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Motivation

• The question is, how do we deal with

π(x + h)− π(x),

or equivalently
ψ(x + h)− ψ(x)

when
h = xθ with θ < 1.

• The classical prime number theorem is not good enough,
so try the explicit formula

ψ0(x) = x −
∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log(1− x−2)

• Unfortuantely here there is a form of the Heisenberg
uncertainty principle - to obtain finer detail of a function
we need a wider range of information from the Fourier
transform.
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• More precisely to control this we need to truncate at
height T .

ψ(x) = x −
∑
ρ

|γ|≤T

xρ

ρ
+ O

(
log x + xT−1 log2(xT )

)
.

• If you study the proof of this in Chapter 12 you will see
that this is about the best that one can hope to do in the
current state of knowledge about how some things might
be cancelling.

• and so when h ≪ x we have

ψ(x + h)− ψ(x) = h −
∑
ρ

|γ|≤T

(x + h)ρ − xρ

ρ

+ O
(
log x + xT−1 log2(xT )

)
• Clearly we will need to take T just a bit larger than
x(log x)2/h. This emphasizes that the shorter h is longer
T has to be.
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• The crucial part is

∑
ρ

|γ|≤T

(x + h)ρ − xρ

ρ
=
∑
ρ

|γ|≤T

∫ x+h

x
uρ−1du.

• On RH the integral is ≪ hx−1/2, so we certainly need to
understand N(T ), the number of zeros ρ with 0 < γ ≤ T .
Note that by symmetry and the functional equation ρ is a
zero of ζ iff any one of 1− ρ, ρ and 1− ρ is.

• Thus on RH the total contribution from the zeros is

≪ hx−1/2N(T ) ≪ hx−1/2T logT

• and we get
ψ(x + h)− ψ(x) ∼ h

for h a bit larger than x1/2(log x)3.
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• So, what if we do not assume RH?

• In
∑
ρ

|γ|≤T

∫ x+h

x
uρ−1du we have

∫ x+h

x
uβ+iγ−1du = xβ+iγ−1

∫ h

0
(1 + v/x)β+iγ−1dv .

As v/x is small, the integrand does not vary much, and we
don’t know enough about the γ to get cancellation from
x iγ .

• Thus in practice we have to deal with
∑

0<γ≤T

hxβ−1.

• We can write this as hx−1
∑

0<γ≤T

(
x1/2 +

∫ β

1/2
xu log xdu

)
.

• The x1/2 we can treat as on RH. That leaves

hx−1
∑

0<γ≤T

∫ β

1/2
xu log xdu = hx−1

∫ 1

1/2
N(u,T )xu log xdu

where N(u,T ) = card{ρ : β ≥ u, 0 < γ ≤ T}.
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• A bound for N(u,T ) = card{ρ : β ≥ u, 0 < γT} is known
as a zero-density estimate.

• Well N(1,T ) we know to be 0 and N(1/2,T ) is about
T logT , so the simple hypothesis is that

N(u,T ) ≪ T 2(1−u)(logT )B

for some constant B. This is known as the density
hypothesis.

• If we just plug this in we run in to a problem. Actually let
me assume only something a bit more general,

N(u,T ) ≪ TA(1−u)(logT )B ,

since we know this for some choices of A ≥ 2 and B.
• We have reduced the sum over zeros to

hx−1

∫ 1

1/2
N(u,T )xu log xdu

≪ hx−1

∫ 1

1/2
TA(1−u)(logT )Bxu log xdu.

•



Background
to

Guth-Maynard

Robert C.
Vaughan

Motivation

Zero Density
Estimates

Counting
Zeros

• A bound for N(u,T ) = card{ρ : β ≥ u, 0 < γT} is known
as a zero-density estimate.

• Well N(1,T ) we know to be 0 and N(1/2,T ) is about
T logT , so the simple hypothesis is that

N(u,T ) ≪ T 2(1−u)(logT )B

for some constant B. This is known as the density
hypothesis.

• If we just plug this in we run in to a problem. Actually let
me assume only something a bit more general,

N(u,T ) ≪ TA(1−u)(logT )B ,

since we know this for some choices of A ≥ 2 and B.
• We have reduced the sum over zeros to

hx−1

∫ 1

1/2
N(u,T )xu log xdu

≪ hx−1

∫ 1

1/2
TA(1−u)(logT )Bxu log xdu.

•



Background
to

Guth-Maynard

Robert C.
Vaughan

Motivation

Zero Density
Estimates

Counting
Zeros

• A bound for N(u,T ) = card{ρ : β ≥ u, 0 < γT} is known
as a zero-density estimate.

• Well N(1,T ) we know to be 0 and N(1/2,T ) is about
T logT , so the simple hypothesis is that

N(u,T ) ≪ T 2(1−u)(logT )B

for some constant B. This is known as the density
hypothesis.

• If we just plug this in we run in to a problem. Actually let
me assume only something a bit more general,

N(u,T ) ≪ TA(1−u)(logT )B ,

since we know this for some choices of A ≥ 2 and B.

• We have reduced the sum over zeros to

hx−1

∫ 1

1/2
N(u,T )xu log xdu

≪ hx−1

∫ 1

1/2
TA(1−u)(logT )Bxu log xdu.

•



Background
to

Guth-Maynard

Robert C.
Vaughan

Motivation

Zero Density
Estimates

Counting
Zeros

• A bound for N(u,T ) = card{ρ : β ≥ u, 0 < γT} is known
as a zero-density estimate.

• Well N(1,T ) we know to be 0 and N(1/2,T ) is about
T logT , so the simple hypothesis is that

N(u,T ) ≪ T 2(1−u)(logT )B

for some constant B. This is known as the density
hypothesis.

• If we just plug this in we run in to a problem. Actually let
me assume only something a bit more general,

N(u,T ) ≪ TA(1−u)(logT )B ,

since we know this for some choices of A ≥ 2 and B.
• We have reduced the sum over zeros to

hx−1

∫ 1

1/2
N(u,T )xu log xdu

≪ hx−1

∫ 1

1/2
TA(1−u)(logT )Bxu log xdu.

•



Background
to

Guth-Maynard

Robert C.
Vaughan

Motivation

Zero Density
Estimates

Counting
Zeros

• A bound for N(u,T ) = card{ρ : β ≥ u, 0 < γT} is known
as a zero-density estimate.

• Well N(1,T ) we know to be 0 and N(1/2,T ) is about
T logT , so the simple hypothesis is that

N(u,T ) ≪ T 2(1−u)(logT )B

for some constant B. This is known as the density
hypothesis.

• If we just plug this in we run in to a problem. Actually let
me assume only something a bit more general,

N(u,T ) ≪ TA(1−u)(logT )B ,

since we know this for some choices of A ≥ 2 and B.
• We have reduced the sum over zeros to

hx−1

∫ 1

1/2
N(u,T )xu log xdu

≪ hx−1

∫ 1

1/2
TA(1−u)(logT )Bxu log xdu.

•



Background
to

Guth-Maynard

Robert C.
Vaughan

Motivation

Zero Density
Estimates

Counting
Zeros

• ≪ hx−1

∫ 1

1/2
TA(1−u)(logT )Bxu log xdu and we suppose

T = x(log x)2h−1.

• Then this is

≪ (x/h)A−1(log x)B
′
∫ 1

1/2
(hAx1−A)udu

and for h a bigger than x1−1/A the integral will be
dominated by its value at 1.

• But this only gives

≪ h(log x)B
′′

for some positive B ′′. Worse than trivial!

• If h is smaller than x1−1/A the integral is dominated by its
value at 1/2 but we only get the same sort of bound.

• Obviously we have to put in information about zeros near
the 1-line.
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• If we insert the classical zero free region we obtain

hx−1

∫ 1−C/ logT

1/2
TA(1−u)(logT )Bxu log xdu

• which integrates to

(x/h)A−1(hAx1−A)1−C/ logT (log x)B
′′

• which is still not good enough since hAx1−A and T are
both some positive power of x .

• Until about 1938 the best zero-free region that was known
was due to Littlewood, namely that all zeros of zeta satisfy

β ≤ 1− C log log(3 + |γ|)/ log(3 + |γ|).
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• The extra loglog gives a bound

(x/h)A−1(hAx1−A)1−C(log logT )/ logT (log x)B
′′

= h(log x)B
′′
(logT )−

C log(hAx1−A)
log T

• logT should be of order log x . Since B ′′ is rather large
and C is rather small, in order to get a result

log(hAx1−A)

logT

will have to be largish. Substituting h = x1−δ and
T = x/h gives (1− δA)/δ so δ has to be small.

• Thus Hoheisel needed to take h = xθ with

θ > 1− 1

33000
.

[The other constraint θ > 1− 1/A is far less demanding.]
• By working very hard Heilbronn reduced this to

θ > 1− 1

250
.
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• The big breakthrough here was in 1938 or so when
Chudakov improved the zero free region to

β ≤ 1− C logϕ(3 + |γ|).

for any ϕ > 3/4.

• If you plug this in you see that (hAx1−A)−C(logT )−ϕ
will

always kill any log power provided that h > xθ where
θ > 1− 1/A.

• This leads to

ψ(x + h)− ψ(x) = h + O
(
h exp(−c2(log x)

δ)
)

for some positive constants c2 and δ, provided that h > xθ

where θ > 1− 1/A.
• To summarise. The fundamental ingredients are the
explicit formula, an improved zero-free region and a zero
density estimate of the form (where A ≥ 2)

N(u,T ) ≪ TA(1−u)(logT )B

• Note that we could replace this by T logT when
u ≤ 1− 1/A.
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• Let me defer saying anything about N(u,T ) and advert to
some things connected with the explicit formula and the
improved zero-free region.

• There is a general principle that the density of zeros of an
entire function is related to the growth of the function.

• Thus the breakthrough in the proof of the explicit formula
and the prime number theorem was Hadamard’s beautiful
theory of entire functions of bounded order.

• In particular the ξ function is an entire function of order 1
and so

ζ(s)(s − 1) = eA+Bs
∏
ρ

(1− s/ρ)es/ρ

where here, and only here, the product is over all the zeros
of ζ.

• There is a local form of this due to Landau which is
commonly used and is recounted in Chapter 6 of MNT.

• It is also fundamental to the zero-free region.
• Thus it is important to have an estimate for the size of
ζ(σ + it) when σ is close to 1 and t is large.
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• To get the Chudakove style zero free region we need a
bound of the kind

ζ(σ + it) ≪
(
log(2 + |t|)

)θ
(2 + |t|)(1−σ)1/θ

for some θ < 1, at least when 1− σ ≪
(
log(2 + |t|)

)−θ

• In Chapter 24 we actually follow a later argument of
Korobov and Vinogradov from about 1959.

• All of these improved zero free regions saving a power of
log depend on the Vinogradov Mean Value Theorem.

• The general idea is as follows. Just inside the critical strip
we can still approximate ζ(s) by sums of the kind

N∑
n=1

n−σ−it

• and by partial summation it suffices to treat sums

N+M∑
n=N+1

nit =
M∑
n=1

e it log(N+n) = N it
M∑
n=1

exp
(
it log(1 + n/N)

)
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• Now one can approximate log(1 + n/N) by a polynomial

K∑
k=1

(−1)k−1nkN−k .

• Thus our sum becomes an exponential sum of the form

M∑
n=1

e

(
K∑

k=1

αkn
k

)
.

Note that for reasons that only become apparent later we
use e(z) = e2πiz .

• A standard way of dealing with such is to perturb it

M∑
n=1

e

(
K∑

k=1

αkn
k

)
=

M+r∑
n=r+1

e

(
K∑

k=1

αkn
k

)
+ O(r)

=
M∑
n=1

e

(
K∑

k=1

αk(n + r)k

)
+ O(r)
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αk(n + r)k
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• Now
K∑

k=1

αk(n + r)k

is a polynomial
K∑

k=0

α∗
k(r)n

k

in n and the coefficients α∗
k vary as r varies.

• Then one can average over the r and look at

1

R

R∑
r=1

∣∣∣∣∣
M∑
n=1

e

(
K∑

k=1

α∗
k(r)n

k

)∣∣∣∣∣
2b

.

• Now we can hope to relate this to∫
[0,1]k

∣∣∣∣∣
M∑
n=1

e

(
K∑

k=1

xkn
k

)∣∣∣∣∣
2b

dx1 . . . dxK .
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• By the orthogonality relationship∫ 1

0
e(xh)dx =

{
1 h = 0,

0 h ∈ Z \ {0},

this is the number of solutions of

m1 + · · ·+mb = n1 + · · ·+ nb
...

mk
1 + · · ·+mk

b = nk1 + · · ·+ nkb
...

mK
1 + · · ·+mK

b = nK1 + · · ·+ nKb .

• Any non-trivial estimate for this is known as the
”Vinogradov Mean Value Theorem” and this is the core
part of Chapter 24.
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• Now let me return bounds for N(u,T ).

• Ingham in 1937 had obtained the bound

N(u,T ) ≪ T
3(1−u)
2−u (logT )5

improving on Carlson, Landau, Titchmarsh and Hoheisel.
• Since for 1

2 ≤ u < 1 we have

3

2− u
≤ 3

it follows that when x = hθ, θ > 2
3 ,

ψ(x + h)− ψ(x) ∼ h

• Montgomery in 1969 obtained

N(u,T ) ≪ T
2(1−u)

u (logT )14

which improves on Ingham when u > 4
5 .

• Moreover they collectively give

N(u,T ) ≪ T
8(1−u)

5 (logT )14

and so we get the desired estimate when θ > 5
8 .
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• In 1972 Huxley refined Montgomery’s method to give

N(u,T ) ≪ T
(5u−3)(1−u)

u2+u−1 (logT )9

and this is better than Ingham when u > 3/4

• In particular for all u ∈ [1/2, 0)

N(u,T ) ≪ T
12(1−u)

5 (logT )9

and so enables θ > 7
12 .

• Later refinements by multiple authors including Jutila gave

N(u,T ) ≪ T
3(1−u)
3u−1 (logT )C

which, however, does not improve the exponent at u = 3
4 .

• Important Remark. These exponents all give an A < 12
5

when u is not close to 3
4 . So you only have to improve the

zero density estimates in the neighbourhood of u = 3
4 .

This is what Guth and Maynard do. Thus to get the final
result you also need to know the earlier work!
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• So how does one prove a zero-density estimate?

• Let me outline Montgomery’s proof of Ingham’s bound.
The details are in Chapter 28.

• An idea which has numerous important applications in
analytic number theory is the observation that

a(n) =
∑
k|n
k≤K

µ(k) = 0 when 1 < n ≤ K .

• Then for σ > 1

1 +
∑
n>K

a(n)n−s = M(s)ζ(s)

where M(s) =
K∑

k=1

µ(k)k−s .

• In that half-plane M(s)ζ(s) is close to 1 if K is quite large
and we might hope that persists when
1/2 < Re s = σ < 1. Indeed this can be shown to be true
on RH.

• On the other hand M(s)ζ(s) will be 0 when ζ(s) = 0.
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• One way this can be realised is through the transformation

∞∑
n=1

a(n)n−se−n/Y

=
1

2πi

∫ 2+i∞

2−i∞
M(s + w)ζ(s + w)Y wΓ(w)dw .

• The integrand has singularities at 0, and w = 1− s.
• In view of the bounds given by Corollaries 10.5 and 10.10,
Lemma 10.15 and (C.19) of Theorem C.1 we are able to
move the path of integration to the line Rew = 1

2 − σ and
pick up the residues at 0 and w = 1− s.

• Thus
∞∑
n=1

a(n)n−se−n/Y =

M(1)Y 1−sΓ(1− s) +M(s)ζ(s)+∫ ∞

−∞
M(12+ it+ iv)ζ(12+ it+ iv)Y

1
2
−σ+ivΓ(12−σ+ iv) dv2π .
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• We already saw in the outline of the
Chudakov-Korobov-Vinogradov zero free region that one
needs to relate discrete mean values to continuous mean
values and we will see more of this here.

• Those who have seen the large sieve, say in Math 571 or
Math 572 will be aware of the inequality

R∑
r=1

|S(xr )|2 ≪ (N + δ−1)

∫ 1

0
|S(x)|2dx

where

S(x) =
M+N∑

m=1M+1

cne(nx)

and
∥xq − xr∥ := min

n∈Z
|xq − xr − n| ≥ δ.

• A method of Gallagher which will give this can be adapted
to many situations, such as sums over zeros ρ.
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• f (x)− f (y) =

∫ x

y
f ′(v)dv

•
∫ x+δ

x−δ

(
f (x)− f (y)

)
dy =

∫ x+δ

x−δ

∫
Y x f ′(v)dvdy

• This can be rearranged to give

2δf (x) =∫ x+δ

x−δ
f (y)dy +

∫ x+δ

x−δ
f ′(v)sgn(x − v)(δ − |x − v |)dv

• |f (x)| ≤ 1

2δ

∫ x+δ

x−δ
|f (y)|dy +

1

2

∫ x+δ

x−δ
|f ′(v)|dv

• Say something about spacing and two dimensions.
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• To return to Ingham.

N1(u,T ) ≪
∑
ρ∈R

∣∣∣ ∑
K<n≤Z

a(n)n−ρe−n/Y
∣∣∣2

and N2(u,T ) ≪

Y
2
3
− 4u

3

∫ ∞

−∞

∑
ρ∈R

∣∣M(12 + iγ + iv
)
ζ
(
1
2 + iγ + iv

)∣∣ 43 e−|v |dv .

• The first inequality will give N1(u,T ) ≪ Y 2(1−u)(logT )C ,
which looks promising, especially if we could take Y ≈ T .

• The second inequality is trickier. If we knew the
mean-value version of the Lindelöf hypothesis
ζ(1/2 + it) ≪ε (2 + |t|)ε, namely∫ T

0
|ζ(1/2 + it)|kdt ≪ε,k T 1+ε,

then we could also deduce N2(u,T ) ≪ T 2(1−u)+ε. Thus
Lindelöf ⇒ MVLindelöf ⇒ Density Hypothesis ⇒ θ > 1/2.
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Lindelöf ⇒ MVLindelöf ⇒ Density Hypothesis ⇒ θ > 1/2.



Background
to

Guth-Maynard

Robert C.
Vaughan

Motivation

Zero Density
Estimates

Counting
Zeros

• Unfortunately the best mean value theorem we have for ζ
on the 1

2 -line is∫ T

0
|ζ(1/2 + it)|4dt ≪ T (logT )4.

• This motivates the 4
3 in N2(u,T ) ≪

Y
2
3
− 4u

3

∫ ∞

−∞

∑
ρ∈R

∣∣M(12 + iγ + iv
)
ζ
(
1
2 + iγ + iv

)∣∣ 43 e−|v |dv .

since we can use Hölder’s inequality to give∫ T

0

∣∣M(12 + it
)
ζ
(
1
2 + it

)∣∣ 43 dt ≤(∫ T

0

∣∣M(12 + it
)∣∣2dt) 2

3
(∫ T

0

∣∣ζ(12 + it
)∣∣4dt) 1

3

.
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• The Huxley proof is somewhat more sophisticated and
involves in addition a version of mean value theorems
called a large values theorem. This is where the
breakthrough occurs in the Guth-Maynard paper.
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