
HEATH-BROWN JLMS1979

1. Introduction and Notation

This is a write-up of my notes on Heath-Brown’s paper in the special
case of the Riemann zeta function. Let G be a set of real numbers
g ∈ [−T, T ]. When G has the property that for each pair g, g′ ∈ G
with g ̸= g′ we have |g − g′| ≥ 1 we call G “1-separated”. Also let
R = card(G). Clearly if G is 1-separated, then R ≤ 2T + 1. The main
theorems or consequences of the paper are essentially as follows.

Theorem 1.1. There is a positive constant C such that when G ⊂
[−T, T ] is 1-separated we have

∑
g∈G2

∣∣∣∣∣
N∑

n=1

ni(g1−g2)

∣∣∣∣∣
2

≪ RN2 + (R5/4NT 1/2 +NR2) exp(C log T/ log log T )

This is clearly best possible when R = 1. I expect that in many
applications we have

N ≫
(
R1/4T 1/2 +R) exp(C log T/ log log T )

so that the first term dominates. For large R I do wonder if the term
RN2 ought to be replaced with something smaller. It leads to the term
R1/2N in the theorem below, and I suspect that there the R1/2N ought
to be N . The factor exp(C log T/ log log T ) occurs solely because of
the D(P )2 in Lemma 2.4 and maybe there is a way of replacing it with
a power of log T . Note that it has nothing to do with the spacing of
the elements of G.

The superficially more general bound

∑
g∈G2

∣∣∣∣∣
N∑

n=1

ann
i(g1−g2)

∣∣∣∣∣
2

≪
(
RN2 +

(
(R5/4NT 1/2 +NR2) exp(C log T/ log log T )

))
max

n
|an|2

which holds when the an are arbitrary complex numbers is a trivial
consequence of Theorem 1.1 and Lemma 2.2.
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Theorem 1.2. There is a positive constant C such that when G ⊂
[−T, T ] is 1-separated and the an are arbitrary complex numbers we
have∑

g∈G

∣∣∣∣∣
N∑

n=1

ann
ig

∣∣∣∣∣
2

≪

(
R1/2N +

(
R5/8N1/2T 1/4 +RN1/2

)
exp

(
C log T

log log T

)) N∑
n=1

|an|2.

2. Lemmas

The following lemma is central in that the trace of a matrix is both the
sum of the diagonal terms of a square matrix and the sum of its eigen-
values. Also the eigenvalues of a Hermitian matrix are non-negative
and the eigenvalues of Hk are the k-the powers of the eigenvalues of H.

Lemma 2.1. Suppose that H is a K ×K Hermitian matrix, τk is the
trace of Hk and λ is an eigenvalue of H. Then, for k ∈ N,

λ ≪ τ1
K

+

(
τk −

τ k1
Kk−1

)1/k

.

This is just Hölder’s inequality in disguise and really does not have
anything to do with eigenvalues. Note that it is best possible when
the eigenvalues are the same, or when there is one dominant eigenvalue
and K is large.

Proof. Let λ1, . . . , λK be K non-negative real numbers. Then

(λ2 + · · ·λK)
k ≤ (K − 1)k−1(λk

2 + · · ·+ λk
K).

If we suppose that τk = λk
1 + · · ·+ λk

K , then

(τ1 − λ1)
k ≤ (K − 1)k−1(τk − λk

1),

and we also have
τ k1 ≤ Kk−1τk.

Thus if λ = λ1 and λ1 ≪ τ1
K
, then we are done. Thus we may suppose

that
τ1 ≤ δKλ1

where δ is chosen so that

1− (1− 1/K)1−1/k <
1

δK
< 1.

From above we have

(K − 1)1−k(τ1 − λ1)
k + λk

1 −K1−kτ k1 ≤ τk − τ k1K
1−k.
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Viewing the left hand side as a function of τ1 but keeping λ1 fixed we
see that it is decreasing for τ1 ≤ Kλ1. Hence

(K − 1)1−k(τ1 − λ1)
k + λk

1 −K1−kτ k1 < 0

□

The following lemma is Lemma 2 of Jutila [1977].

Lemma 2.2. Suppose that |an| ≤ Bbn (1 ≤ n ≤ N) and G is a finite
subset of R. Then∑

g∈G2

∣∣∣∣∣
N∑

n=1

ann
ig1−ig2

∣∣∣∣∣
2

≤ B2
∑
g∈G2

∣∣∣∣∣
N∑

n=1

bnn
ig1−ig2

∣∣∣∣∣
2

.

Proof. The left hand side is∑
g∈G2

N∑
m=1

N∑
n=1

aman(n/m)ig1−ig2 =
N∑

m=1

N∑
n=1

aman

∣∣∣∣∣∑
g∈G

(n/m)ig

∣∣∣∣∣
2

.

We then apply the stated inequality for an and reverse the process. □

The following lemma is essentially Lemma 3 of Heath-Brown [1979].
The proof is simpler, and also we avoid some of the complications
arising when characters are included.

Lemma 2.3. Suppose that J,K,M,N, σ ∈ R with K ≥ J ≥ 0, N >
M ≥ 0, and suppose further that G is a finite subset of R. Then

∑
g∈G2

∣∣∣∣∣ ∑
M<n≤N

ann
−σ−i(g1−g2)

∣∣∣∣∣
2

≤ 1∑
J≤p≤K

p−2σ

∑
g∈G2

∣∣∣∣∣ ∑
JM<l≤KN

A(l)l−σ−i(g1−g2)

∣∣∣∣∣
2

where

A(l) =
∑
pn=l

J<p≤K
M<n≤N

|an|.

Note for future reference that∑
J≤p≤K

p−1 = log
logK

log J
+O

(
(log J)−2

)
≫ log(K/J)

log J
(2.1)
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when K ≥ 2J and J is sufficiently large, and

A(l) ≤ logKN

logK
(2.2)

when |an| ≤ 1 (M < n ≤ N).

Proof. We evaluate∫ 1

0

∑
g∈G2

∣∣∣∣∣ ∑
M<n≤N

ann
−σ−i(g1−g2)

∣∣∣∣∣
2∣∣∣∣∣ ∑

J≤p≤K

e(αp)p−σ−i(g1−g2)

∣∣∣∣∣
2

dα

in two different ways.
First of all by Parseval’s identity it is∑

g∈G2

∣∣∣∣∣ ∑
M<n≤N

ann
−σ−i(g1−g2)

∣∣∣∣∣
2 ∑
J≤p≤K

p−2σ.

On the other hand the integrand is∑
g∈G2

∣∣∣∣∣ ∑
JM<l≤KN

( ∑
pn=l

J<p≤K
M<n≤N

ane(αp)

)
l−σ−i(g1−g2)

∣∣∣∣∣
2

.

The coefficient of l−σ−i(g1−g2) here is bounded by A(l). Hence By
Lemma 2.2 the above is at most∑

g∈G2

∣∣∣∣∣ ∑
JM<l≤KN

A(l)l−σ−i(g1−g2)

∣∣∣∣∣
2

□

We now have a version of Lemma 4 of Heath-Brown [1979]. Let

Sσ(N) =
∑
g∈G2

∣∣∣∣∣ ∑
N<n≤2N

n−σ−i(g1−g2)

∣∣∣∣∣
2

(2.3)

and in particular
S(N) = S 1

2
(N) (2.4)

Lemma 2.4. Suppose that N,P, σ ∈ R, N ≥ 0, P ≥ 4N2 and G is a
finite subset of R with card(G) = R. Then

Sσ(N)2 ≪ R2D(P )2(P/N2)2σ−1Sσ(P )

where
D(P ) = max

n≤P
d(n).
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Proof. By Cauchy’s inequality

Sσ(N)2 ≤ R2
∑
g∈G2

∣∣∣∣∣ ∑
N<n≤2N

n−σ−i(g1−g2)

∣∣∣∣∣
4

= R2
∑
g∈G2

∣∣∣∣∣ ∑
N2<n≤4N2

ann
−σ−i(g1−g2)

∣∣∣∣∣
2

where

an =
∑
lm=n

N<l≤2N
N<m≤2N

1.

By Lemma 2.2 this is

≪ R2D(4N2)
∑
g∈G2

∣∣∣∣∣ ∑
N2<n≤4N2

n−σ−i(g1−g2)

∣∣∣∣∣
2

.

Let

θ = 22/3.

Then we split the sum over n into three intervals

(N2, θN2], (θN2, θ2N2], [θ2N2, 4N2]

By Cauchy’s inequality once more∣∣∣∣∣ ∑
N2<n≤4N2

n−σ−i(g1−g2)

∣∣∣∣∣
2

≤ 3
3∑

j=1

∣∣∣∣∣ ∑
θj−1N2<n≤θjN2

n−σ−i(g1−g2)

∣∣∣∣∣
2

.

We now apply Lemma 2.3 to each of these sums, with M,N replaced
by θj−1N2, θjN2 and J = θ1−jPN−2, K = 2θ−jPN−2. Note that in
each case ∑

J<n≤K

n−2σ ≫ (2− θ)θ−j(P/N2)1−2σ.

□

Our next Lemma is a refinement of an argument of Jutila [1977].
The reason for taking σ = 1

2
here and subsequently is because then the

“critical line” for ζ(1
2
+ i(g1 − g2) + s) below is the 0-line.

Lemma 2.5. Suppose that G is a 1-separated subset of [0, T ], H ∈ N,
H ≥ C log T for a suitable positive constant C, and (MN)1−

1
H ≫

H(H + T )T
2
H . Then

S(N) ≪ RN + (logH)2(log(2M))4S(M)



6 HEATH-BROWN JLMS1979

and in the special case N1− 1
H ≫ H(H + T )T

2
H we have

S(N) ≪ RN.

We remark that the condition H ≥ C log T and the observation that
in practice we may assume that N ≤ TC1 for ssome positive constnat
C1 means that we really only need MN ≫ T log T .

Proof. Let

f : [0,∞) → [0,∞) : f(x) = exp

(
−
( x

2N

)H)
− exp

(
−
( x

N

)H)
.

Then f has single maximum, f(0) = 0, limx→∞ f(x) = 0,

f(N) = exp(−2−H)− e−1 ≥ e−1/2 − e−1 ≫ 1

and

f(2N) = e−1 − exp(−2H) ≥ e−1 − e−2 ≫ 1

so that f(x) ≫ 1 (N ≤ x ≤ 2N). Moreover

f(x) =
1

2πi

∫ 1+i∞

1−i∞

(
(2N/x)s − (N/x)s

)
H−1Γ(s/H)ds.

Thus, by Lemma 2.2

S(N) ≪∑
g∈G2

∣∣∣∣ 1

2πi

∫ 1+i∞

1−i∞
ζ
(
1
2
+ i(g1 − g2) + s

)(
(2N)s −N s

)
Γ( s

H
)ds
H

∣∣∣∣2 .
We now move the line of integration to Re s = −H/2, picking up a
contribution from the reside at the simple pole of the integrand at
s = 1

2
− i(g1− g2). Note that the integrand has a removable singularity

at s = 0. We then apply the functional equation for the zeta function.
Thus the integral above becomes

R+ I1

where

R =
(
(2N)

1
2
−i(g1−g2) −N

1
2
−i(g1−g2)

)
H−1Γ

( 1
2
− i(g1 − g2)

H

)
≪ N

1
2H−1 exp

(
−π|g1 − g2|

2H

)
,
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I1 =

1

2πi

∫ −H
2
+i∞

−H
2
−i∞

G
(
1
2
+i(g1−g2)+s

)
ζ
(
1
2
−i(g1−g2)−s

)
(2s−1)N sΓ( s

H
)ds
H

and

G(z) = πz− 1
2
Γ
(
(1− z)/2

)
Γ(z/2)

= π− 1
22zΓ(1− z) sin

πz

2
.

Unless N1− 1
H ≫ H(H + T )T

2
H we split the series

ζ
(
1
2
− i(g1 − g2)− s

)
=

∞∑
n=1

n−H+1
2

+i(g1−g2−t)

at M and move the portion n ≤ M to the 0-line. In the case N1− 1
H ≫

H(H + T )T
2
H we simply take M = 1 in the following argument. A

careful analysis of the gamma factors shows that the portion on the
−H

2
-line contributes

≪
∫ ∞

−∞
(H + |g1 − g2 + t|)

H
2 e−

H
2 M

1−H
2 N−H

2 exp

(
−π|t|
2H

)
dt

H

=

∫ ∞

−∞
(H + |g1 − g2 +Hu|)

H
2 e−

H
2 M

1
2 (MN)−

H
2 exp

(
−π|u|

2

)
du

≪ N− 1
2T−1.

The portion now on the 0-line contributes

≪
∫ ∞

−∞

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + it

∣∣∣∣∣ |(2it − 1)Γ( it
H
)|dt

H
.

The parts of this with |t| ≥ H2 contribute (for the bound for the
Gamma function see (C.19) on page 523 of [2006]

≪ M
1
2

∫ ∞

H

u− 1
2 e−πu/2du ≪ M1/2H− 1

2 e−πH/2 ≪ T−2.

The remaining part is

≪
∫ H2

−H2

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + it

∣∣∣∣∣ |(2it − 1)Γ( it
H
)|dt

H

=

∫ H

−H

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + iHu

∣∣∣∣∣ |(2iHu − 1)Γ(iu)|du

≪
∫ H

−H

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + iHu

∣∣∣∣∣φ(u)du
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where

φ(u) =


H 0 ≤ |u| ≤ 1/H,
1
|u| 1/H ≤ |u| ≤ 1,

e−π|u|/2 1 < |u|.
Collecting estimates together we have

S(N) ≪
∑
g∈G2

NH−2 exp

(
−π|g1 − g2|

H

)
+N−1T−2 + T−4

+
∑
g∈G2

(∫ H

−H

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + iHu

∣∣∣∣∣φ(u)du
)2

Hence, by Schwarz’ inequality,

S(N)

≪ NR +
∑
g∈G2

∫ H

−H

φ(u)

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + iHu

∣∣∣∣∣
2

du

∫ H

−H

φ(v)dv

≪ NR + (logH)

∫ H

−H

φ(u)
∑
g∈G2

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2) + iHu

∣∣∣∣∣
2

du

Let λ =
√
2. Then by Lemma 2.2 this is

≪ NR + (logH)2
∑
g∈G2

∣∣∣∣∣∑
n≤M

n−
1
2
+ i(g1 − g2)

∣∣∣∣∣
2

du

and the multiple sum here is

≪ (logM)
∑
j≥1

λj≤M

∑
g∈G2

∣∣∣∣∣∣
∑

Mλ−j<n≤Mλ1−j

n−
1
2
+ i(g1 − g2)

∣∣∣∣∣∣
2

.

By Lemma 2.3 with J = λj and K = 2λj−1, (2.1) and (2.2), and
Lemma 2.2 we have

∑
g∈G2

∣∣∣∣∣∣
∑

Mλ−j<n≤Mλ1−j

n−
1
2
+ i(g1 − g2)

∣∣∣∣∣∣
2

≪ (logM)3S(M).

Hence

S(N) ≪ NR + (logH)2(logM)4S(M)

as required. □
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We now consolidate the above results as follows. We define

D(T ) = max
N≤T 3

max
n

card{l,m : lm = n,N < l,m ≤ 2N}. (2.5)

Lemma 2.6. Suppose T ≥ 1 and that G is a 1-separated subset of
[0, T ]. Then there are positive constants C1 and C2 such that
(i) if C1T log T ≤ N ≤ TC2, then

S(N) ≪ RN, (2.6)

(ii) if C2(T log T )2/3 ≤ N ≤ C1T log T , then

S(N) ≪ RN + (log log T )4(log T )14R2D(T )2, (2.7)

(iii) if (log log T )(log T )5/2R1/4T 1/2D(T )1/2 ≤ N ≤ C2(T log T )2/3,
then

S(N) ≪ RN + (log log T )4(log T )11R2D(T )2, (2.8)

and
(iv) if 1 ≤ N ≤ (log log T )(log T )5/2R1/4T 1/2D(T )1/2, then

S(N) ≪ (log log T )(log T )11/2R5/4T 1/2D(T )1/2

+ (log log T )4(log T )14R2D(T )2. (2.9)

Proof. The bound (2.6) is immediate by the second part of Lemma 2.5.
Now suppose that C2(T log T )2/3 ≤ N ≤ C1T log T . Then by the first
part of Lemma 2.5 with M = C1(log T )TN

−1 we have

S(N) ≪ RN + (log log T )2(log T )4S
(
C1(log T )TN

−1
)
, (2.10)

and for future reference we observe by Lemma 2.5 this holds generally
even when N > C1T log T .

The condition C2(T log T )2/3 ≤ N ensures that

4
(
C1(log T )TN

−1
)2 ≤ N.

Hence, by Lemma 2.4,

S(M)2 ≪ R2D(T )2S(4M2).

We split the sum over (4M2, 8M2] into two sums over (4M2, 4
√
2M2]

and (4
√
2M2, 8M2], and then apply Lemma 2.3 with JN/(4M2) or

N/(4
√
2)M2 and K = j

√
2 and obtain, via and (2.1) and (2.2),

S(M)2 ≪ (log T )3R2D(T )2S(N).

Hence

S(N) ≪ RN + (log log T )2(log T )7RD(T )S(N)1/2

and so
S(N) ≪ RN + (log log T )4(log T )14R2D(T )2
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as required.
Now suppose that N ≤ C2(T log T )2/3 and choose

Q = C1TN
−1 log T.

Then for C2 suitably chosen we have 4Q2 ≥ C2(T log T )2/3 and so by
parts (i) and (ii)

S(4Q2) ≪ RQ2 + (log log T )4(log T )14R2D(T )2. (2.11)

Moreover, as noted in the proof of (ii), (2.10) continues to hold, so that

S(N) ≪ RN + (log log T )2(log T )4S(Q).

Also by Lemmas 2.4 and 2.3, and (2.1) and (2.2), by splitting into
sub-sums once more, S(Q)2 ≪ R2D(T )2S(4Q2), whence by (2.11)

S(Q)2 ≪ R3Q2D(T )2 + (log log T )4(log T )14R4D(T )4.

Therefore

S(N) ≪ RN + (log log T )2(log T )4R3/2QD(T )

+ (log log T )4(log T )11R2D(T )2

≪ RN + (log log T )2(log T )5R3/2TN−1D(T )

+ (log log T )4(log T )11R2D(T )2.

The condition (log log T )(log T )5/2R1/4T 1/2D(T )1/2 ≤ N in case (iii)
shows that then the first term dominates the second and gives the
desired conclusion. Finally let

P = (log log T )(log T )5/2R1/4T 1/2D(T )1/2

and suppose N ≤ P . By a now familiar argument based on splitting
the sum and Lemma 2.2 we have

S(N) ≪(log T )3S(P )

≪(log log T )(log T )11/2R5/4T 1/2D(T )1/2

+ (log log T )4(log T )14R2D(T )2.

□

3. Proofs of Theorems 1.1 and 1.2

Let

S∗(N) =
∑
g∈G2

∣∣∣∣∣
N∑

n=1

ni(g1−g2)

∣∣∣∣∣
2

. (3.1)
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Then by (2.4)

S∗(N) =
∑
g∈G2

∣∣∣∣∣ ∑
j≥1
2j≤N

∑
N2−j≤n≤N21−j

ni(g1−g2)

∣∣∣∣∣
2

≪

( ∑
2j≤N

j−2

) ∑
2j≤N

j2
∑
g∈G2

∣∣∣∣∣ ∑
N2−j≤n≤N21−j

ni(g1−g2)

∣∣∣∣∣
2

.

Multiplying out∑
g∈G2

∣∣∣∣∣ ∑
N2−j<n≤N21−j

ni(g1−g2)

∣∣∣∣∣
2

=
∑

N2−j<m,n≤N21−j

∣∣∣∣∣∑
g∈G

(m/n)ig

∣∣∣∣∣
2

≪ N

2j

∑
N2−j<m,n≤N21−j

1√
mn

∣∣∣∣∣∑
g∈G

(m
n

)ig ∣∣∣∣∣
2

= N2−jS(N2−j).

Thus

S∗(N) ≪
∑
2j≤N

j2N

2j
S(N2−j)

Hence, by Lemma 2.6,

S∗(N) ≪
∑
2j≤N

j2N

2j

(
RN

2j
+ (R

5
4T

1
2 +R2) exp

(
C log T

log log T

))
≪ RN2 +

(
R5/4NT 1/2 +NR2) exp(C log T/ log log T )

)
for some positive constant C (probably 2 log 2), and by (3.1) this gives
Theorem 1.1.

We observe that S∗(N) is the trace of the N ×N Hermitian matrix

(M∗M)2

where M is the R×N matrix with general entry nig (g ∈ G), (1 ≤ n ≤
N). Thus by Lemma 2.1 it gives a bound for the largest eigenvalue λ
of M∗M (of course the trace of M∗M is NR), and hence shows that

∑
g∈G

∣∣∣∣∣
N∑

n=1

ann
ig

∣∣∣∣∣
2

≪

(
NR1/2 + (RN1/2 +R5/8N1/2T 1/4) exp

(
C log T

log log T

)) N∑
n=1

|an|2.
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Alternatively by Cauchy’s inequality∑
g∈G

∣∣∣∣∣
N∑

n=1

ann
ig

∣∣∣∣∣
2
2

=

( ∑
m,n≤N

aman
∑
g∈G

(m/n)ig

)2

≤

( ∑
m,n≤N

|aman|2
)
S∗(N).

Either way we have Theorem 1.2.
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