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• So far I have given an outline of the proof of the main
theorem
Theorem 1.1 Suppose (bn) is a sequence of complex
numbers with |bn| ≤ 1 and (tr ) is a sequence of
1-separated points in [0,T ] such that∣∣∣∣∣

2N∑
n=N

bnn
itr

∣∣∣∣∣ ≥ V

for all r ≤ R. Then

R ≪ε T
ε
(
N2V−2 + N18/5V−4 + TN12/5V−4

)
.

• There are various things one can observe about this.
• The core argument is for S3 and gives a bound for the
largest eigenvalue of the matrix (MM∗)3.

• Thus the theorem could be stated for bn much more
general provided that a factor N in each term on the right
is replaced by ∑

n

|bn|2.
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• Another observation is that if instead of |bn| ≤ 1 one
assumes only that |bn| ≤ B, then the theorem still holds at
the expense of an extra factor B2 on the right since one
can replace bn by bn/B and V by V /B.

• This is important since in applications we may only know,
for example, that bn ≪ dk(n) and so one would need to
take

B = max
N≤n≤2N

dk(n).
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• Anyway since |Dn(it) =
∑N

n=1 bnn
it | ≪ N we have for

some D0 > 0

R∑
r=1

|DN(itr )|2 ≤
R∑

r=1
|DN(itr )|≤D0

D2
0

+
R∑

r=1
|DN(itr )|>D0

(
D2
0 +

∫ |DN(itr )|

D0

2VdV

)
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0 + T εN2 log(N/D0) + T ε(N18/5 + TN12/5)D−2
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•
R∑

r=1

|DN(itr )|2

≤ RD2
0 + T εN2 log(N/D0) + T ε(N18/5 + TN12/5)D−2

0

• The choice D0 = R−1/4(N18/5 + TN12/5)1/4 gives

≪ T εN2 log(N/D0) + T εR1/2(N18/5 + TN12/5)1/2

• and since R ≤ T we have D0 > 1 so that

R∑
r=1

|DN(itr )|2 ≪ T εN2 logN +T εR1/2(N9/5+T 1/2N6/5).

• Note that apart from the logN the original theorem is
easily recovered from this.

• Apropps my earlier remark about the largest eigenvalue I

expect that for general bn,
R∑

r=1

|DN(itr )|2 ≪

T ε
(
N logN + R1/2(N4/5 + T 1/2N1/5)

)
∥b∥2.
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•
R∑

r=1

|DN(itr )|2 ≪

T ε
(
N logN + R1/2(N4/5 + T 1/2N1/5)

)
.

• Now partial summation and Gallagher’s argument gives
rather routinely for sr = σr + itr a set of complex numbers
with σr ≥ θ and tr 1-separated,

R∑
r=1

∣∣∣∣∣
N∑

n=1

bnn
−sr

∣∣∣∣∣
2

≪ T εN2−2θ + T εR1/2(N9/5−2θ + T 1/2N6/5−2θ).

• I am pretty sure that the method can be adapted to give

for arbitrary an, and σr ≥ 0,
R∑

r=1

∣∣∣∣∣
N∑

n=1

ann
−sr

∣∣∣∣∣
2

≪

T ε
(
N + R1/2N4/5 + R1/2T 1/2N1/5)

N∑
n=1

|an|2
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• Plugging this into the machine in Chapter 28 §28.4.2 of
MNTIII we assume 7/10 ≤ θ ≤ 8/10.

• For brevity let

A = T
5/2
3+5θ .

and suppose for the time being that Kj ≤ A.
• Choose k so that A2 ≤ K k

j < A3. If

K k
j < Aλ

where

λ =
15(1− θ)

9− 10θ
,

then use the bound given by the previous section.
• If Aλ ≤ K k

j < A3, then use the classical bound

R∑
r=1

∣∣∣∣∣
N∑

n=1

bnn
−sr

∣∣∣∣∣
2

≪ T εN2−2θ + TN1−2θ.

• If instead A < Kj , then take k = 2 and again use the
classical bound.
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