
SOME REMARKS ON

SELBERG’S SIEVE

Let
a : Z → R+, (1)

A =
∑

n

a(n) < ∞, (2)

Ad =
∑

n

a(dn), (3)

and suppose that

Ad = f(d)X + Rd, (4)

where
f ∈M, (5,)

the set M of multiplicative functions, i.e f(mn) =
f(m)f(n) when (m,n) = 1 and f(1) = 1. It is also
convenient to assume that 0 ≤ f(p) < 1 for each
prime p.
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Ad = f(d)X + Rd. (4)

In principle we suppose that X is “large” and Rd is
“small” compared with f(d)X when d is relatively
small.

Example 1. Let a(n) = 1 when Y < n ≤ Y + X
and a(n) = 0 otherwise. Then

Ad =
X

d
+ Rd, |Rd| ≤ 1.

There are many occasions when one is interested
in the behaviour of expressions of the kind

S(A,P ) =
∑

n
(n,P )=1

a(n) (7)

where typically P is a product of primes.

Example 2. If P =
∏

p≤
√

X p, and a is as in Ex-
ample 1, then

π(X + Y )− π(Y ) ≤ π(
√

X) + S(A,P ).

This is a formalisation of the sieve of Erathosthenes–
Legendre.

Any method which deduces estimates for (7) from
(4) is called a sieve.
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Other examples.

Example 3 (Twin primes). Let a(n) = 1 when
n = m(m + 2) for some m ≤ X and a(n) = 0 other-
wise and P as before. Then∑

p≤X
p+2 prime

1 ≤ π(
√

X) + S(A,P ).

It is easily verified that (4) holds with f(d) = ρ(d)/d,
ρ ∈M, ρ(2) = 1, ρ(p) = 2 (p > 2), and with |Rd| ≤
ρ(d).

Example 4 (Goldbach binary problem). Let X
be an even positive integer and let a(n) = card{m :
n = m(X −m),m < X} and P as before. Then

card{p < X : X − p prime} ≤ 2π(
√

X) + S(A,P ).

Again it is easily verified that (4) holds with f(d) =
ρ(d)/d, ρ ∈ M, ρ(p) = 1 when p|X, ρ(p) = 2 when
p - X, and with |Rd| ≤ ρ(d) once more.
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Example 5. Let a(n) = 1 when n = m2 + 1 for
some m ≤ X and P as before. Then

card{m ≤ X : m2 + 1 prime} ≤ π(
√

X) + S(A,P ).

Also (4) holds with f(d) = ρ(d)/d with ρ ∈ M and
ρ(2) = 1, ρ(p) = 2 when p ≡ 1 (mod 4) and ρ(p) = 0
otherwise, and |Rd| ≤ ρ(d).

A more sophisticated version of Example 3 is

Example 6 (twin primes revisited). Let a(n) =
1 when n− 2 is a prime p ≤ Y and 0 otherwise and
let P =

∏
p≤
√

Y p. Then∑
p≤Y

p+2 prime

1 ≤ π(
√

Y ) + S(A,P ).

Now Ad = π(Y ; d,−2) and we have

Ad = f(d)X + Rd

where f(d) = 0 when d is even and f(d) = 1
φ(d) when

d is odd, and where now

X = li(Y ) =
∫ Y

2

dt

log t

and where Rd is relatively small (� Y
1
2+ε on GRH).
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One cannot get very far in sieve theory without meet-
ing the Möbius function µ defined by µ(n) = (−1)k

when n is the product of k different primes and to
be 0 when n has a repeated prime factor. The fun-
damental property of µ is

∑
d|n

µ(d) =
{

1 (n = 1),
0 (n > 1).

One way of seeing this is to observe that µ ∈M and
(via the Euler products) that for <s > 1,

ζ(s)
∞∑

d=1

µ(d)
ds

= 1.
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S(A,P ) =
∑

n
(n,P )=1

a(n) (7)

The condition (n, P ) = 1 can be rewritten as∑
d|(n,P )

µ(d)

so that

S(A,P ) =
∑
d|P

µ(d)f(d)X +
∑
d|P

µ(d)Rd.

The basic problem with this is that the “error term”
has far too many terms in it. For example, with
P =

∏
p≤
√

X p there would be 2π(
√

X) terms.
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S(A,P ) =
∑

n
(n,P )=1

a(n) (7)

Modern sieve theory attempts to overcome this prob-
lem by seeking functions λ±d such that∑

d|m

λ−d ≤
∑
d|m

µ(d) ≤
∑
d|m

λ+
d

but the support for the λ±d is restricted. We will
not be concerned with lower bound sieves, where the
theory is more delicate.

Selberg introduced a very simple and elegant up-
per bound sieve which is very effective in many sit-
uations, and also has the merit of great flexibility.
Let

λ1 = 1 (8)

and suppose that the λq ∈ R are otherwise at our
disposal. Then

∑
d|m

µ(d) ≤

∑
d|m

λd

2

.
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In order to retain some structure we suppose that
the support D of the λd is a divisor closed set of
squarefree numbers. Thus for each d ∈ D, µ(d) 6= 0
and if q|d, then q ∈ D.

Example 7. D = {d|P : d ≤ D} where

P =
∏

p≤
√

X

p.

We recall that

S(A,P ) =
∑

n
(n,P )=1

a(n) and λ1 = 1.

Thus

S(A,P ) ≤
∑

n

a(n)

∑
d|n

λd

2

=
∑

d

∑
e

λdλe

∑
m

a(m[d, e])

= X
∑

d

∑
e

λdλef([d, e]) + R

where
R =

∑
d

∑
e

λdλeR[d,e].
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S(A,P ) ≤ X
∑

d

∑
e

λdλef([d, e]) + R

where
R =

∑
d

∑
e

λdλeR[d,e].

Example 8. Consider Example 1, a(n) = 1 iff n ∈
(Y, Y + X] with D as in Example 7. Then

|R| ≤

(∑
d

|λd|

)2

≤ D2‖λ‖2∞.

The interesting part is the main term XM where

M =
∑

d

∑
e

λdλef([d, e]).

We want to minimise this subject to the condition
λ1 = 1. It is helpful to view M as a quadratic form
in the λ. Our first objective is to diagonalise this
form, and this can be done quite easily. It is also
useful to assume that D is such that f(d) 6= 0 when
d ∈ D.
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M =
∑

d

∑
e

λdλef([d, e]).

Write (d, e) = m, d = qm, e = rm, so that (q, r) =
1. Since f ∈ M and qrm is squarefree we have
f([d, e]) = f(qrm) = f(qm)f(rm)/f(m) and

M =
∑
m

f(m)−1
∑

q

∑
r

(q,r)=1

λqmλrmf(qm)f(rm).

Now we use the Möbius function to remove the con-
dition (q, r) = 1. Thus

M =
∑
m

f(m)−1
∑

l

µ(l)

(∑
d

λdlmf(dlm)

)2

.

Now we collect together the terms with lm = n and
observe that by multiplicativity we have∑

l,m
lm=n

f(m)−1µ(l) =
∏
p|n

1− f(p)
f(p)

.

Denoting this expression by g(n)−1 we have

M =
∑

n

g(n)−1

(∑
d

λdnf(dn)

)2

.
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g(n) =
∏
p|n

f(p)
1− f(p)

M =
∑

n

g(n)−1

(∑
d

λdnf(dn)

)2

.

Let
ωn =

∑
d

λdnf(dn) (n ∈ D).

There is a bijection between the λ and the ω. In fact
we could view the transformation from the one to the
other as being by an upper triangular matrix, which
is obviously invertible. However there is a standard
number theoretic way of expressing the inversion.
We have∑

n

ωnmµ(n) =
∑

n

∑
d

λdnmf(dnm)µ(n)

and collecting together the terms with nd = q this
becomes for m ∈ D∑

n

ωnmµ(n) =
∑

q

λqmf(qm)
∑
n|q

µ(n) = λmf(m).
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g(n) =
∏
p|n

f(p)
1− f(p)

(9)

M =
∑

n

g(n)−1

(∑
d

λdnf(dn)

)2

(10)

ωn =
∑

d

λdnf(dn) (n ∈ D) (11)

λmf(m) =
∑

n

ωnmµ(n) (m ∈ D) (12)

Thus we are seeking to minimise

M =
∑

n

g(n)−1ω2
n under

∑
n

ωnµ(n) = λ1 = 1.

Let λ = 1/
∑

n∈D g(n). Then

M =
∑
n∈D

(ωn − λµ(n)g(n))2

g(n)
+ 2λ

∑
n

ωnµ(n)− λ

=
∑
n∈D

(ωn − λµ(n)g(n))2

g(n)
+ λ.
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λmf(m) =
∑

n

ωnmµ(n) (m ∈ D) (12)

λ = 1/
∑
n∈D

g(n)

M =
∑
n∈D

(ωn − λµ(n)g(n))2

g(n)
+ λ

Obviously M ≥ λ. Moreover the choice

ωn = λµ(n)g(n)

gives ∑
n

ωnµ(n) = 1 and M = λ.

Also

λm =
λ

f(m)

∑
n

g(mn)µ(mn)µ(n)

= λµ(m)
g(m)
f(m)

∑
n

nm∈D

g(n).
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λm = λµ(m)
g(m)
f(m)

∑
n

nm∈D

g(n)

Theorem (Selberg). Suppose that a : Z → R+,
Ad =

∑
n a(dn) and that Ad = f(d)X + Rd where

f ∈ M and 0 ≤ f(p) < 1. Let P ∈ N be squarefree
and D be a divisor closed subset of the divisors of P .
Then

S(A,P ) ≤ X∑
n∈D g(n)

+
∑
d∈D

∑
e∈D

λdλeR[d,e]

where g(n) =
∏

p|n
f(p)

1−f(p) . Moreover

|λd| ≤ 1.

To see the last statement, write g(m)
f(m) =

∏
p|m

1
1−f(p)

=
∏

p|m(1 + g(p)) =
∑

d|m g(d). Then |λm| ≤

λ
∑
d|m

g(d)
∑

n
nd∈D

(n,m/d)=1

g(n) = λ
∑
d|m

∑
k

(k,m)=d

g(k) = 1
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Theorem (Selberg). Suppose that a : Z → R+,
Ad =

∑
n a(dn) and that Ad = f(d)X + Rd where

f ∈ M and 0 ≤ f(p) < 1. Let P ∈ N be squarefree
and D be a divisor closed subset of the divisors of P .
Then

S(A,P ) ≤ X∑
n∈D g(n)

+
∑
d∈D

∑
e∈D

λdλeR[d,e]

where g(n) =
∏

p|n
f(p)

1−f(p) . Moreover

|λd| ≤ 1.

Example 9. Following examples 1 and 2,

π(X + Y )− π(Y ) ≤ π(
√

X) + S(A,P )

where a(n) = 1 when Y < n ≤ Y + X and a(n) = 0
otherwise, P =

∏
p≤
√

X p, Ad = X
d + Rd, |Rd| ≤ 1.

Thus f(d) = 1/d. Let D = {d|P : d ≤ D} with
D ≤

√
X. Then∑

n∈D
g(n) =

∑
d≤D

µ(d)2

φ(d)

and |λd| ≤ 1.
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Example 9 continued.

π(X + Y )− π(Y ) ≤ π(
√

X) + S(A,P )

S(A,P ) ≤ X∑
d≤D

µ(d)2

φ(d)

+ D2

Let s(q) denote the squarefree kernel of q, s(q) =∏
p|q p. Then

∑
d≤D

µ(d)2

φ(d)
=
∑
d≤D

µ(d)2

d

∏
p|d

∞∑
k=1

p−k

=
∑
q∈N

s(q)≤D

1
q

≥
∑
q≤D

1
q

≥ log D
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π(X + Y )− π(Y ) ≤ X

log D
+
√

X + D2

The choice D =
√

X
log X gives the Brun–Titchmarsh

theorem

π(X + Y )− π(Y ) ≤ 2X

log X
+ O

(
X log log X

log2 X

)
.

By working harder the error term can be removed
altogether, but this does not concern us here today.
However there are some observations I should make
here. The optimising choice of λm in the proof of
the Brun–Titchmarsh theorem is

λm = µ(m)mφ(m)−1

∑
n≤D/m
(n,m)=1

µ(n)2

φ(n)∑
n≤D

µ(n)2

φ(n)

.

The sum in the denominator is asymptotically log D
and, at least when m is not too close to D, the
sum in the numerator ought to be asymptotically
φ(m)m−1 log(D/m). Thus λm should be close to

λ∗m = µ(m)
log R/m

log R
.
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λm = µ(m)mφ(m)−1

∑
n≤D/m
(n,m)=1

µ(n)2

φ(n)∑
n≤D

µ(n)2

φ(n)

. (13)

λ∗m = µ(m)
log R/m

log R
.

Indeed λ∗m can be used instead of the optimal choice,
although there is more work involved in the analysis
to push things through. We will see later situations
where the optimal choice is not known but a choice
of this kind is still effective.

Returning to (13) we have

|λm| ≤ mφ(m)−1

∑
n≤D/m

µ(n)2

φ(n)∑
n≤D

µ(n)2

φ(n)

.

We have seen that the denominator is ≥ log D. The
numerator is

≤
∏

p≤D/m

p

p− 1
� log(2D/m)

by elementary prime number theory.
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|λm| �
m log(2D/m)
φ(m) log D

,

whence

R �

∑
m≤D

m log(2D/m)
φ(m) log D

2

� D2 log−2 D.

Now one can take D =
√

X in the Brun–Titchmarsh
theorem and obtain

π(X + Y )− π(Y ) ≤ 2X

log X
+ O

(
X

log2 X

)
.
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There is a new example which I need to mention.

Example 10 (prime k–tuples). Let h = h1, h2,
. . . , hk be a k–tuple of distinct positive integers and
we are interested in the number πk(X;h) of m ≤ X
such that the m + hj are simultaneously prime. Let
a(n) = card{m ≤ X : (m + h1) . . . (m + hk) = n}.
Then with P =

∏
p≤
√

X p we have

πk(X;h) ≤ π(
√

X) + S(A,P ).

Now Ad = f(d)X + Rd where f(d) = ρ(d)/d, |Rd| ≤
ρ(d) and ρ(d) is the number of solutions of (x +
h1) . . . (x+hk) ≡ 0 (mod d). Then ρ ∈M, ρ(p) ≤ k
and when p - ∆ =

∏
1≤i<j≤k |hj−hi| we have ρ(p) =

k. This is an example pf a k–dimensional sieving
situation. If the h give a complete set of residues
modulo p for some prime p, then obviously there are
not many k-tuples which are simultaneously prime.
Thus a natural condition for the existence of many
prime k-tuples is that ρ(p) < p for all primes p, i.e
f(p) < 1.
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Because ∑
p≤z

g(p)
p

∼ k log log z as z →∞

we expect that the optimal λm are quite close to

λ∗m = µ(m)
logk D/m

logk D

and it is this which at least in part will motivate some
choices in the work of Goldston, Pintz and Yıldırım.
I should add also, since it will come up later, that
following Hardy & Littlewood we expect that

πk(X,h) ∼ Sk(h)
X

logk X

where

Sk(h) =
∏
p

(
1− ρ(p)/p

)
(1− 1/p)−k.

and the Selberg sieve will give

πk(X,h) � Sk(h)
X

logk X
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Now consider Example 6 once more.

Example 6 (twin primes revisited). We found∑
p≤Y

p+2 prime

1 ≤ π(
√

Y ) + S(A,P )

where Ad = π(Y ; d,−2) = f(d)X +Rd with f(d) = 0
when d is even and f(d) = 1

φ(d) when d is odd, and

where X = li(Y ) =
∫ Y

2
dt

log t .

By the Selberg sieve

S(A,P ) ≤ li(Y )∑
d≤D
2-d

µ(d)2
∏

p|d
1

p−2

+ R

R =
∑
d≤D

∑
e≤D

h(d)h(e)
∣∣∣∣π(Y ; [d, e],−2)− li(Y )

φ([d, e])

∣∣∣∣
and h(d) = 0 (2|D), h(d) = µ(d)2

∏
p|d

p−1
p−2 (2 - d).

The sum in the main term is asymptotically C log D
for large D. How big can we make D and yet control
the error term? The Siegel–Walfisz theorem gives a
rather small choice for D, D ≤ (log Y )A.
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R =
∑
d≤D

∑
e≤D

h(d)h(e)
∣∣∣∣π(Y ; [d, e],−2)− li(Y )

φ([d, e])

∣∣∣∣
As we are averaging over d and e we can make use
of the celebrated Bombieri–A. I. Vinogradov theo-
rem, which in essence says that we have GRH on
average. Thus it is possible to take D close to Y 1/4.
The Bombieri–Vinogradov theorem, and the theory
of the large sieve which underpins it will be the sub-
ject of my next two lectures.
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