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R <. TE(NZ V—2 + N18/5 V_4—|— TN12/5V_4).
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® So far | have given an outline of the proof of the main

theorem

Theorem 1.1 Suppose (b,) is a sequence of complex
numbers with |b,| <1 and (t,) is a sequence of
1-separated points in [0, T such that

2N
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>V

for all r < R. Then
R <. TE(N2 V—2 + N18/5 V_4—|— TN12/5V_4).

There are various things one can observe about this.

The core argument is for S3 and gives a bound for the
largest eigenvalue of the matrix (MM*)3.

Thus the theorem could be stated for b, much more
general provided that a factor N in each term on the right

is replaced by Z
|bnl?.
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Another observation is that if instead of |b,| <1 one
assumes only that |b,| < B, then the theorem still holds at
the expense of an extra factor B2 on the right since one
can replace b, by b,/B and V by V/B.
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numbers with |b,| <1 and (t,) is a sequence of
1-separated points in [0, T such that
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for all r < R. Then
R <, T&(N2 V—2 + N18/5 V_4+ TN12/5\/—4).'

Another observation is that if instead of |b,| <1 one
assumes only that |b,| < B, then the theorem still holds at
the expense of an extra factor B2 on the right since one
can replace b, by b,/B and V by V/B.

This is important since in applications we may only know,
for example, that b, < di(n) and so one would need to
take

B = NglanzN dk(n).
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e Anyway since |D,(it) = SN . byn't] < N we have for

some Dy >0
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® and since R < T we have Dy > 1 so that
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® Note that apart from the log N the original theorem is
easily recovered from this.
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rather routinely for s, = o, + it, a set of complex numbers
with o, > 6 and t, 1-separated,
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® | am pretty sure that the method can be adapted to give
N 2

Z ann 7| <

n=1

for arbitrary a,, and o, > 0, Z
r=1

N
TE(N+ R1/2N4/5 4 R1/2T1/2N1/5)Z |an‘2
n=1



® Plugging this into the machine in Chapter 28 §28.4.2 of
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and suppose for the time being that K; < A.
® Choose k so that A% < Kjk < A3 If

i(jk<A)\

where
15(1 —0)
9100’
then use the bound given by the previous section.
o If AM< Kjk < A3, then use the classical bound
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e If instead A < K;, then take k = 2 and again use the
classical bound.

A\ =
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