,79, ,m are linearly independent over Q, then P is not only dense
in T™ but also uniformly distributed in the sense that

1

lim sup ‘— meas{t € [0,T] : p(t) € B} — VOI'B‘ =0
T—oo 3 T

where the supremum is taken over all bozes B = X~ I; C T™.

.KroThml
It is casy hrgg demonstrate by elementary reasoning that Theorems

and are equiva.lergcT hgﬂszee Exercise 1 below). Thus it is Possible to
present Theorem as a consequence of Theorem ut we find it
instructive to derive it independently.

Proof Suppose that the r; are linearly dependent, say uw - r = 0 where
u € Z™ and wu, > 0. Hence if p = tr (mod Z™) for some t, then
u-p = 0. Let B denote the box of points @ for which |z;| < e for
1<i<,and |2y, —1/(2um)| <1/(5uy,). If € B, then

m—1 m—1

1

u-x—1/2| <|upmxy, —1/2 wx;| < - 4¢ U |.

| /2] < [tmTm /|+;|m\_5+ ;Izl
Fix € > 0 so that the last term above is < 1/5. Then u -« > 1/10, so
u -« # 0. Thus B contains no point of the curve tr, and so the curve is
not dense in T™.

Now suppose that the r; are linearly independent over Q. On defining

the measure ur as above, we see that if k € Z™, k # 0, then

1 1 1—e(-k-Tr)

T
ﬂT(’“):T/O ek trydt =

as T — oo. Hence the curve t0 is uniformly distributed in T™. O
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:KroThm2
Theorem iE ? provides useful information concerning the values taken
by exponential polynomials, as follows.

Corollary F.8 Suppose that f(t) = Zle are(A-t) where the A, are
real numbers. Suppose also that |ai| > laz| > -+ > lag|. If |ai| <
27{12 la,|, then the values of f(t) fort € R lie in the disk |z| < Zle la]|.
If la1| > Zi%:z la,|, then the values of f(t) lie in the annulus |ai| —
Zf:z la,| < |z] < |a1| + Ef:z la,|. If the A\, are linearly independent
over Q, then the values of f(t) are dense in this disk (or annulus).

Proof Tt is clear that the disk (or annulus) described is the set of points
z that can be written in the form z = Zlea,«e(a,.). If the A\, are
linearly independent over Q, then for any ¢ > 0 there exist real numbers
t such that ||\t — .|| < ¢ and hence |f(t) — z| < Ce where C =
20 S an. O

We have found that if the numbers r; are linearly independent over
Q, then the curve tr in T™ passes through any given box B infinitely
many times. But we can actually prove a little more, namely that the
gaps between returns to B are uniformly bounded. This is critical to our
discussion of almost periodic functions in the next section.

Corollary F.9 Suppose that the real numbers ri,ra,...,7m are lin-
early independent over Q, and let € > 0 be given. Then there is a num-
ber H > 0, depending only on € and the numbers r1,72,...,7y, such

that for any real number T and any o € T™ there is a real number t,
T <t<T+H, such that ||tr; — a;|| < e for 1 <i<m.

In order to clarify the relation of this new result to our earlier ones,
we provide two proofs.

:KroThm?2
First Proof By Theorem ﬁ%kanow that if H is sufficiently large,
then

1
’E meas{t € [0, H] : tr € B} —volB| <™

for all boxes B in T™. Thus if vol B > ™, then thereisat, 0 <t < H,
such that tr € B. Let By = [—&,£]™; this is a box centred at 0 whose
volume is (2¢)™ > ¢™. Then ¢+ B is a box of the same size, centred at
c. By taking B = ¢+ By, we see that for every c thereisat, 0 <t < H
such that tr € ¢ 4 Bg, which is to say that ||tr; — ¢;|| < e for all 4.
Now take ¢; = a; — Tr;. Then ||(t + T)r); — ;]| < € for all 4, and
T<T+t<T+H. 0
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Second Proof Let By = [—¢,¢]™ be a small box in T™ centred at 0,
and let T_(x) be a trigonometric polynomial in m variables such that

T (2) < v, (@)

/ T (@) dz > 0.

for all «, and

Then
T+H T+H
/ Xg (tr — ) dt > / T (tr — o) dt
T 0 T
N T+H
:ZT_(k)e(—k-a)/ e(tk - r)dt.
3 T
Now if 8 # 0, then
T+H _ .
/ e(t0) dt 7‘ (T'+H)o e(TG)‘:’sme@‘SL.
27if 70 ald

By hypothesis the r; are linearly independent over QQ, which is to say
that k-7 # 0 when k € Z™, k # 0. Hence

T+H R
—a)dt >
/ X, (tT a)dt > T ( Z 7r|k "°|

T k0

Here the sum has finitely many summands because T_ is a trigonometric
polynomial. Since T_ (0) > 0, we see that if H is large enough, then the
right hand side above is positive, and so thereisa t, T <t < T+ H,
such that |[tr; — a;]] <efor 1 <i<m. O

In the proof of Theorem %ons‘cmcted our minorant by rather
inefficient means, which would be quantitatively inferior in higher dimen-
sions. When quantitative precision is desired, the following construction
may be useful.

Theorem F.10 For 1 <i < m, let I; be intervals of R or arcs of T,
and let B be their cartesian product. Suppose that S; (x) < x, (z) <

Sj (z) are respectively minorants and majorants of the characteristic

function of I;. Set @ = (x1,x2,...,%m). Then
= [ISH@) = > () =S @) T[ S ()
i=1 i=1 1<j<m
i#i

is a minorant of the characteristic function of B.
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Proof Suppose first that there is a k such that S, (xx) < 0. Then

S7(x) < [[SH @) — (Sf(ax) = Sp (@) [ S (=)
=1 1%;5%771
= Sp() [ S ()
o
<0

since the first factor is < 0 and all factors in the product are > 0. If
x ¢ B, then there is a k such that x ¢ Ii, so S, (zx) < 0, and hence
S™(x) <0.

Suppose now that S; (z;) > 0 for all 4. Hence x; € I; for all 4, so
x € B. By induction on m we show that in this case,

S7(x) < HSZ_(I,) (F.8) |E:InductMinorant
1=1

This is obvious when m = 1. We observe that

S7(x) = Sf(xl)HS;r(ﬂ«“i) - Z(Sf(fﬂi) =57 () [T S ().

Jj=1
J#i

Since i > 2 in the second term, the factor S; (1) always occurs in the
second product. If we replace Si (z1) by Sy (1), then the product is
made smaller, and the overall contribution larger. Hence the above is

< Sr)(T1s @) = X0 (8 @) - 57 @) IS @)

j=2
i

By the inductive hypothesis, the quantity inside the large parentheses is
m
< IIs: @),
i=2

-InductMinorant . -InductMinorant
so we have .Since 0 < S (z;) < 1 for all ¢, it follows from

that S~ (x) <1 = x (=) so the proof is complete. O
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1.

Exer:Selberg 6.

1 Exercises

-KroThm2
(a) Apply Theorem to the m + 1 numbers 1,71,...,7,. Deduce

that there exist real numbers ¢ such that |[t—co|| < e, |[tri—ci|| < e
for 1 <7 < m. Take ¢g = 0, and hence deduce that t is near some
integer, say q. Show that the numbers llgri — ¢;|| are small, and
hence deduce Theorem

(b) Suppose that rq,...,r,, are given linearly independent numbers,
and choose « to be linearly independent of them. Thus 1,71/«

F2f Qs 1"737, /o are linearl ér_l;}clln%)endent over Q. Apply Theorem
0 obtain Theorem with ¢t = ¢/«.

:KroThm1
. Extend Theorem ﬁtoo—aﬁow for the possibility of linear dependances

among 1 and the r;, as follows: Let r1,79,...,7, and oy, @z, ..., an,
be real numbers. Show that the following two assertions are equival-
ent:

1. For every € > 0 there is an integer ¢ such that ||¢r; — ;|| < € for
i=1,2,...,m.

2. Let uy,ua, ..., uy be integers. If Y 1" w;r; € Z, then Y ;" woy
e Z.

:KroThm?
. Extend Theorem ﬁ{too—aﬂow for the possibility of linear dependances

among the r;, as follows: Let 71,72, ..., 7y and a1, as, ..., am, be real
numbers. Show that the following two assertions are equivalent:

1. For every € > 0 there exists a real number ¢ such that ||¢r; — ;|| < e
fori=1,2,...,m.
2. If uy, ug, ..., u, are integers such that Zyil u;r; = 0, then

m
Z u; oy € 7.
i=1

. Explain how we know that the numbers log p are linearly independent

over the field of rational numbers.

. Let f(t) = 25:1 ay cos( At + 6,.) where the a,., the A\, and the 6, are

real numbers. Show that if the A, are linearly independent over Q,
then (—A, A) C range f C [~ A, A] where A =Y |a,|.

(Selberg) In this exercise we develop an alternative to the construction
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hDimMinorant
of Theorem ififif We suppose that 0 < A;(z) < 1 for all z, that

P;(x) > 0 for all z, and that A;(x) — P;(z) < 0 when = ¢ I;,. (We
think of A; as being an approximation to the characteristic function
of I;, and of P;(z) as a peak function that compensates for the error
in this approximation.) Put

m m

= [TA4i@) = > P [ Ay
i=1 i=1 1<j<m
J#i
(a) Show that S~ (z) <1 for all z.
(b) Suppose that x, ¢ Ij,. Show that

“(x) < ﬁAi(fbl — Pi(xx) H Aj(x;)
i=1

1<j<m
J#k

= (Ak(ack Pk :L‘k H A .CL'j
1<j<m
J#k
(¢) Conclude that S~ () minorizes the characteristic function of the
box B = Xzﬁ;l Ik.

F.4 Almost periodicity

The definition of almost periodicity is governed by our desire to char-
acterize those functions f(x) of a real variable that can be uniformly
approximated by exponential polynomials, i.e., by finite sums of the
form

M
2) =Y ame(Ana). (F.9)

To this end we call t an e almost-period if |f(z +t) — f(x)| < e for all
real z. The appropriate definition of almost periodicity is a little elusive
because the mere existence of large almost-periods does not ensure that

f(z) can be uniformly approximated by exponential polEnomlallget’Eg%

little bit more that is required is suggested by Corollary

Definition F.1 Suppose that f(z) is a continuous function of a real
variable. Then f(x) is almost periodic if for every € > 0 there exists a
number H (depending on f and ¢) such that every interval [T,T + H]|
contains an e almost-period of f.

E:DefExpPoly
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.BndedReturns . .
We use fCE(})cr(lggllary iE 19 to show that an exponential polynomial of the

form 1s almost periodic.

-DefExpPol
Theorem F.11 Let P(x) be defined as in iE % ~Then P(x) is an al-

most periodic function.

Proof Let m,7,...,Tr be a maximal linearly independent subset of the
Am- Thus there is an M x R matrix A with rational elements such that
A = At. Let ¢ be the least common denominator of the elements of A.
Put B =¢A, 6 = %T. Then the 6, are linearly independent over Q, and
A = B0, which is to say that each \,, is an integral linear combination
of the #,.. That is, there is a trigonometric polynomial

T(x) = clk)e(k - )

k

:BndedReturns
in R variables such that P(z) = T'(z0). By Corollary E l§ we know that

for any £ > 0 there is an H such that for any T thereisat, T <t < T+H,
such that ||t6,| < e. Then

|P(z+t) — P(z)| = |T((x + 1)) — T(26)|
= | c(k)e(k - x60)(e(k - t6) — 1)’

k
<2r Y Je(k)] ||k - 16)]
k

R
< 2me 3" Jelk)| Y Ik
k r=1
= (e,

say. Thus t is a Ce almost period of P. O

S:AlmostPer .
iE 4.1 Exercises

1. Show that if f(x) is almost periodic, then f(z) is uniformly bounded.

2. (Bohl 1906) Suppose that fi(z), fa(z),..., fr(z) are periodic con-
tinuous functions. Show that fi(x) + fa(z) + - -+ + fr(x) is almost-
periodic.

3. Let f(z) = > 0°_, ame(Apx) where Y °_ |am| < oo and the A, are

m=1
distinct real numbers.
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(a) Show that f(z) is almost-periodic.
(b) Show that

lim L / F@)e(=Ar) do = ay if A=\, for some m,
T—oo T 0 otherwise.
(c) Show that
lim 1/Tf(x)l2dff— 3 Jan?
T—oo T 0 el mh

4. Let a(s) = >_o°; apn™* be a Dirichlet series with abscissa of absolute
convergence o,. Let ¢ be fixed, 0 > 0,, and put f(t) = a(o + it).

(a) Show that the preceding exercise applies to f(t).
(b) Show that £(f) = {52 logn : a,, # 0}.

5. (a) Suppose that f is an almost-periodic function, and that there is
a 0 > 0 such that |f(x)| > ¢ for all real z. Show that 1/f(x) ia
an almost-periodic function.

(b) Let p1,pa,... denote the prime numbers in increasing order. Put
oo

Show that there is no real ¢ such that f(¢) = 0, but that 1/f(¢)
is not almost-periodic.

—’Lt

F.5 Notes

S:NotesLimDist |

Section ﬁwal s Criterion originates in (1916)
g Weyl| (1916).
For an extended discussion of uniform distribution, see m

Niederreiter| (1974). In Volume III, we shall discuss how a sequence of

measures defined on the real line may tend to a limiting measure, and
how this is be described in terms of their Fourier transforms.
:QuantEstUD .

S‘]:eqe}gon eorem somewhat lar er copstants, was proved

~TSho
by [Erdés & ’];Lln (1948). Theorem i% %] is founa in m 1985|, Corol-
3 (997, p. 5

(1884) achieved his general theorem using only
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the simglest al_gml%raic and arithmetic tools. Many proofs of our Theor-

ems ave been published. For 4 survey of these proofs as well
as a sharp quantitative treatment, see Mk & Montgomery| (2016b)).

The quantities gry,qra, ..., qr, of Theorem @%mear forms in
the single variable q. Kronecker considered linear forms in n variables
41,92, - - -, qn, SO his linear forms were Z;L:1 r35q; fori=1,2,...,m. His
full results are therefore as follows:

Theorem A Let R = [r;;] be an m X n matrix with real entries, and
suppose that a € R™. The following two assertions are equivalent:
1. For every € > 0 there is a t € R" such that

n
H E ’I“ijtj—ai
Jj=1

<e

for 1 <i<m.

2. If u € Z™, and
Zuirij =0
=1

for 1 < j <mn, then Y \", u;a; € Z.

Theorem B Let R = [r;;] be an m x n matrix with real entries, and
suppose that a € R™. The following two assertions are equivalent:
1. For every € > 0 there is a g € Z™ such that

n
H E Tijq; — Q
j=1

for 1 <i<m.

2. lf ueZm, and
Zuirij €7
=1

for 1 < j <mn, then > \", u;a; € Z.
. H oTh.m2
As was the case with our Theorems 1S easy to show that

Theorems A and B are equwalent See [Koks sma, hglﬂ9r3,6 pp. 83-86) for

é?ggglveb a proof of the general m x n theorem, along classical lines.

Siegel| (1989] pp. 43-63) develops the theory of vector groups, from which
Kronecker’s theorem follows easily. For a quantitatively precise version
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16h
of Kronecker’s Theorem (in the case n = 1) see %%onek & Montgomeryl|
(2016b).

-HighDimMinorBM¥01
Theorem iE Hf is from Earfon, Montgomery, ‘yaalgrjl 2001, Theorem
7). Selberg pointed out the relations of Exercise [6[to Jeff Vaaler in 1982,
and remarked that they are also useful for forming the composition of

two or more sieves. er:Bonl B
E is due to (1906) (see p.

mostPer
created an extensive theory of

Section e Tesult of 1grcise
279 of his paper). Later, '
almost periodic functions, and in the course of this demonstrated (cf
pp. 119-121) that Bohl’s Theorem is equivalent to the localized form of

A ICo:BndedReturns
Kronecger’s Theorem, i.e., to our Corollary
ohr 932)) defined almost periodic functions, and studied their
properties in the hope that by applying his theory to Dirichlet series, a

prove of RH would emerge. Others, such as Stepanov, Besicovitch (see
[Besicovitch| (1932)), Weyl, Bochner, von Neumann, and Turing general-
ized the concept.

We now state without proof a number of outstanding properties of
almost-periodic functions. If f(x) is almost periodic, then for every real
number A the limit

T
c¢(A) = lim l/o f(x)e(=Az) dx

T—oo T

exists. Let £(f) denote the set of those A for which ¢(\) # 0. The set
L(f) is at most countable, and indeed there is a sort of Parseval identity:

T
Jim 7 [ @R de= 3 P,

0 XEL(f)

If f(x) is almost periodic, then for every ¢ > 0 there is an almost periodic

polynomial T'(z) of the shape @ﬁ%h_&lat |f(z) — T(x)] < ¢ for all

x, and indeed such a T'(z) can be constructed so that A, € L(f) for
all m. Hence the sum or product of two almost-periodic functions is
again almost-periodic.

(1962) used elementary tools of complex analysis to show that
if

f(s) = iane”‘"s
n=0

for ¢ > 0 where > 7 |an| < 0o, Ag = 0, A, > 0 for n > 0, the A,’s
are distinct, & = {f(s) : ¢ > 0}, D is a neighborhood in &, and ¢ is
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analytic and bounded in D, then
g(s) = d(f(s) = Y bue ™
n=0

with 3> |bn| < oo, and the p,, are linear combinations with positive
integer coefficients of a finite collection of the A,’s. [Hewitt & Williamson
(1957) and [Edwards| (1957) used tools of functional analysis to establish
the same thing in the special case ¢(z) = 1/z.

The notion of almost periodicity that we have described here is known
as uniform almost periodicity because it is based on the uniform norm.
The function f(y) = (1(e¥) — e¥)/e¥/? is not uniformly almost-periodic,
but it can be shown that it is mean-square almost-periodic if the Riemann
Hypothesis is true.
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Appendix G

Bounds for Bilinear Forms

G.1 The operator norm of a matrix

In various situations we are confronted with a problem of bounding a
bilinear form—namely an expression of the general shape

M N
Z Z AmnTnYm-

m=1n=1

In applications the z, and y,, may have considerable arithmetic struc-
ture, but we can often obtain a serviceable estimate using only the mean
square sizes of the variables. Thus we seek an inequality of the sort

1/2

‘;amnxnym‘ < A(Eﬂ:lan)l/?(;IymI?) . (G.1)

Here A depends on the coefficient matrix A = [a,,], but is independent
of the vectors z, y.

Let A = [amn] be an M x N matrix with complex entries. Then A
determines a linear map = — y = Az from CV to CM. The norm of
A, as a linear operator, is the maximum of the ratio ||y||/||z| as « runs
over all non-zero members of CV,

A
4] = max 1421
220 |||
where |lz| = (3 \J;n|2)1/2 denotes the usual Euclidean norm. By ho-
mogeneity we may write instead
[A]l = max [|Az|.

llzl=1

| E:BilinFormIneql

. . . . . :BilinFormIneql
We now show that ||A]| is the optimal constant in the inequality @;L

421
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Theorem G.1 (Duality) Let A = [amn] be a fited M x N matriz.
The following three assertions concerning the positive constant A are
equivalent:

(a) For any = € CV,

M | N

m=

< A? Z |zn‘2§

2 N
n=1

AmnTn
=1

—_

n

(b) For any x € CV and any y € CM,

M N N 1/2 M 1/2
DIP TR EING SITTS RS o710 It
n=1 m=1

m=1n=1

(c) For anyy € CM,

N M 2 M
D | 2 wmntim| S A%S lyml”
n=1"'m=1 m=1

In terms of linear maps and inner products, these inequalities assert
that

(a) [Az| < Al
(b) [(Az, y)| < Allzllllyl,
() A%yl < Allyll

Here A* is the adjoint of A. That is, A* = (A)T is the N x M matrix
A* = [@nm). In terms of inner products, A* is characterized by the
property that (Az,y) = (x, A*y) for all  and y. Since (a) and (c) are
equivalent, we deduce that

LAl = [1A™].

Proof We show that (a) and (b) are equivalent. Then by interchanging
the roles of m and n it is clear that (b) and (c) are equivalent.
(a) = (b). By Cauchy’s inequality
1/2

5 (S < (]S ) ()

In the first factor on the right we insert the bound provided by (a), and
we obtain (b).
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(b) = (a). Set

N
Ym = E AmnTn,
n=1

and let S denote the left and side of (a). Then S = )", @mnTnYm, and
by (b) we see that

N 1/2 , M 1/2 N 1/2
s<a(Ylof) (X)) =a(Llep) s
n=1 m=1 n=1
If S = 0, then (a) is obviously satisfied. Otherwise S > 0, and we may
square both sides above and divide by S to obtain (a). O
Corollary G.2 For any M x N matriz A,
1Al = [|A*]| < |A* A2,

. :NormNormal i .
By using Corollary iﬁl below 1t will become apparent that the in-
equality here may be replaced by equality.

Proof The identity represents the equivalence of (a) and (c). To obtain
the inequality, let @ be a unit vector for which ||Az|| = ||A|. Then

JAIP = | Az|? = (Az, Az) = (A"Az, @).
By (b) with y = = we see that this last expression is < ||A*A]|. O
As a first upper bound for ||A|| we establish
Theorem G.3 Let A be an M x N matriz. Then

N 1/2 M 1/2
Al < <m73XZ|amn> <m3xz |a,,m|> .
m=1

n=1

Proof By Cauchy’s inequality

1/2
St < (Elamallen) (3 lamallnn?)
m,n m,n m,n
The first sum on the right hand side is
D feal X Jamal < (max Y lanl) 3l
n m m n

We treat the siegggllditsum similarly, and thus obtain the situation of

1/2

Theorem Wi

A= (mrzllxz |amn|)1/2(mnzsz |amn|>

1/2
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-BilinDualit
Thus ||A]] < A by Theorem i?;ll[ O

. ANormBnd1
In general, Theorem E;g provides a useful bound only if the a,,, are
nonnegative and approximately the same size, or if the matrix is nearly
diagonal. Otherwise the bound for || A|| may be weak because it takes no

account of possible can ?A]]algisoﬂh mq Iapply this to the matrix A*A and
appeal to Corollary Egi‘ to obfain

Corollary G.4 Let A = [amy] be an M x N matriz. Then

N | M 1/2
|A] < (max Z Z Gy Gy ) .
m ne=1"'m=1

If the columns of A are nearly orthonormal, then A*A is nearly the
identity matrix, and by the above || A|| is not much more than 1. We may
use columns rather than rows, by applying the above to AT instead of
A. If the columns are far from orthonormal, then the above bound will
in general be weak. In some instances greater precision can be obtained
by introducing a type of weighting factor.

Theorem G.5 Let A = [ayy] be an M x N matriz, but suppose that
the apy are defined for all integral values of m. Let w,, be nonnegative
and suppose that wy, > 1 for 1 <m < M. Then

N 0o 1/2
IA] < (H}Lax S G tmn,wm )
! no=1"'"m=—o0

provided that the inner sum converges for all ni,ns.

Proof Let x be a unit vector for which ||Az| = ||A]|. Then by the
properties of the w,, we see that

M N 2 [e%s) N 2
||A.’IJH2 = Z Z AmnTn| < Z Wm Z AmnTn
m=1"'n=1 m=—00 n=1

We expand and take the sum over m inside to see that this is
Z Tnlz LTny Z Wmmny Gmny = (B:L’, :13)
ni n2 m

where B is the matrix with entries

%)
bn1n2 = E Wm Amn, Amns -

m=—0oo

31inDualit
By Theorem [G-1(b] W6 kniow that Bz, )| <[|B, so ||A] < [B]"2.
;ANormBnd1

Then by applying Theorem 0 B we obtain the stated result. O
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If w, =1for 1 <m < M and w,, = 0 otherwise
: ANormBnd?2

above reduces to the proof of Corollary € mn are oscillatory

then the argument

and random in appearance, then the upper bounds for || A|| that we might
derive from the theorems above are likely to be much larger than the
true order of magnitude. In such a situation, the following lower bound
may be closer to the truth.

Theorem G.6 Let A be an M x N matriz. Then

Zm,n |amn]?

2 e —
141" = min(M, N) °

Proof We consider the size of ||Az|| with x,, = e(nf), and average over
6. By the orthogonality of the functions e(nf) we see that

1 M N 2
/ Z Z amne(nd)| df = Z |G|
0 m,n

m=1"'n=1
We choose a 6 for which the integrand is at least as large as the right
hand side. Since ||z| = N'/2 for any 6, we conclude that

1/2
1
41> (5 Zlem)

m,n

By applying this argument to AT instead of A we obtain this lower
bound with N replaced by M. Thus the proof is complete. O

S:0OpNormMatrix .
i[;: LT Exercises

1. Let A be an m X n matrix, and let C' C C" denote the column space
of A*, which is to say the set of all vectors of the_for%Dé;yt for
y € C™. Let A be the optimal constant in Theorem a). Suppose
that y € C™ is chosen so that ||y|| = 1 and ||A*y|| = A. Put x = A*y

(a) Show that ||Az|| = Allx||.
(b) Deduce that

(When seeking a bound for the norm of a matrix A, it is sometimes
useful to know that it suffices to consider x of the form A*y.)
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2. For © € CY and real p > 1, put |z, = (X |xn|p)1/p. Similarly put
[|z]| oo = max |z,|. Suppose that p and ¢ are real numbers, 1 < p < oo,
1 < g < oo, and that p’ and ¢’ are determined by the relations
1/p+1/p'=1,1/q+1/¢ = 1. Let Abe an M x N matrix. Show that
the following assertions concerning the constant A are equivalent:

(a) For all z € CV,
[Az]l, < Allz|q;

(b) for all z € CV and y € CM
1> amnnym| < Allzllgllyll;

(c) for all y € CM,
1A%yl < Allyllp-

3. B and C be rectangular matrices, and put
B 0
A= .
o o]
Show that || Al = max(||B|, ||C]|)-
4. Suppose that |amn| < by for all m and n. Show that || A|| < || B].

5. Let A be an M x N matrix, and suppose that there are positive

numbers C, D, uq,...,un, v1,...,v such that
M
> " |amn|vm < Cup,
m=1

for 1 <n < N, and also that

N
> [amnun < Dup,

n=1
forl1<m< M.
(a) Show that if ||z| = |ly|| = 1, then

(A9 < (D lamalon/un) (D lamalun/vn)-

(b) Deduce that ||A|| < (CD)'/2.
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Let A be an M x N matrix with a,,,, = 1 for all m and n. Show that
Al = (M2,

Let A be an M x N matrix with real entries. Show that

max |Az|| = max | Az||
erN ec?

B H 1 Hw\l 1

Suppose that p and ¢ are real numbers, p > 1, ¢ > 1, and that
%4—5 =1 and %4—% = 1. Let A = [amyn] be an M x N matrix. Show
that the following three assertions concerning the positive constant
A are equivalent:

(a) For any & € CV,

(S

m=1 n=1

q/>1/Q' . A(i |xn|p>1/p
n=1

(b) For any € CV and any y € CM,

55 et < 8( ) ()

m=1n=1

(c) For any y € CM,

G.2 Square matrices

The operator norm is defined for an arbitrary rectangular matrix, but

if A is square, say N x N, then further numbers can be associated with
it. In the first place, A has N eigenvalues \,, which are the roots of the
polynomial det(z] — A), and we define the spectral radius of A to be

p(A) = max |\,

We also consider the numerical radius of A,

v(A) = max ’ g amnxnxm‘ = max |(Az,x)|.
llzl=1 llzl=1

These quantities are related to the operator norm ||A in the following
simple manner.
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Theorem G.7 Let A be an arbitrary N X N matriz. Then
p(A) <v(A) <Al

Proof Let A be an eigenvalue of A, and let * # 0 be an associated
eigenvector, so that Az = Ax. Without loss of generality we may suppose
that ||z|| = 1. For this vector, (Ax,x) = (Ax,x) = A, so that v(A) > ||,

and hence v(A) > (AQ) _
inDualit
By Theorem ,
[All =~ max [(Az,y)|.
lzl=llyll=1
Thus v(A) < ||A]|, and the proof is complete. O

The first inequality above can not be reversed in general, since v(A)
may be large even when all the eigenvalues vanish. (Consider a matrix
A for which a,,, = 0 whenever m > n.) However, v(A) and ||A]| are
always comparable.

Theorem G.8 Let A be an N x N matriz. Then
1
Al = v(4) < [|4],
and if A is hermitian (i.e., if A* = A), then v(A4) = || 4]

:NormNormal
In Corollary iﬁl i below 1t will also be established that if A is her-
mitian, then also p(A) = || 4]|.

Proof We establish the last assertion first. The hypothesis that A is
hermitian is equivalent to saying that (Ax,y) = (x, Ay) for all  and y.
Put u = x+y and v = x — y. It is easily verified that if A is hermitian,
then

4Re(Ax,y) = (Au,u) — (Av,v).

:RilinDualit
By Theoremi??% lli 51% We cah choose unit vectors z and y so that (Ax,y) =
[|A]|. Then

4[4l = (Au, u) — (Av,v) < v(A)(|lu]* + [[v]).

But ||u]|? = 2+ 2Re(z,y) and |[v]|? = 2 — 2Re(x,y), so that ||u|? +
|[v]|? = 4, and hence || A]| < v(A).

The 'secc%%lu :?1fi ;Lhe displayed inequalities follows trivially from The-
orem and the definition of v(A). To establish an inequality in the
reverse direction, suppose that A is an arbitrary N x N matrix. Write
A = B+iC where B = (A+ A*)/2 and C = (A— A*)/(2i). The triangle
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inequality holds for the operator norm || - ||, so ||A|| < ||B||+||C||. But B
and C' are hermitian, so this latter quantity is v(B) +v(C). For any « €
C" we see that (Bzx,z) = Re(Az, x), and (Cz, ) = Im(Az, x). Hence
v(B) <v(A), v(C) < v(A), and we conclude that ||A|| < 2v(A). O

We now consider the possibility that a square matrix A might be
converted to a diagonal matrix by means of a suitable change of basis.
In general, if S is non-singular, so that @ = Swu expresses a linear change
of variables, then the linear transformation x +— Ax is computed as
u — Bu in the new coordinate system, where B = S~!AS. In this case
we say that A and B are similar. An easy calculation reveals that if A
and B are similar, then tr A = tr B, det A = det B, and indeed A and
B have the same characteristic polynomial. Hence A and B have the
same eigenvalues, so that p(A) = p(B). On the other hand, the norm of
a matrix is a metric quantity, and in general ||A|| # ||B]|. In order that
||A]| should be invariant we restrict our attention to those similarity
transformations that preserve distances. Let U be an N x N matrix.
Then it is easy to verify that the following assertions are equivalent:

(i) U is unitary (i.e., U* =U"1);

(i)

(i)

(iv) The map x +— Uz is an isometry of CV

(ie., |Uz| = ||z| for all z € CV);
(v) (Uz,Uy) = (x,y) for all z,y € CV.

The columns of U are orthonormal vectors;
The rows of U are orthonormal vectors;

Thus a unitary transformation maps one orthonormal basis to another,
and conversely, if two orthonormal bases are given, then there is a unitary
transformation that takes one to the other. In the analogous situation
of linear maps from RY to itself, we would find that the orthogonal
matrices have corresponding properties. (A matrix X is orthogonal if
XT = X~1). If A = U~'BU where U is unitary, then we say that A and
B are unitarily similar. In this case it is clear that |[|A|| = || B||, and that
v(A) = v(B). Moreover, we note that A is hermitian (4* = A) if and
only if B is, that A is normal (AA* = A*A) if and only if B is, and that
A is unitary (A* = A™!) if and only if B is. We now produce a unitarily
similar canonical form for A.

Theorem G.9 (Schur’s triangularization theorem) For any N x N mat-
riz A there is an upper triangular matriz T that is unitarily similar to
A, T =U"YAU. The diagonal entries of T are the eigenvalues of A.
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Proof We prove the first assertion by induction on N. For N = 1 there
is nothing to show. Suppose we have the result for N — 1. Let \; be an
eigenvalue of A, and that v; is an associated unit eigenvector. Choose
vg,...,vy so that the v,, form an orthonormal basis for CV, and let V'
be the matrix whose columns are the v,,. Then V is unitary, and V*AV
has the form
)\1 *
V*AV = .
By the inductive hypothesis there is a unitary matrix W such that
W—1BW is upper-triangular. Put

= vl

kY 7% . )\1 *
XVAVX{O W*BW].

Then

is upper-triangular, and we take U = V X.
The second assertion is obvious, since

N
char poly A = charpoly T = H (x —tpn)-

n=1

O

If D is a diagonal matrix, then clearly D*D = DD*, so that D is
normal. Conversely, suppose that 7" is a normal upper-triangular matrix.
On comparing the diagonal entries of T*T with those of TT™, we see that

n N
D ftmnl® = > ltam”
m=1 m=n

for 1 < n < N. On taking n = 1, we deduce that t1,,, = 0 for m > 1.
Then we set n = 2 to show that ty,, = 0 for m > 2. Hence by induction
we find that t,,, = 0 for m # n, so that T is diagonal. Thus we have

Corollary G.10 A square matriz A is unitarily similar to a diagonal
matriz, U*AU = D, if and only if A is normal.

If D is diagonal, then clearly p(D) = || D||. Thus we deduce

Corollary G.11 If A is normal, then p(A) = v(A) = ||4].
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We note that if A is hermitian or unitary,,tl & Iilélvé? oLy iﬂ and the
above applies. We consider again Corollary ose proof amounted
to observing that

|A]]? = v(A"4) < || A*A].
SimNorm .
Since A*A is hermitian, , Wo know by Theorem @quuahty holds

Normal

here. By Corollary we can add the further observation that

IAII* = p(A*A).

S:SgrMat .
i[;:é[ 1 Exercises

1. (Schur 1909) Let A = [amn] be an N x N matrix.
(a) Show that

tr AA* = Z |G |2

1<m,n<N

(b) Let U be a unitary matrix such that UAU* = T = [t,,,,] is upper
triangular. Show that

tr TT" = Z tmn|? = Z |G |2

1<m<n<N 1<m,n<N
(c) Let A1, Ag,..., Ax be the eigenvalues of A (e.g., \;, = tpp). Show
that
N
n=1 1<m,n<N

and that equality holds if and only if A is normal.

2. Let A be an M x N matrix, and let A\q,..., Ay be the eigenvalues of
A*A. Show that the \,, are nonnegative, and that

N
2
> =2 lamnl.
n=1 m,n
. 3 . ANormLowerBnd
Use this to give a second proof of Theorem

3. Let A be an M x N matrix.
(a) Show that A(A*A—2I)"1A* = [+2(AA*—2I)~! for any complex
number z for which either of the inverses exists.

(b) Show that the non-zero eigenvalues of A*A coincide with those of
AA™.
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4.

10.

Let A be an N x N matrix, and let C, uy,...,uyN be positive numbers
such that
N
Z |G| tn < Cug, (G.2)
n=1

for 1 <m < N.

(a) Show that p(A4) < C. (Suggestion: Let « be an eigenvector, and
consider that m for which |z, |/u,, is maximal.)

(b) Show that if a,,, > 0 for all m and n, and if C' is chosen min-
i . i Ut dRowSumBnd .
imally, then equality holds in or all m, so that p(A) is
an eigenvalue, and w is an associated eigenvector with positive

coordinates.

Show that an N x N matrix A is normal if and only if its eigenvectors
form an orthogonal basis for C.
Show that the following are equivalent:
(i) U is unitary;
(ii) U is normal and all its eigenvalues are unimodular.
Show that the following are equivalent:
(i) X is hermitian;
(ii) X is normal and all its eigenvalues are real.

. Let A be an N x N matrix. The field of values of A is the set of

complex numbers {(Ax,z) : ||z| = 1}.

(a) Show that if A and B are unitarily similar, then they have the
same field of values.

(b) Show that if A is normal, then its field of values is the convex
hull of its eigenvalues.

(¢) Show that the field of values of A is an interval on the real line
if and only if A is hermitian.

(d) The field of values is a convex set that contains the eigenvalues
of A.

(e) If B is an M x N matrix, then the field of values of B*B is the
same as the field of values of BB*.

. Let A be a hermitian matrix for which (Az,z) > 0 for all . Show

that |(Az,y)| < (Az, z)(Ay, y). (Suggestion: Consider (A(Ax + pny),
Az +py).)

Suppose that Ay, ..., Ax are commuting normal matrices. Show that
there is a unitary matrix U such that all the matrices U*A U are
diagonal.

| E: WtdRowSumBnd
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12.

13.

14.

15.

16.

G.2 Square matrices 433

(Watkins 1980) Suppose that A and B are real square matrices that
are similar over C, say A = S~™'BS where S has complex entries.
Write S = P 4 iQ where P and () have real entries.

(a) Show that PA = BP and that QA = BQ.

(b) Deduce that (P 4+ rQ)A = B(P + rQ) for any real number r.
(c¢) Let p(z) = det(P + 2Q). Explain why p(i) # 0.

(d)

()

Explain why there is a real number r such that p(r) # 0.

Conclude that there is a nonsingular square matrix R with real
entries for which A = R™'BR.

Let A be a real symmetric matrix. Show that any number of the form
(Az,x) where x is a unit vector in CV can also be written in this
form with & a unit vector in RY.

Let
0 2
A= .
b o
Show that p(A) =0, ¥(A) = 1, and that Qifnlluoiﬂz (Thus the constant
1/2 in the lower bound in Theorem is best possible.)
(a) Let

2 00
A=1(0 0 1
0 01

Show that the eigenvalues of A are 0,1, 2, that the eigenvalues of
A*A are 0,2,4, that A is not normal, and that p(A) = v(4) =
Al = 2.
-NgormNormal
(b) Show that the converse of Corollary @mtbr N <2, but
false for N > 2.
Let A be a normal matrix, A a complex number, and x a vector. Put
e = Ax — Ax. Show that A has an eigenvalue in the disk |z — A| <
llell /|||l (Hint: If A— AT is singular, then this is obvious. Otherwise,
argue that p((A — A7) = (A= A7 = [[=]/|le]l.)
(a) Let C be an N x N hermitian matrix such that (Ca,x) > 0 for all
x € CV. Show that there is an N x N matrix B such that B*B = C.

(b) Suppose that A is an M x N matrix, and put A = ||A*A||*/2. Show
that there is an N x N matrix B such that A*A + B*B = A?].

(c) Suppose that A is an M x N matrix for which condition (a) of
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:BilinDualit . .
Theorem @ms—.s%ow that there is an N x N matrix B such
that

2 2

N
§ brnTn

n=1

Y

m=1

N
§ AmnTn

n=1

M
m=1

for all z € CV.

17. (Toeplitz 1910) Suppose that f € I>°(T) has Fourier coefficients

- /01 F(@)e(—kz) dz

N N
= Z Tne(ne), T(z) = Z yme(mz).
n=1 m=1

N
S T
n=1

and put

(a) Show that

/0 f(x)S(—2)T(—x)dx = Z Z f(m + N)TpYm-

(b) Show that

1 N N
/0 f(@)S(—2)T(z) dx = Z Z (m —n)TpYm-

(¢) Explain why

/1|S(—x)T(— )| dx < (/1|s )|? da / T (z |2da:
0 0
(d) Explain why
1 N 1 N
[ s@rar=31ep [ ir@pde= 3
n=1 m=1

(e) Show that

, 1/2 , N , 1/2
Z Zf M+n)TnYm| < || fll 1 Z |n| Z Y| :
m=1

m=1n=1

(f) Show that

‘ Z zN:fA(m_”)ﬂﬁnym‘ < [ flleee <§: |xn|2>1/2(mzji:1 ym|2>1/2

m=1n=1 n=1
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fsawtoothfcn

Exer:Pf1HilbIneq0 |18. Let s(x) be the sawtooth function as defined in (i%%i Thus s has

Exer:Hilbbp (19.

period 1, s(0) =0, and s(z) =2 — £ for 0 < z < 1.
(a) Show that

L ifk#0
(k) = { I°F if k #0,
0 if k=0.

(b) Show that

2 ] <o (L) (3 )
(¢) Show that
S5 () (S )

(d) Show that

N N
] o (Sen) (X )
2| < () (3

1<m,n<N n=1

m#n
Let s(x) denote the sawtooth function, and suppose that 0 < § < 1/2.
(a) Show that

8(1—5+x)+s(1—5—x):{1_25—25 (6 <z<1-0)

(b) Suppose that the function U is even, has period 1, and is properly
Riemann-integrable over bounded intervals. Show that

/1 Uz + d)s(z)de =
0

(1/2— 6) /1725 Uz + 6) da

1-26
- (5/ U(z+9)dx.
0

1-5
ac)dx—é/ U(z)dx
)

1 1-6
_ (1/275)/0 U() de — %/5 U(z) da.

(¢) Show that the above is

§
:(1/2—6)/_6U

(d) Show that the above is
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(e) Take U(x) = LZTIY L e(nz )‘ Show that fo xz)dr = N, and
SunE
use to show that f6 (x)dr < (25)71
(f) Show that if § = 1/(2V'N ), then

/1 Uz + 8)s(x) da > %N _VN.
0

(g) In Exercisei ?rs:eTfoexiiti e(nd) and y,, = e(md). Note that
S(—x)T(z) =U(z + 9).

r:Pf1HilbIneqO
(h) Show that in Exercise [léia ], the best constant in the inequality

is >7r727r/\/ﬁ.

20. (a) Let U be the ¢ x ¢ matrix with coefficients u,,,, = e(mn/q)/\/q.
Show that U is unitary.

(b) Let f(n) be an arithmetic function that is periodic with period ¢,
and let C be the ¢ x ¢ matrix with coefficients ¢;,,, = f(m — n).
(Such a matrix is called a circulant.) Show that U*CU is diagonal.

(c) Let

Z f(h)e(=hk/q)

hl

be the Discrete Fourier Transform of f, as discussed in §4.1. Show

that
i Zl Flm = n)a, Ty = Z F(k kn/q
(d) Put
A = max |f(k)].
Show that

‘ZZf m—n)TmTn

m=1n=1

<A Z ‘xn|2

for arbitrary numbers x,, and that the constant is best possible.
21. Let A be a square matrix.

(a) By using the Schur triangularization theorem, or otherwise, show
that the eigenvalues of A? are the squares of those of A.
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(b) Let A = [? ;], B = [_11 i], and set C = AB. Show that

there is no way to order the eigenvalues of A and of B so that
their pairwise products form the eigenvalues of C.

22. (Schur 1921) For a given positive integer ¢ let E be the ¢ x ¢ matrix
E = [e(mn/q)]. This is the Schur matriz. Let P = [ppy,] be the g X ¢

permutation matrix with p,,, = 1 when m = n + 1 (mod ¢), and
DPrmn = 0 otherwise. Put Ey = PEP?.

(a) Show that Ey = [e((m — 1)(n — 1)/q)].
(b) Note that Ey is a Vandermonde matrix. Deduce that
det B = M[[]K (e(k/a) = e(i/a).
(¢) Show that the above is o
- 1T (2e((G + k)/(20)) (sin(m(k — j)/q)))
(d) Note that o

ELED (@MQ): > (3@)*(]16))

0<j<k<q 0<k<q 0<k<gq

Recall (or prove by induction on K) that >, _x (]:) = (Tfl).
Deduce that the above is

o q\ _alg—1)?
B 3(3> i <2> 2
(e) Conclude that

det E = iq(qfl)/ze(((q - 1)/2)2) H (2sin(x(k — j)/q))
0<j<k<gq (G.S)

(f) Note that e(((¢—1)/2)?) = 1if ¢ is odd, and that it is =i if ¢ is

even.

23. (Carlitz 1959) Let E be the Schur matrix, as in the preceding exercise,

and let A1, A2,..., A; be the eigenvalues of E.
(a) Note that

ZAn =t E= Z (n*/q) = G(9),
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say. Recall that in Corollary 9.16 it was shown that G(q) takes the
values (14 1),/q,+/q,0,4,/q according as ¢ = 0,1,2,3 (mod 4).

(b) Let E? = B = [byy]. Show that by, = g if m +n =0 (mod q),
and that b,,,, = 0 otherwise.

(c) Deduce that > _ A2 = tr B = ¢ or 2q according as ¢ is odd or
even.

(d) Show that E* = B? = ¢*I.

(e) Deduce that |det E| = q/2.

(f) Deduce also that every eigenvalue of E is of the form i*,/q for
some a. For a = 0,1,2,3 let m, be the number of eigenvalues

equal to i%,/q.
(g) Explain why

mo +my +mo +m3 =q.
(h) Show that
mo +imy —mg —ims = tr E/\/q = G(q)/\/q,
and that
mo — imy — ma + im3 = G(q).
(i) Show that

1 (q odd),

mo — M1 + Mo — ms :trEQ/q:
2 (q even).

(j) Solve the equations above to obtain the following values of the
multiplicities m,:

q 0 1 2 3

0 4q+1 1q 1q 1q-1
1 %(q+3) %(q—l) %(q—l) %(q—l)
2 %(q+2) §(q—2) g(Q-ﬁ-Q) %(q—Q)
3 z(g+1) (g +1) ile+1)  3(¢-3)

Table G.1 Multiplicity of the eigenvalue i*,/q, depending on q (mod 4).

24. Let E be as in the preceding exercise, and suppose that ¢ is an odd
prime. Let & be the vector with coordinates @, = (). Show that
is an eigenvector of E.
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25. Let A be the ¢(q) x ¢(q) matrix A = [7(x%)/¢(q)], where the rows
are indexed by the Dirichlet character y (mod ¢) and the columns
are indexed by the Dirichlet character ¢ (mod q).

(a) Show that A is unitary.
(b) Show that the vector « with coordinates xy, = 9(a) is an eigen-

vector e(a/q) is an eigenvalue of A with eigenvalue e(a/q).
(¢) Show that

q
S rt@nas = Y. |3 aa,
o @z X

2
e(a/q).

(d) Show that

Z T(Xw)xx@

X9

<o) Y layl?

for arbitrary complex numbers x,, and that the constant is best
possible.

26. Let f(n) be an arithmetic function with period ¢, and let A = [f(mn)]
be the ¢(q) x ¢(¢) matrix whose rows m and columns n are indexed
by the reduced residue classes (mod q).

(a) Show that ||A| = A where

A = max
%

™ Fn)x(n)).

n=1

(b) Show that for arbitrary complex numbers z,,, Yy,

a q q 1/2 q 1/2
S5 sl <a( X ) (X )
m=1n=1 n=1 m=1
(mn,q)=1 (n,q)=1 (m,q)=1
and that the constant A is best possible.
27. Let 8§ be a set of IV distinct Dirichlet characters modulo gq.
(a) Show that
a 2
>0 |2 xm)

n=1 s€§

= No(q).

(b) Show that
4 3
‘ < N2p(q).

i(zxm)

n=1 se8§
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(¢) Deduce that

i > x| = ela):

sES

(d) Suppose that ¢ is prime, that ¢ = 1 (mod N), and that 8 consists
of the N characters y modulo ¢ for which YV = X, Show that
in this situation, equality holds in the lower bound above.

[Exer:Smith]28. (a) Let f be an arithmetic function, and set F(n) = > dn [(d). Let

R = [rmn] be an N x N matrix with rp,, = 1 if n|m, and r,,, =0
otherwise. Let ® be an N x N diagonal matrix whose diagonal
entries are f(1), f(2),...,f(IN). Let A = [amn] be the N x N
matrix whose entries are F/((m,n)). Show that A = R®R'.

(b) (Smith 1876) Let A = [amy] be the N x N matrix with am,, =
(m,n). Show that

N
det A =TT ¢(n).
n=1

This is the Smith determinant.
29. Let An denote the least number such that

— |33p|2
Z TpTq| < AN Z —

pq<N p<N p

for all complex numbers x, where p and ¢ are to take only prime
values. Show that Ay =< N(log N)~1/2.
30. Let By denote the least number such that

S mT| g,y Ll

PNGEN Pq p<n P
pq=

for all complex numbers x;,, where p and ¢ are to take only prime
values. Show that By =1+ O(1/log N).
31. Let Cy be the least positive number such that

(3 ) (2 mvp) <ox S ml

for all choices of the complex numbers x, where p and ¢ are to take

only prime values. Show that Cy =< ﬁ.
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32. Let A be the N x N matrix with coefficients

A(n/m)(m/n)*/?  if m|n,
amn = ¢ A(m/n)(n/m)"/? if njm,

0 otherwise.

Show that ||A|| = log N 4+ O(1). (Suggestion: Consider the vector &
with coordinates z,, = n~1/2.)

33. The object of this exercise is to show that if f € I?[0,1] and F(z) =
fo u) du for 0 < x <1, then

1 4 1
[ @i < = [1i@p (G4)
0 ™ Jo

(a) Explain why it is enough to prove the above when f(x) > 0.
(b) Let K(u,v) = min(l —u,1 —v). Show that

/ dx—//Kuv )f(v) du do.

(¢) By a judicious application of the arithmetic-geometric inequality,
show that

1 5 COS gv 1 5 COS gu
2f(u) Cosgu Zf(v) cos gv

fu)f(v) <

for 0 <wu,v < 1.
(d) Show that if 0 < v <1, then

1
4
/ K (u,v) cos gudu = — cos Ev
0

w2 2
( ) Ded @ ollarIneq
(&3 edauce .

-5dollarl
(f) Show that if f(u) = cos Ju, then equality holds in 1%;%)0 e

G.3 Bessel’s Inequality
__S :Bessel

Bessel’s inequality asserts that if ¢, ¢,, ..., ¢ are orthonormal vectors
in an inner product space V, then

R
2_lE b < g (G.5)
r=1
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for all £ € V. The proof of this is quite simple: For arbitrary y,,

HE Zyr

I€|* - 211e§{j@:<s,¢r><+ j£j|er. (G.6)

r=1 r=1

-PfBessI
Set y, = (&, ¢,.). Then the expression @Ts—ﬁéﬁé— > (€, 9,)|?, so the
proof is complete. However, in analgticséleulrﬁkéer theory we often need to

estimate a sum such as the one in ut with vectors ¢, that are not
quite orthogonal. It is therefore fortunate that we can extend Bessel’s
inequality to arbitrary vectors ¢, with a constant that we can charac-
terize in terms of the extent that the inner product matrix [(¢,., @,)]
resembles the identity matrix.

o
IA

|W—2MZ%€¢+HZ%

Theorem G.12 Let ¢, ¢,,...,¢p be arbitrary vectors in an inner
product space V' over the field C of compler numbers. For nonnegative
real numbers A, the following three assertions are equivalent:

(i) For every vector £ € V,

R
S IE )P < A% (G.7)

r=1

(ii) For every vector € € V and every vector y € CE,

R
> o
r=1

(iii) For every vector y € CF,

R
ZZ b D)0 < AT Iyl (G.9)
r=1

r=1s=1

Lil 1/2
<Al (Xwe)” s

This contains Bessel’s inequality as a spe.ciags(é%ggif% if the ¢, happen
to be orthonormal, then the ineqluality olds as an identity with
A = 1, and then essel’s inequality. The coefficient matrix

K 1B111 2 rmNormal
C=[(¢,,¢,)] in 1s Hermitian, and so b% Corollary fil i the best
constant A for which the inequality 1‘?;% Eolas TS the modulus of the

largest eigenvalue of C'. This quantity is known as the spectral radius of
C; in symbols, A = p(C).

E:PfBessIneq

| E:AlmostBessel

|E:BesselBilinl

|E:BesselBilin2
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Proof (i) = (ii). By Cauchy’s inequality,

R R N R /2
> oou| < (lEor) (X m?) "
r=1 r=1 r=1
-AlmostBessel
We agsglr\lfa 1tlhl?1 1bound @_to—fmst sum on the right above to obtain

(ii) = (iii). Take & = > | y,¢,. Then

R R
>3 @b = €I (G.10)

r=1s=1
But
) R R ) 1/2
€2 = S & b7 < Allell (3 1)
s=1 s=1

-BesselBilini . -BesselBilin2 .
by (iﬁ%i If € = 0, then the left hand side of E;gi is U, so there is

nothing to prove. Otherwise, [|£|| > 0, so we may cancel £JL g{girrllirl?é)th
sides allgz))?\g%, and then square both sides. This gives , in view of

(ili) = (i). We take the proof of Bessel’s inequality as a model. For
arbitrary y,.,

2

R 2 R R
0< 6= we| = 6 - 2R TE D) + | D wee,
r=1 r=1 r=1

Here the last term is
R R
Z Z(¢rﬂ (i)s)yT%
r=1s=1

Thus by (iii) we see that

R

R
0 < € = 2Re) Tl o) + A |yl

r=1 r=1

By taking y, = (£, ¢,.)/A? we find that

R

1
0 < [I* = 2> I& )P

r=1
which gives (i). O

If the ¢, are unit vectors that are nearly orthogonal so that the inner
product matrix C' is nearly the identity matrix, then we would expect
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-AlmostBessel
that (if;ri holds with a constant not much larger than 1. The most
immediate observation in this direction is as follows.

ostBessel

Theorem G.13 The inequalities of Theorem ; old with
- 5, Y 66 ()

1<r<R

Proof By the arithmetic—geometric mean inequality we know that |,y
< Ly + $lys|®. Thus

R R R
ZZ ¢r’¢s y?“yé ZZ| ¢r’¢s y?“y8|

r=1 s=1 r=1 s=1

R
> vl Z|<¢,.,¢s)|

IA

IA

R R
2
(max >l 61) X lu
- 7 s=1 r=1
-BesselBilin2 . s NormEst .
Thus @Wﬁth A as in @We proof is complete. O

IN

1 Exercises

. . . . H ostBessel | .
1. The object of this exercise is to derive ?Fheolrierrl% as an application
of the duality principle of Theorem [G. et e1,eés,...,ex be an

orthonormal basis for W = span(¢y, ¢, ..., ¢r), and write

K
d)r = E Ark€f-
k=1

(a) Show that

R R
S (¢ b )uels = HZ@/T

r=1s=1

K R 2
= § ‘ E QrkYr
k=1 r=1

(b) Put vy = (€, ex), and define ¢ so that

K
5 - C + kaek.
k=1
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Thus ¢ € W+, Show that

K
(& d,) = @ru.

k=1
(¢) Deduce that
R R K
Z(&v ¢)r)yr = Z Z QrkYrUk,
r=1 r=1k=1
and also that
R R K 5
Z |(£7¢7)|2 = Z ‘ Zarkvk) .
r=1 r=1 k=1
(d) Show that
K
> ol < ll€N*.
k=1

:BilinDualit : ostBessel
(e) Use Theorem 0 prove Theorem

. . . H ostBessel
2. Thelobgec{,%f this exercise is to use Theorem E; i to prove Theorem
+ inDuall
e = (21,79,...,on) € CN, and for r = 1,2,..., R take
¢r = (arlaar% e 7arN)-

(a) Explain why

R R N 2
Z |(Ev ¢r)‘2 = Z ‘ Z QrnTn
r=1 r=1 n=1
(b) Show that
R N
2(5’ ¢r)yr = Z Z ArnTnlYr-.
r=1 r=1n=1

(c) Explain why
2

R 2 N R
szrqbr = Z ‘Zarnyr
r=1 n=1 r=1
- ostBessel [T:BilinDualit
(d) Use Theorem E; § to prove E;J I

3. (Halasz) Let €, ¢, ¢, . . ., g be arbitrary vectors in an inner product
space V over the field C of complex numbers.
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(a) Let ¢, be chosen, |c.| = 1, so that ¢.(€,¢,) = |(§, @,)|. Show
that

R R
> IE0,)1= (6 ae,)

(b) Explain why the right hand side above is

R
< el Yoz,
r=1

(¢) Show that

i = Z ETCS(¢T’¢S)'

1<r,s<R

R
> e,
r=1
(d) Conclude that

R 1/2
Seo<( X l@ns) lell

1<r,s<R

4. (Selberg, unpublished; cf Bombieri 1971) Let &, ¢p1, ¢, - .., P be ele-
ments of an inner product space V.

(a) Explain why

R
0< Hf - ZCT¢7’
r=1

2

R
= |€IP —=2Re ) & (& b))+ D> (o, d)-

r=1 1<r,s<R

(b) Deduce that

R R R
2Re > (&, 0,) < €12+ e ? D (¢,
r=1 r=1 s=1

(c¢) Take
R

o= (66Xl 0,)))

s=1
and thus conclude that
R

5 &S 10,0.)])

r=1 s=1

! 2
< [1€l”
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:MatNormEst
(d) Use the above to derive Theorem E;J I é} SRS

5. Let ¢y, ¢,,..., 05 and 1,1, ..., g be any members of an inner
product space V. Show that

S SR < (Y

r=1s=1 ri=

“

1/2
(0 00,)1°)

S 1)

so=1

uM“

r2

Mm

Il
—

S1

G.4 Hilbert’s inequality

S:HilbIneq

In classical analysis, the term ‘Hilbert’s inequality’ refers to one or the
other of the bilinear form inequalities

Z Zminzm (Z|$n| ) (mij:l \ymlz)l/z, (G.12)
S e (X))
m=1

1§m,n<oo
m#n

These 1nec1cuahtles are 1eas11y proved (for the case of finite sums see Ex-
ercise e constant 7 is best possible in both of the above,
but equality is attained only when z,, = 0 for all n or y,, = 0 for all m.

For our purposes, Hilbert’s Inequality is a bound for a bilinear form of

the shape
Z TnYm
Am — An

1<m,n<N =
m#n

where the )\, are distinct real numbers. Of course the bound we obtain

for such a bilinear form depends on the extent to which the A, are
well-spaced.

T:HilbertIneq1| Theorem G.14 Let A\, Ao, ..., Ay be distinct real numbers, and let

d > 0 have the property that |\, — Ap| > 6 whenever m # n. Then

N
3 /\xnym‘ < 5(Z|x"| ) (;lymF)W (G.14) [E:HilbertIneql

1<m,n<N
m#n

for arbitrary real or complex numbers x,, and y,,.
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On taking y.,, = T,, we see in particular that

Z Lx")‘\ <3 Z |:1;n|2 (G.15) |E:HilbertIneq1a
1<m,n<N B
m#n

for arbitrary real or complex x,,.

Proof By Cauchy’s inequality the left hand side above has absolute
value not exceeding

N 12, N
(X al) (] X 55
m=1 m=1 12;711\7

>1/2.

Thus it suffices to show that

N . 2 2 N
n 2 - Hi
E ‘ E m’ < 572 E |$TL| . (Glﬁ) E:HilbTargetl
n=1
-BilinDualit . . . -HilbertIneql
Indeed, by Theorem i%;ll[; this inequality is equivalent to (@.—E’L_L

A = [amy] be the matrix with elements

1 .
m lfm#n,
0 if m=n.

Amn =

We note that A* = —A. Such a matg%ggmg%id to be skew-hermitian.
Since A isnoyma%T;)IyetClorollary we know that p(A) = ||4], so
in proving we may assume that x is an eigenvector of A. Now
—1A is hermitian, so an eigenvalue \ of —iA is real, and —iAx = A\x
is equivalent to Ax = i\x. That is, any eigenvalue of A is of the form
i\ where ) is real. Thus as we continue, we assume that there is a real

number A such that

S =i @1
- n

1<n<N =™
n#m

for all m. In passing we note that since A is normal_ it follows by Corol-

NormNormal bert I ertine bertIneql
lary at the special case o 1%} 1S equlvalent to .

We square out the left hand side of ({ ake the sum over m
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inside to see that this expression is

The terms with » = s contribute

N

1

STzl > o (G.18) [E:HilbDiagTerns

n= 1<m<N V™ "
‘m#n

The terms with r # s contribute

_ 1 - ,
E T, T5 E o )0 ) (G.19) |E:H11bNonD1ag1
1<r,s<N 1<m<N
r#s mir

Since r # s, we may write

1 _ 1 ( 1 _ 1 )
()\m—)\r)(Am—)\s)_)\r—)\s A — A A — A/

. . L. -HilbNonDiagil . .
On inserting this in @,Teﬁrgﬂ that the expression is
T, Ts 1
)\7")\5( Z )\ r Z )\m)\s)

1<r,s<N 1<m<N 1<m<N
r#s m#r m#r
m#s m#s

In the first inner sum the summand is finite if we were to allow m to take
the value s, so we drop the constraint m # s. Similarly, in the second
inner sum we drop the constraint m # r. After accounting for the effect
of these alterations, we find that the expression above is

rdg 7‘75 1
=2 ) Ax_xA + > x_xA Zm

1<r, 5<N 1<r,s<N " S 1<m<m T
7755 r#s m#r
T, T 1
DB s WD DR w
1<r,s<N 1<m<M
r#s m#s
=2T1 +Tp — T3, (G.20) |E:HileonDiag2

say.
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Since |z, T5| < %|acr|2 + %|x5|2, it follows that

N

1
Tl<) =l 3 s (G.21)

r=1 1<s<N
S#T

We note that

"o ; (1<5<N/\ _)\><1<%:<N)\ )

“s#r “m#r
On taking complex conjugates of both sides of @en%d then setting
m = r, we find that the first inner sum above is = —iAZ, since )\ is real.
Thus
al 1
To=—i\y |z _
2 Z| vl Z A — A,
r=1 1<m<N
m#r
Similarly,
r=3 > )
Ar— )\ Am — As
s=1 1<r<N 1<m<N
r#s m#s
Y 1
By multiplying both sides of (@e—nﬁfl, and taking m = s, we find
that the first inner sum above is = —iAx,. Thus
al 1
Ts=—iy |z _—
3 Z‘ 5| Z M — s
s=1 1<m<N
m#s
bNonDiag?2
Hence Ty = T3, so the contributions of these terms in |m_]j cancel,
bNonDiagl E=HilbDiagTerms
Thus g;le expression is precisely 77. On cor,}lglrgng ‘ﬂ.u,
' we deduce that the left hand side of oes not exceed

N
1
DTS e
n=1 1<m<N (Am o /\n)
m#n

We may assume that the \,, are in increasing order, so that [\, — \,| >
d|m — n|. Hence the inner sum above does not exceed

2

1 1 2(2)
02 Z (mfn)2§ 52 302




T:HilbertIneq2 |
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-HilbTargetl .
Thus we have (@ﬁgﬂ_ﬁhe proof is complete. O

.HilbertIneql
We now use Theorem E;J li to derive a trigonometric variant, which is
useful when we work modulo 1.

Theorem G.15 Let ay,as,...,ar be distinct modulo 1, and let § > 0
have the property that ||o,, — as|| > 6 whenever r # s. Then

UpUs 1/ 2\1/2 & 2\1/2 —
Z Sin7r(ozrozs)‘ < 5(;|ur| ) (§|U5| ) (G.22) |E:Tr1gH11bIneq

1<r,s<R
r#£s

for arbitrary real or complex u, and v;.

On setting vy = U, we see in particular that

Y s
sinw(a, — ay)

1<r,s<R
r#s

R
1
=5 > Jurf? (G.23) [E:TrigHilbIneqa
r=1

for arbitrary real or complex u,..

Proof We recall that the Weierstrass product formula for the sine func-
tion asserts that

sin7rz=7rzﬁ (1— %) (1—}—%).

On taking logarithmic derivatives, it follows that

1 & 1 1
bz = = <7 7)
wecotmz Z+k§::1 z—k+z+k

Now

1 1 7wz 1  7w(z+41)
— Zcot I _ Z oot ET )
sinme 2 Mg TRt

SO

T 1 = 1 1
(e
sinmz erI;( ) z—k:Jrz—l—k

K _1>k

: (
3 O 21
KlgnoO " (G.24) |E:cscPartFrac

;HilbertInegl . .
We apply Theorem @Wh—c%ubly—mdexed variables ., yms and
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Anr. Thus

’ Z MI %(ZMM ) /Q(mzslyms|2)1/2

r,8,m,n

(n,r)#(m,s)

We now take 2, = (=1)"up, Yms = (—1)™vs, and A, = n + . for
1 <m,n < K. Thus

Z (*l)nimurvs
(nargm,s) 7T O~ @

R R

As
(1)
2 =0

1<mn<K
m#n

we may replace the condition (n,r) # (m,s) by the simpler condition
r # s. We put k =m — n and divide by K to see that

K R
D*(1 - \kI/K /2
D (Z\ wl) ()
r#s k=—K r S s=1
- PartFrac
From 1%?2?) we see that the left hand side above tends to

‘Z UyrVg
sinw(A, — As)

as K — oo, so the proof is complete. O

Suppose that

A< A <o < A, (G.25) |E:orderedla.mbdas|

and let

b = g P (@20

m#n

:HilbertIneql
Thus in Theorem @Wnﬁ?ftake 60 = min,, §,,. When some of the A,
are more widely spaced from their neighbors than others, it is advant-
ageous to work with the d,, rather than with ¢, as it is possible to derive
a weighted form the Hilbert inequality:

Theorem G.16 Let A, Ao,..., ANy be distinct real numbers, and let



L:WghtedLambdaSumIneqgs1 |
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. - delta_n
the numbers &, be defined as in @.—W

Ty 3 N ‘l’ ‘2 1/2 N |y |2 1/2
mYn <2 n m )
D —2”(2 On ) <Z 6m) (G.27)
1<m,n<N n=1 m=1
m#n

for arbitrary real or complex numbers x,, and Yy, .

Lo -HilbertInegl .
This includes Theorem E;J l% apart ffom the factor 3 /2. It is unknown
whether the above is true with the constant 7. On taking y,, = T,, we
see in particular that

N
3 xn 2
5 E | (G.28)

1<m,n<N
m#n

for arbitrary real or complex numbers x,,, S
To prepare for the proof of Theorem Efié we establish some useful

inequalities.

- eredl delta_n

Lemma G.17 Let the \,, and &, be as in (G. an .20]). Suppose
that f is deﬁned on (0,00), that f is positive, decreasing, conver upwards,
and that [ f(z)dx < co for § > 0. Then

D 0t = A) < A1 = A) Frr = M) + / f(z)dz (G.29)

n>r Art1—Ar
forr < N, and

S 0ufO = A) £ O =) f O <A+ [ fa)de (G30)

n<r Ar—Ar_1
forr > 1.

: fsuml
Proof The contribution of n =741 in i?;lﬁ-glt) S
5r+1f()\r+l - )\r) S ()\rJrl - )\r)f(ArJrl - )\r)

since 0,41 < A1 — A and f is positive. For n > r 4+ 1 we set M,, =
[An — %5,1, A + %(5,1] and observe that

50t (N /fx—

by the convexity of f. The intervals M, are disjoint, and lie in the
interval [A,41,00), so

n>r+1

E:WghtdHilb1l

E:WghtdHilbla

E:deltafsuml

E:deltafsum2



454 Bounds for Bilinear Forms

tafsuml tafsum2
since f is nonnegative. Thus we have , an is proved sim-

ilarly.
dl delta_
Co:Inverse2,4Ineqs| Corollary G.18 Let the A, and §,, be as in (G. Fan 6] . ael;l
N
On 4
Z Ou ) 5 (G.31) |E:Inverse2Ineq
n=1 n
n#r
and
Y, 8
Z m < 353 (G.32) |E:Inverse4Ineq
nr
for1<r<N.

: fsuml
Proof By taking f(z) = 1/2? in @%d that
Z On < 2 < 3
()‘n - >‘r)2 )‘r+1 5

r<n<N
2 tafsum2
ver n < r is bounded similarly using .

erse4Ineq

] is proved similarly by taking f(z) = 1/2%.

and the corresp 0nd1n§ sum o
nyerse

This gives lm

), and

O
- dl delt
L:SplitInverseQIneq| Lemma G.19 Let the A\, and §, be as in (G. er;n X . .e > nS
r,s < N and r # s, then
On 4 1 1
< (7 + 7) (G.33) |E:SplitInverse2Ineq
IS;N A =22 = As)2 = (A — Xs)2\6, 05 |

n#r
n#s

Proof Let Let f(x) = (z — A\)"2(z — X\s) 2. We first show that f is
concave upwards. By taking logarithmic derivatives we see that
oo =2 -2
A W
By differentiating both sides of this we find that

o2 2
(f) @)= T o
Here the left hand side is (f”(z)f(x) — f'(z)?)/f(z)?, so by multiplying
both sides of the above by f(z)? and then adding f’(z)? we deduce that

P@F@) = P+ 10 (e + o) > O

(z -
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Since f(z) > 0, it follows that f”(z) > 0.
Let M,, = [An, — /2, A\, + 6, /2]. Since f is convex upwards, it follows
that

and on summing this over n we find that

OIENICSERD SN MOrD (C.34)

1<n<N 1<n<N
n#r n#r
n#s n#s

Now

1 1 1
)\n + ién = /\n+1 - ()\n+1 - )\n) + 5577, < /\n+1 - §(>\n+1 - /\n)

1
§ )\n+1 - 5511—0—1,

so the intervals M,, are pairwise disjoint. Let R = R\ (M v J\/E’E)Ls uSmince
f(z) > 0 for all z, it follows that the right hand side of @T

< / f(z) dz. (G.35)
R

We note that

1 _ 1 ( 1 _ 1 )
(x—=A)(x—=X) A=A \z—X. x—-X/"

On squaring both sides of this, and then expanding the right hand side,
we deduce that

1 2
e W P W A W W CEp WP
1
MRS WEFESWE
= fi(x) + fa(x) + f3(x),

say.
Since fi(x) > 0 for all z, it follows that

___ 2 2
/yﬁ(:r)dazﬁ M$f1(x)dx— ENESWE /{sr/zx dz
4

=S A (@:30)
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and similarly
4
| By < (@37)

It remains to treat [ f2(x)dx. We observe that

fa(x) = O\ :2)\5)3 (sc—l)\r a xfl)\s)

BECTED WD R W Wy W
= fo1(x) + fao(x),

say. Let J(X) = [-X, X]. Then

/ fo(z)dx = lim fa(z) dx
R

X —o0 fRJ(X)

= lim for(z)dz + lim foo(z)dz. (G.38)
X—o0 X—o00

RI(X) RI(X)

Suppose that X is large. Then

/m(X)fm(x) dm:/M?j(X)fm(m) d:c—/Msfm(x) dx</MTJ(X)f21(x) dx

since fo1(x) > 0 for € M,. The remaining integral above is —2/(\, —

As)? times
/X de /Ar%&' de XX\
TP W S WD W

. . - f2Decomp |
which tends to 0 as X — oo. Thus the first limit in (E;gg) 1S negative.
As for the second limit, we note that

dr = do — d p
~/923(X)f22(x) T /ng(x)fm(x) T /M,,.fQQ(x) x</M§j(X)f22(x) x

since fao(z) > 0 for z € M,.. The remaining integral above is 2/(\, — ;)3

times
/X dz +/As—%5s de X -\
O
Notdo, T = As X T —As gX+>\

. L. f2Decom
which tends to 0 as X — oco. Thus the second limit in 1%;%%) 1S also

negative, so
/ fa(x)dz < 0.
R
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; o ... [E-IntfiFEst E.Intf3Fst
T he statlel&ggiuM now follows by combining this with (G.36)and (G.37)

in . O
‘ghtdHilbl
Proof of Theorem %_F}ﬁﬁun = x,/V0n and vy, = Y /V/Om. Thus

we have to show that

V0 6n
D

N\ UnUm
1<m,;n<N =™ n

m#n

N N
3 \1/2 \1/2
() (5 )
n=1 m=1
for all u,, and v,,. By Cauchy’s inequality, the left hand side above is

N 12, N N NG 2\1/2
<( ) (2] )
" " Em

Thus it suffices to show that

N
O0mOn,

2 N

< %TQZIunI2 (G.39)
n=1

n

N
m=1
n#m

for all u,. Let A = [amy] be the N x N matrix with coefficients

VOmOn

if
Amn = )\m_)\n 1m7én,
0 if m=n.
Thus A* = —A, so that A is skew-hermitian, and hence normal. Thus

rmNorma
by Corollary i?i we know that p(A) = ||Al|. Thus we may assume that

u is an eigenvector of A. Since —iA is hermitian, any eigenvalue A of
—1A is real, so that if w is an associated eigenvector, then —iAu = Au.
On multiplying both sides of this by i, we deduce that Au = idu. Thus
the eigenvalues of A are of the form i\ where A is real. As we continue,
we assume that w is such an eigenvector, so that

N
O 6.
> Sy = (G.10)
Am — An
n=1
n#m
for all m. We may further assume that w is a unit vector, which is to

say that
N

S Junl? = 1. (G.a1)

n=1
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: 1
We expand the left hand side of @%ﬂd take the sum over m
inside, to see that the expression is

N N
__ Om
_;\/aur;\/aus > Do =) O =)

1<m<N
m#r
m#s

The terms with r = s contribute

Om
m;ﬁr

The terms with r # s contribute

> Vaduwm Y o /\6)(/\ — (G.43) [Exvmmo1]

1<r,s<N 1<m<N
r;és “m#r
m#s
Since r # s in the above, we may write

Om 1

G )

(Am*)\r)()\m*As) B >\7"7AS )\m*Ar Am*)\s '
“WHNDT

On inserting this in (% we find that the expression is

P e ]

T

1<r,s<N 1<m<N 1<m<N
r;ﬁs m#r m#r
m#s m#s

In the first sum over m there is no need to exclude m = s, and in the
second sum over m there is no need to exclude m = r. On inserting these
terms we see that the above is

V3,853, + 85)
= 2 A_—A)““

1<r,s<N
'r;és
Yo
m
+ 2 AT - A ED e
1<r,s<N =1
7‘755 m;ér
N
O
)\T — )\ Z Am — As
1<r,s<N
7‘755 m;és
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say. By taking m = r in @Hﬁ then taking complex conjugates we
find that

V050
A

r—

] =

Uy = —iNG,
1
T

w 0
I

since A is real. Thus
N N 5
— 2 m
T = —M;W?ﬂ\ mz::l S
m#r
“UghtdEi
By taking m = s in @Tﬁé then multiplying by —1 we find that

N
Z = —1\Us.
;:e

Thus

N N 5
Ty=—idY [us> > %A
s=1 m=1""" s

m;s
On comparing these {(()i%rinulae we deduce that To, = T3, so that these
terms cancel in (G.40), so we now estimate T}.
Clearly
\/(5 s (5 +d5)
‘T1|< Z )\s) | UrU s‘:U7
1<r,s<N

r;ﬁs
say. We note that
0,050
v=23 3 L
r=1

5737“

5 us-

Thus by Cauchy’s inequality,

e () (54

r=1

N 3/2|U5|

/)

: =1
Here the first factor on the right hand side is 1 in view of @% the
second factor we expand the modulus-squared and take the sum over r




T:WghtdHilb2
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inside. Thus the right hand side above is

. 3/2¢3/2 5r
— Z 53/ 8 | usug | Z o =200 A

1<s,t<N 1<r<N
r#s
r#t

By distinguishing those terms for which s = ¢ from those for which s # ¢,
we see that the above is

N 5 ) N S
= ;65|us| ; (57’ — 53)4

r#s
)
+ Z 53/2(53/2|u8ut| Z 2T 5
1<s,t<N 1<r<N A = As)2(Ar = Ar)
s#t r#s
r#t

: erse4Ine
In the first term we use @_’co—mqnd the sum over r. By (|

it follows that this term is < 8/3. In the second term we use
to estimate the sum over r. The resulting bound is precisely 4U. Since
(U/2)? < 8/3 +4U, it follows that

<)

E=SeditInverse2Ineq

IT1| < U < 8+44/14/3 < 16.641.

. DT . n
This is our upper bound for the ex_Pression % By (G.31]
we see that the expression (G. is < 4i On summing these estimates

we see that the left hand sidfr?f . a]is < 20.641. The right hand side
is 972 /4 > 22.206, so olds, and the proof is complete. O

. ;HilbertIneq2 ;HilbertIneql
In the same way that we derived Theorem rom Theorem

we can derive a weighted ine qalit%ldg(i){blise modulo 1 from the weighted
Hilbert inequality (Theorem %?ié

Theorem G.20 Let aq,as,...,ar be distinct modulo 1, and put
o = oin |y — asl|
SFET
Then

P P
sin(a, — ay)

1<r,s<R
r#s

R R 1/2

3 Jur [ \/2 |vs]?
<= E 45) |E:WghtdHilb2
< 2( 5. ) 2.5, (G.45) |E:WghtdHilb

r=1

for arbitrary real or complex u, and v;.
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;HilbertIneq2
Proof As in the proof of Theorem ﬁ;llél; we employ a doubly-indexed
family of X’s, namely A\, = n+rforl <n < Kand1l <r < R.
Thus [Anr — Ams| > 0 t%}rlsﬂl%\,%r (m,s) # (n,r). We Cont:n}le @C%Hiinlgle
proof of Theo_re_mb yut wi h an appeal to Theorem [G.T6[in place
of Theorem %[ O

S:HilbIne .
1 Exercise

4 , :HilbertIneq2
1. Write cosma = ('™ 4+ e~ "™*) /2, and apply Theorem '??lg] twice to

show that

g upvs cot (auy

1<r,s<R
r#s

as)| < ;(ZR: |Ur2)1/2(§: \Us|2)1/2
r=1 s=1

for arbitrary real or complex wu, and vs.

G.5 Notes

S:NotesBilinFormsl

For more material on bilinear forms and matrix inequalities, see Hardy,

Littlewood & Pélya (1952, pp. 196-259), %iarcus&M1nc|(]1964|) e man|

(1970), and 9_,(:“ enbach & Bellman| (1965)). For properties of integral
ewman

matrices see (1972). L inDual v HaT10
Section G.1. Theorem |G.1[is due to [Hellinger & Toeplitz (1910),who

also dealt with the convergence issues that arise when acce tm% 1£1ﬁlglte—
dlmensmnal matrices. The case ¢ = p’ of Exercise G.1. lél E]ue to

, and the general case is due to his younger brother M. |

1927.
. hurTriThm
Section G.2. Theorem i@;?]; Satz | of% m, it is one of the11ch
foundational results of linear algebra. The bound of Exercise il ?I fj can

be sharpened, slightly, by replacing the supremum of |f| by its essen-
tial supremum which is defined to be the supremum of the set of those
numbers V' for which {z : |f(z)| > V'} has positive measure. With this
reﬁlp:eHnill%%t, the bound is best possible, since the argument of Exercise

can _be extended with s(x) replaced by an arbitrary measurable func-

tion. (1921)) gave a simple proof that |G lﬁzzlr@zwhen q is odd,
E% E%i), and th

determined det E, E?, E* (as in Exercises en deduced the
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multiplicities m,, and hﬁ:{%ge the values of G(q) when ¢ is odd. His argu-
ment is reproduced in %Endau, 1958, pp. 207-212), except that Schur
took for granted that the eigenvalues of A? are the squares of those ofurTriThm
‘ém ((This is an easy consequence of his triangularization theorem @%7
Morton| (1980) has constructengiR A set of ¢ linearly independent eigen-
vectors of the Schur matrix. Balatoni| (1969) has derived both upper
and lower bounds for the largest and smallest eigenvalues of the matrix
whose determinant is the Smith determinant.

Section G.3. The original Bessel inequality was publis@g}gld})y the phys-
icist /astronomer /mathematician F. W. Bessel in 1828. [Boas (1941) and
[Bellman| (1944) proposed generalisations of Bessel’s inequality, in which
the given vectors are close to orthonormal. Rényi (1949a-1959) de-
veloped a number of principles ‘%Pl‘%r{lg these lines, for purposes of improv-
ing the large sieve of Linnik. [Heilbronn| (1958) gave a further bound,
which turns out to be a little weaker than the estimate of Hald in Exer-
cise tom the first two exercises at the end of this section we see that

such extensions of Bessel’s inequality are equivalent to consideration of
bilinear forms, although sometimes (e.g. in §E.3.3) we still find it con-
venient to think in terms of Bessel’s inequality. Discussion of the large
sieve continued to be framed in terms of Bessel’s i%%%lal%%llgygn after
the seminal works Q}{fm%ggh and Bombieri in 1965. [Elliott] (1971} [1973)

KRM72aa  KRM72ah

ews| (1972al, [I872b|, [1973)) were among the first to address the
large sieve in terms of bilinear forms. HilbI 1bIneq?
Section G.4. In lectures, Hilbert proved the inequalities , ,
but the latter with the constant 27. His proof is reproduced in Hardy,
Littlewood & Pdlya (1952, pp. 235723‘(%;.1 1The inequalities were first
proved with the optimal constant 7 by [Schur| (1911)); for his proof see
ibid (p. 213). For an extended discussion of the original Hilbert inequal-
ities see §8.12, Chapter IX, and Appendix III of Hardy, Littlewood &
Pélya (1952). -
Atle Selberg wrote out for the authors Theorems |G.I14]|G.16] and th LN
proofs. H%dllfzificbgs to deal with the problem of proving Theorems @;L
and ﬁ—mchieved this by inserting trigonometric functions in all
of his formulas, although, as the reader will see, it has now been found

and Ma

that these latter theorems are more easily derived directly from Sqlberlga;stFrac
original theorems, by exploiting the partial fraction expansion @T
the cosecant; 1fé11nction. reissmann| (1984) showed that the constant %77
in can be replaced by %w. In conversations, Selberg reported
that he had shown that the inequality holds with the constant 3.2, but
it seems that no trace remains of the method he used to achieve this.
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pp. 220-225) later derweWerem
method, but our proof above of Theorem ollows Selberg’s original
unpublished argument. Let C’g denote the best constant that could take
the place of 371' in ; ollowmg Selberg’s method as found in

this section, one encounters the problem of establishing an inequality of
the sort

N N N
0,05(0 + 6
Sl SR < Y (Gag
r=1 s=1 T S r=1
SF#T
This form is hermitian and positive, so we would expect that it might
be easy to estimate. From this approach we find that

2
003\/%+01.

i, tBF
If we Could estabhsh (@T&/ith C, = 77r , then we would have Cy = 7.
Howe\é%ll":o t| (2023) recently showed that the best constant C; in
is > 0.7009472. If Selberg reached 3.2 by estimating C;, then
his bound was very close to optimal, and th%;g approaclnlD _Wozuld never
give Cp < 3.19. For more on this topic see 005)) and [Preissmann &

Lévequel (2013)).
ontgomery & Vaaler| (1998) introduced a still more general weighted

form of Hilbert’s inequality: Let the \,, be as before, and suppose that
Byn > 0 for all n. Then

N
ZmZn |2n|?
< &4 . G.47
;;6m+ﬂn+mm )|~ ; on ( )
m#n
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Appendix H

Linear Programming

H.1 Fundamental theory

The following simple and intuitively obvious result is fundamental.

Theorem H.1 Let C be a closed convex set in R™, and suppose that
b ¢ C. Then there is a hyperplane H = {u € R™ : n-u = ¢} that
separates b from C in the sense that bn <0 and n-u > 0 for all u € C.

Proof Let ug be a point of € whose distance from b is minimal. It is
clear that this minimal distance is attained by some point ug of €, even
if € is unbounded and therefore not compact, since we may restrict our
attention to a sufficiently large compact subset of C. Set n = uy — b and
put ¢ = ug-m. Then

bn=(u—n)n=c—|n*<c

since n # 0.

Suppose on the other hand that w € €. The points (1 — t)ug + tu,
0 <t <1, constitute the line segment joining ug to u. Since € is convex,
these points are also members of €. Consider the distance of such a point
from b. We note that

|(1=t)ug+tu—b> = [utt(u—ug)|? = |n|* +2t(u—wug) n+|u—ug|*t>.

If it were the case (u—wup)-n < 0, then the above would be smaller than
In|? if we took t sufficiently small and positive. Then we would have a
point of € that is closer to b than ug. Since uy was chosen to minimize
this distance, we conclude that (u — ug)-n > 0, which is to say that
un > c. O

Corollary H.2 A closed convex set in R™ is the intersection of its
supporting translated half-spaces.

467
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Suppose that a and b are vectors in R™. We say that a > b if a; > b;
for all respective coordinates.

Theorem H.3 (Farkas’ Lemma 1902) Suppose that b € R™ and that
A is an m x n real matriz. Then exactly one of the following is true:

(i) There is an © € R™ such that Ax = b and x > 0;
(ii) There is a y € R™ such that b-y <0 and ATy > 0.

Proof That the alternatives are mutually exclusive is clear, for if both
(i) and (i7) held, then we would have

0>y'b=y"(Az) = (y"A)z = (ATy)Tm > 0.

Let € = {Az € R™ : & > 0} be the closed convex cone generated by
the columns of A. By Theorem either b € C, in which case we are
in case (i), or else there is a vector n € R™ and a real number ¢ such
that n-b < ¢ but n-u > ¢ for all u € C. Since 0 € € it follows that ¢ < 0.
On the other hand, if there were an uw = Ax € € such that n-u < 0,
then such numbers would be unbounded below, since w can be replaced
by au with « > 0 arbitrarily large. Thus ¢ = 0. We take y = n, and
observe that yTAx > 0 for all > 0 if and only if yTA > 0. Thus the
proof is complete. O

Theorem H.4 Suppose that b € R™ and that A is an m X n matriz.
Then exactly one of the following is true:

(i) There is an € R™ such that Az < b and x > 0;
(ii) There is a y € R™ such that by < 0, ATy >0, and y > 0.

Proof That the alternatives are mutually exclusive is clear, for if both
(i) and (i7) held, then we would have

0>yTb>y"(Az) = (y"A)z > 0.

We apply Theorem @ with n replaced by m +n, A replaced by [A | 1],

and @ replaced by [Z] where w € R™. In case (i) of Theorem we
have
x
[A|I]|—]|=b
w

where > 0 and w > 0. That is, Az + w = b, which is case (i) above.
Alternatively, in case (ii) of Theorem there is a y € R™ such that
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by <0and yT[A|I] > 0. That is, y* A4 > 0 and y > 0. Thus (ii) holds
and the proof is complete.
O

We are now in a position to prove the Fundamental Duality Theorem
of linear programming.

Theorem H.5 Let A be an mxn matriz with real entries, and suppose
that b € R™ and ¢ € R™ are given. Put X = {x e R": « > 0, Az < b},
andY ={y € R™: y >0, ATy > c}. If X and Y are both non-empty,
then
‘x = min by . H.1

s R R 1y
If X is non-empty, then sup ey b-x = +oo if and only if Y = 0. Simil-
arly, if Y is non-empty, then infycy c-y = —oo if and only if X = 0.

It is possible that both X and Y are empty.

Proof Let L denote the left hand side of @ if X is non-empty, and
let R denote the right hand side of if Y is non-empty. Since X
is connected and c-x is a continuous function of x, it follows that the
values c-x, for € X, form an interval on the real line, I}, say. Similarly,
the values b-y, for y € Y, form an interval Ir. Suppose that € X and
y €Y. Since ¢ < ATy and = > 0, it follows that

cr=cle < (yTA):L' =yt (Aw)
On the other hand, y > 0 and Ax < b, so the above is
<y'b=by.

Thus the interval I _lies entirely to the left of the interval Ir. What is
further asserted in @ is that there is no gap between these intervals.
From the above it is clear that if X and Y are both non-empty, then the
interval Iy, is bounded above and the interval Ig is bounded below. It
remains also to show that if X # @ and Y = ), then I extends to +oo,
and similarly that if X = () and Y # (), then the interval Ir extends to
—00.

Suppose that X is non-empty and that p is a number chosen so large
that p > L. Then there does not exist an & > 0 such that

A b
—le< | —

_cT —u
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We apply Theorem@to this situation, and see that case (7) is excluded.
Thus there is a [%] € R™*! such that

z z
Y| —u] |—]| <0, [AT] —c] |—]| >0, z>0, qg>0.
q q

That is, b+ 2z < pug and ATz > ge. We see that ¢ > 0, for if ¢ = 0,
then we would have bz < 0, ATz > 0, and z > 0, which is case (ii)
of Theorem But then case (i) would be excluded, which is to say
that X would be empty, contrary to assumption. Thus ¢ > 0 and we set
Y= %z. Then y € Y and b-y < p. Thus we learn that if it is possible to
choose a number g larger than all members of Ig, then Y is non-empty,
and also that g > R. Thus if X is non-empty, then L = +o0 if and only
if Y is empty. As we observed at the outset, if X and Y are non-empty,
then L < R. What we have now shown is that there is no number p such
that L < u < R. Thus L = R.

The proof is now complete except for the very final assertion. For this
we can argue similarly, or we can exchange m and n, replace b by —c,
replace ¢ by —b, and replace A by —AT. Then X and Y are exchanged,
L is replaced by —R, and R is replaced by —L. Through this reversal
we see that the final assertion follows from the one immediately before
it, so the proof is complete. O

S : Fund .
.1 Exercises

1. Let C be a closed convex set in R™, suppose that b ¢ €, and let ug
be a member of C that is closest to b, as in the proof of Theorem
Show that u is unique.

2. Let C be a convex set in R™, and suppose that b ¢ C. Show that there
is a hyperplane H = {u € R™ : n-u = ¢} that separates b from C in
the sense that n-b < 0 but n-u > 0 for all u € C.

3. Derive Theorem @ from Theorem ﬁ by applying Theorem ﬁ
with m replaced by 2m, and with A, b, y replaced respectively by

A b Y1

) )

Y
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H.2 The application to sieves

Let 4 be a sequence of nonnegative numbers a(k), let P be a finite set
of primes, set P =[] .y p, and for 6| P set

so that

Xa=>) a(kd)= > Ss

k s
d|5| P

for d|P. Let n = 2¥("). Thus n_is the number of §|P, and the Ss play
the role of the z; in Theorem The X4 are linear forms in the Ss,
which must obey bounds of the sort

for d|P. Here p(d) is a multiplicative function defined on the divisors
of P with 0 < p(p) < 1 for all p|P. This gives rise to m = 2n linear
inequalities

Xd é p(d)X + Rd7
X4 < —p(d)X + Ry

for d|P. Let A be the m x n partitioned matrix

where

1 if d|d, _ -1 if d|o,
A;;& = { Adzi = {

0 otherwise, 0 otherwise

Let S be a column vector whose n coordinates are the numbers Sy, and
let b be a column vector whose m = 2n coordinates are partitioned so
that the first n coordinates are the numbers b} = p(d)X + Ry, followed
by n further coordinates b; = —p(d)X + Ry. Thus the vectors S are
subject to the condition S > 0 and AS < b. Let X denote the set of
these admissible vectors S. Let ¢ be a vector in R™ whose coordinates

E:SieveHyp
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are indexed by the §|P with

1 ifs=1,
Cs =
0 ifd>1
For an upper bound sieve, we would want to derive an upper bound
for the size of ¢ - S. To construct the dual extremal problem we let
A € R™ have nonnegative coordinates, partitioned into two halves, so
that A = [A1 | \;]. Note that in this situation, A} is not an upper bound
sifting function, nor is A; a lower bound sifting function. Rather, they
are building blocks which will be used to form an upper bound sifting
function. In addition to A > 0, the A are required to satisfy AA > c.
That is,
1 ifs=1,
YRETE S
P P 0 ifé>1.
s ds

Let Y denote the set of those A that meet these requirements. For any
A €Y, the quantity b-A is an upper bound for ¢-S for all S € X. That
is,

S1< g 1bg] N A1 =X (0 = A7) p(d) + > (AF + A7) Ra.
d|P d|P

Suppose that A4 is given, and that )\j and A; take nonnegative values so
that )\j — A, = Aa. If A\g > 0, then the quantity )\d+ + 2, is minimized by
taking AT = A4 and A, = 0. Similarly, if Aq < 0, the quantity )\j + A,
is minimized by taking )\d+ =0and A; = —Aq. Thus

S1 <X Aap(d) + > [Aa|Ra (H.3)

d|P d|p
where
1 iféd=1,
)DEVER
a5 0 if § > 1.
Mpreg%eu% by Theorem @ we know that the minimum of the bound
over A € Y is equal to the maximum of S; as S takes all possible
values in X, provided that both X and Y are nonempty. For Y this is

easy: Just take A\ = 1 and Ay = 0 for d > 1. To exhibit a point in X, we
note that if

Ss=p(0) [] (1 =p()X

p|P/§
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for all §| P, then X4 = p(d)X for all d|P. Hence in gar‘%igelﬁlar, any upper

bound that can be derived from the hypotheses must be at least
as large as
XTI = p)),
p|P

and any lower bound cannot exceed this value.
To obtain a corresponding result for lower bound sieves, we let A, b,
and X be defined as above, but we now set ¢ € R™ to be ¢ = (¢5) with

-1 ifd=1,
cs =
0 if 6 >146|P.
That is, ¢ is the negative of its former value. This results in a change in
the definition of Y. We still take Y to be the subset of R?™ consisting of

partitioned vectors A = [AT, \;] such that ATX > ¢, but this condition
now reads

~1 ifs=1
POEVED DEVIER
y y 0 ifé>10P
d|é d|s

for |P. Put Ay = A; — AJ. Then

1 if6=1,
Z)\dﬁ )
P 0 ifd>1, o|P.

d|é
Hence
—S1 < b 7] N 1271 = X3 (0 = A7)p(d) + > (A5 + A7) Ra
d|P d|P
==X Xap(d)+ > (M + A7) Ra.
d|P d|P

To minimize the value of )\d+ +A;,if Ag >0, set A = Ag, )\;r =0, and if
Ag < 0 set )\:{ = —Ag and A; = 0. On rearranging the inequality above,
we find that

X " Nap(d) = || Ra < S,

d|P d|P

and that the maximum of the left hand side over all A € Y is equal to the
minimum of the right hand side over all S € X. Note that X is nonempty
because it is unchanged from our upper bound discussion, and that Y
is nonempty because 0 € Y. Indeed, it sometimes happens that the best
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lower bound for Sy is 0, and in that case A = 0 is optimal. (For example,
this happens when 4 = {2,3,4}, P = {2,3}.)

It may seem that our considerations are not very useful because the
number of variables grows exponentially as a function of n. However,
in most practical situations, the X, are well-approximated only for d of
limited size, which is to say for d < z for some parameter z. We then
set Ry = oo for d > z, which has the effect of forcing the support of A
to lie in [1, z].

S:A .
iE :%L 1 Exercise

1. (USA Mathematical Olympiad 2011 Problem 6) Let A be a set of
225 integers, let Ay, ..., A1 be subsets of A such that card A; = 45 for
1 <4 <11, and also such that card A; N A; =9 for 1 <i < j <11. Let
D=A1UA3U---UAq1, and set R = A\ D. The object of this Exercise
is to show that card D > 165, and to show that this is best possible.

(a) Note that the first part of the object is equivalent to showing that
card R < 60. This resembles an upper bound sieve problem, in which
the A; correspond to multiples of a prime p; which are deleted, and
the numbers in R remain. For a € mathscrA define a weight

w@=1+X > 1+X Y 1
1<i<11 1<i<j<11
a€A; acA;NA;

where A\; and A are yet to be chosen.
(b) Note that if w(a) > 0 for all a € A and w(a) > 1 for all @ € R, then

card R < Z w(a).
acA
(¢) Show that

> w(a) =225+ 495(A1 + o).
acA

(d) For a € A, let m = m(a) denote the number of 7, 1 <4 < 11, for
which a € A;. Show that

w(a) =1+ (T) A+ (”;)Ag = f(m),

say.
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(e) Choose A\; and \g so that f(3) = f/(3) = 0. With the A; chosen this
way, show that A\; + Ao = —1/3, and that f(m) = (m — 3)?/9, with
the result that f(0) = 1, f(m) > 0 for all m, and f(m) = 0 only
when m = 3.

(f) Conclude that card R < 60, which is to say that card D > 165.

(g) To achieve equality in the above argument, the A; must be chosen
so that m(a) = 3 for all a € D. Note that (131) = 165. Choose 165
distinct integers, and for each triple (4,7, k) with 1 <7 < j <k <11
place one of these integers in A; N A; N Ag. The A; are to have no
other members. Show that card D = 165, that card A; = 45 for all
i, and that card A; N A; =9 for all pairs 7 < j.

H.3 Notes

S:NotesLinProg |

Section H.1. Theorem @ is true also in many other spaces, but it is
important that the space in question be locally convex. 15 1Rog
The history of linear programming can be traced back to [Fourier
(1826)), who determined whether a polyhedron defined by linear inequal-
ities is empty by projecting it to a space of dimension one less; thus he
eliminated one variable at W@ﬁ%@e. This process is now kn”_%vggﬁas Fourier—
Motzkin elimination. See [Dantzig & Eaves| (1973) and [Williams| (1986)
for‘AT%ggounts of this. The next major development was the disc%\{t‘e’gl
of [Farkas, J.| (1902), but this had little impact until much later. |de Ta
Vallée Poussin| (1911) devised an iterative procedure for solving a min-
imax problg%olgut this also seems not to have attracted attention. Retro-
spectively, [Farebrother| (2006]) argues that with a few small adjustments,
de la Vallée Poussin’s procedure could have been converted to provide a
linear programming algorithm. Economists made progress in the 1930’s
and 40’s, and George Dantzig invented the Simplex Method in the sum-
mer of 1947, but it was on October 3, 1947, when Dantzig described
his work to von Neumann at the Institute for Advanced Study, that von
Neumann immediately conjectured the duality principle. von Neumann’s
contention was that Dantzig’s problem was essentially equivalent to A0,
problem in the theory of games that had already been discussed in von|
Neumann & Morgenstern|(1944). Dantzig was assigned the job of writing
up rigorous proofs, a task he completed by January 5, 1948. However,
he did not publish his paper, because he considered it to be the work
of von Neumann. In 1948, Gale, Kuhn and Tucker started their work
on nonlinear programming, and soon discovered duality, independently
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(GKT51

of von Neumann. See [Gale, Kuhn & Tucker| (1951)). Further seminal pa-
pers, from this era are found in the conference proceedings edited by
[Koopmans| (1951). For details as to how and by whom such terms as
“(;1;%}}711317’ ‘Simplex Mg&?od’, ‘Linear Programming’ were invented, see

Dantzig (1982)) and [Dorfmanl (1984]).

In most applications, the Simplex Method seems to run in a little more
than linear time, but some aﬁg%@gial situations have been constructed in
which it runs much slower. Shor| (1970) proposed a different algorithm
for linear programming, of a type called ‘ellipsoidal’, [Khachiyan| (1979)
modified it, and thus was able to prove that the linear programming
problem runs in polynomial time. HO“\{\IeK‘IQeRIA”L’ these algorithms are not so
fast in practice. On the other hand, [Karmarkar| (1984), at Bell Labs,
proposed a method that deals simultaneously with issues of projection
and scaling, and is ;%%% ,)131 practice. For more details, with instructive

code fragments, see [Chakraborty, Chandru & Rao| (2020).

Section H.2. Chebyshev advanced our understanding of the distribu-
tion of prime numbers by employing truncated versions of the Mobius
function. The first person to modify the M&bius function to form a sifting
function as we think of them today was a young French mathematician,
Jean Merlin, who WaﬁMlﬂlled in WWI. Thus we have from him only one
brief announcemen%&?@lin (1911)), communicated by Poincaré, and one
posthumous paper Merlin| (1915)), prepared by Hadamard. Viggo Brun
was stimulated by these items, and developed an effective sieve method.
Buchstab devised a method by which sieve estimates could be improved,
but without any indication that sifting functions had thmegggpability of
delivering optimal results. In his Stony Brook lectures, [Selberg] (1971))
argued that sifting functions can deliver optimal bounds because they
represent the supporting planes of a certain convex body. We have ex-
pressed the situation in terms of linear programming, in order to make
it more amenable to numerical explorations.

The published account of the Olympiad Problem includes three solu-
tions, none of which treat the problem as one of linear programming. The
number 225 was cunningly chosen so that 45 = 225/5 and 9 = 225/52,
but this has no bearing on the solution. If 225 is replaced by any number
N > 165, then card D = 165 and card R = N —165. We understand that
this problem was solved by exactly 2 contestants.
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