Heuristics for convergence part of Khinchin

Suppose that the k-dimensional surface \mathcal{S} in n-dimensional space is parameterised by the

$$
\left(x_{1}, \ldots, x_{k}, f_{k+1}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})\right)
$$

with $\alpha_{j} \leq x_{j} \leq \beta_{j}$. For a given q consider those \mathbf{x} for which there are \mathbf{a} with

$$
\begin{equation*}
\left|x_{j}-a_{j} / q\right| \leq \psi(q) / q \quad(1 \leq j \leq k) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f_{j}(\mathbf{x})-a_{j} / q\right| \leq \psi(q) / q \quad(k<j \leq n) \tag{2}
\end{equation*}
$$

Presuming the f_{j} are sufficiently smooth, the a_{j}, by substituion for the x_{j}, must satisfy

$$
\begin{equation*}
\left\|q f_{j}(\mathbf{a} / q)\right\| \ll \psi(q) \quad(k<j \leq n) \tag{3}
\end{equation*}
$$

Moreover the k-dimensional measure of that part of \mathcal{S} which satisfies the inequalities (1) and (2) is $\ll(\psi(q) / q)^{k}$. Hence the total measure of the subset of \mathcal{S} which has an approximation with denominator q with $Q<q \leq 2 q$ is

$$
\ll \sum_{Q<q \leq 2 Q}(\psi(q) / q)^{k} N(q)
$$

where $N(q)$ is the number of a satisfying (3). Assuming that $\psi(q)$ is decreasing, a bound of the kind

$$
\operatorname{card}\left\{q, \mathbf{a}: Q<q \leq 2 Q, q \ll a_{j} \ll q,\left\|q f_{j}(\mathbf{a} / q)\right\| \ll \Psi \quad(k<j \leq n)\right\} \ll \Psi^{n-k} Q^{k+1}
$$

combined with partial summation should show that the total measure of points having infinitely many approximations is arbitrarily small, provided that

$$
\sum_{q=1}^{\infty} \psi(q)^{n}
$$

converges.

