
C:MeanLargeVals
A NOTE ON LEMMA 6.2

1. Lemma 6.2

A core ingredient in the treatment of S2, leading to the use of Heath-
Brown’s theorem, is Lemma 6.2. However there are some obscurities
in this which need to be cleared up. Lemma 6.2 as state is

Lemma 6.2. For every t with |t| ∼ T0 ≥ T ε, we have∣∣∣∣∣∑
m ̸=0

ĥt(mN)

∣∣∣∣∣ ≲ T
−1/2
0

∫
u⪅1

∣∣∣∣∣ ∑
m⪅T0/N

m−i(t+u)

∣∣∣∣∣du+O(T−100).

There are a number of problems with this. The symbols ≲ and
⪅ are non-standard in analytic number theory, and they use ∼ in a
non-standard way. Referring to §1.2,

A ≲ B means that A ≤ CB for an absolute constant C. They do not
say that C must be positive, but it would be peculiar if they allowed
it to be 0 or negative! Moreover I am lead to wondering if they really
mean |A| ≤ CB, in which case why not use Vinogradov’s notation!
In the context of the lemma, where the quantities on each side are
non-negative why eschew the use of Vinogradov which is standard and
normal?

A ∼ B means B < A ≤ 2B which is contrary to the normal usage
that A/B → 1 in some limiting process. Also one would expect this to
be symmetric, namely A ∼ B means the same as B ∼ A, but here it
does not. A more commonly used notation for this A ≈ B.

A ⪅ B means that for every ε > 0 there is a positive constant C(ε)
such that A ≤ C(ε)T εB. I am again left wondering if they really
mean |A| ≤ C(ε)T εB, and why they don’t just adapt Vinogradov as
in |A| ≪ε T

εB.
Something else that puzzled me about the statement of the lemma

was whether one was to integrate over all real numbers u ≤ C(ε)T ε.
It turns out that there is a restatement of a form of the lemma at the
bottom of page 16 which makes it clear that |u| ≤ C(ε)T ε is intended.

Yet another source of puzzlement is, what happens in the lemma
when T0 < N since the sum is then empty and the integral would be
0. It seems that the lemma indeed remains true. Nevertheless I would
have expected some explanation!

Oh, and four other peculiarities in the statement of the lemma are
1. why is the general term in the sum m−i(t+u) and not mi(t+u).
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2. what is the relationship of T to the other parameters. The only
places T appears are in the error term and the hypothesis T0 ≥ T ε! I
am guessing that even if the proof does not require it, there is at least
a tacit assumption that |t| ≤ T .

3. Since there is an implicit constant in the ≲ symbols why does one
have a O(...)?

4. The symbol ε appears explicitly in the hypothesis and implicitly
twice in ⪅ symbols. Is it the same ε in each instance or, could it be
different in each instance - in analytic number theory there is often an
assumption that formulae containing an (implicit) ε hold for all ε > 0
and this can lead to complications on combining formulae, so one needs
to be careful.

Anyway, in view of this I think we should prove the Lemma first
before proceeding to deal with S2. Also, let me restate the lemma in a
form which is actually needed for the treatment of S2.

Oh, and before we get in to the proof of the lemma I should also
point out that the claim in the second sentence of the proof that W (s)
is entire and satisfies |W (s)| ≲ |s|−j is false since W would have to be
uniformly bound in a neighbourhood of 0 and hence in C and so by
Liouville’s theorem would a constant, which it plainly is not. Recall
Lemma 4.3 only deals with an object of the kind ht(u) = W (it). Thus
the bound for W (s) should be (because the support of w is on [1, 2])

W (s) ≪j 2
Re s|s|−j,

i.e. the function can grow exponentially along the positive real axis.
Fortunately it is bounded when one moves to the left.

Lemma 6.2. Suppose that ε > 0, T is sufficiently large in terms of
ε, and N is a positive integer with T ε ≤ N . Suppose also that M is
a positive real number with T ε/(2N) < M < 2T/N and MN < |t| ≤
2MN . Then∣∣∣∣∣∑

m ̸=0

ĥt(mN)

∣∣∣∣∣ ≪ε (MN)−1/2

∫
|u|≤T ε

∣∣∣∣∣ ∑
1≤m≤T εM

mi(t+u)

∣∣∣∣∣du+ T−100.

Proof. First, let us dispose of the possibility that the sum in the
integral is empty. Then we have T εM < 1, so that MN < NT−ε and
so

|t| ≤ 2NT−ε.

By Lemma 4.3 for any fixed j we have

ĥt(mN) ≪ 1 + |t|j

|m|jN j
≪ 1

|m|jN j
+

2j

T εj|m|j
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and so on taking j large enough the sum on the left is ≪ε T
−100.

Thus we may suppose that T εM ≥ 1. At this point it is useful to
add in the term m = 0 on the left. By Lemma 4.3, since |t| > T ε,

ĥt(0) ≪j
1

|t|j
≪ε T

−100

on taking j large enough.
We have , after a change of variable in the Fourier transform,

ĥt(mN) =

∫
R
N−1−itw(u/N)2uite(−um)du = ĝt(m;N)

where
gt(u;N) = N−1−itw(u/N)2uit.

Hence, by the Poisson summation formula,∑
m∈Z

ĥt(mN) =
∑
m∈Z

gt(m;N)

so that
N1+it

∑
m∈Z

ĥt(mN) =
∑
m∈Z

w(m/N)2mit.

Since the suppw ∈ [1, 2] we have

N1+it
∑
m∈Z

ĥt(mN) =
∞∑

m=1

w(m/N)2mit.

The sum on the right is now treated in the same kind of way that
we used for the approximate functional equation for ζ(s). Recall we
started out by writing a sum like the one on the right in the form

1

2πi

∫ θ+i∞

θ−i∞
ζ(z − it)W (z)N zdz

where θ > 1, for some W . We used a rather special pair w and W .
Here things are a little different but the principal is the same. We
define W by the Mellin transform

W (z) =

∫
R
w(u)2uz−1du.

Because of the nature of w this is an entire function of z, and because
w is in C∞ and has its support on [1, 2] repeated integration by parts
gives

W (z) ≪j 2
Re z|z|−j.

The inverse of the Mellin transform is the Perron transform

w(u)2 =
1

2πi

∫ θ+i∞

θ−i∞
W (z)u−zdz
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which here will hold for any fixed θ > 0.
As an aside, analytic number theorists are more familiar with these

transforms in the context of Dirichlet series, when they are usually put
in to the forms

α(s)s−1 =

∫
R
A(x)x−s−1dx and A(x) =

1

2πi

∫ θ+i∞

θ−i∞
α(s)s−1xsds

with

A(x) =
∑
n≤x

an and α(s) =
∞∑
n=1

ann
−s.

The translation can be accomplished by taking B(x) = A(1/x), β(s) =
α(s)/s.
Anyway, taking θ = 2, say, we have

N1+it
∑
m∈Z

ĥt(mN) =
∞∑

m=1

mit 1

2πi

∫ 2+i∞

2−i∞
W (z)(N/m)zdz

=
1

2πi

∫ 2+i∞

2−i∞
ζ(z − it)W (z)N zdz.

Now the procedure is standard. We move to the line Re z = −1, picking
up the residue

W (1 + it)N1+it

at the pole z = 1 + it. This contributes

W (1 + it)N1+it ≪j N |t|−j ≪ T−100

on choosing j large enough.
On the −1 line apply the functional equation

ζ(z − it) = G(z − it)ζ(1 + it− z)

where G is the gamma factor

G(s) = 2sπs−1Γ(1− s) sin
πs

2
.

Note that G is an entire function and G(s) ≪σ (1 + |t|) 1
2
−σ. Thus

N1+it
∑
m∈Z

ĥt(mN) =

1

2πi

∫ −1+i∞

−1−i∞
G(z − it)ζ(1 + it− z)W (z)N zdz +O(T−100).

Since the ζ here is in a region of absolute convergence we can write

ζ(1 + it− z) = Z1(1 + it− z) + Z2(1 + it− z)
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where

Z1(1 + it− z) =
∑

1≤m≤P

mz−1−it, Z2(1 + it− z) =
∑
m>P

mz−1−it

and P = MT ϵ where ϵ is a positive number at our disposal. We move
the part with Z1 to the line Re z = 1 and the part with Z2 to the line
Re z = −2k. Thus

N1+it
∑
m∈Z

ĥt(mN) =
1

2πi

∫ 1+i∞

1−i∞
G(z − it)Z1(1 + it− z)W (z)N zdz

+
1

2πi

∫ −2k+i∞

−2k−i∞
G(z − it)Z2(1 + it− z)W (z)N zdz +O(T−100).

The integrand in the second integral is

≪j,k (1 + | Im z − t|)
1
2
+2k

∑
m>P

m−2k−1min(1, | Im z|−j)N−2k

≪j,k (1 + | Im z − t|)
1
2
+2k min(1, | Im z|−j)(PN)−2k.

Taking j large enough we find that the contribution to the integral
from the z with | Im z| ≥ T ε is ≪ε T

−100. The contribution from the z
with | Im z| ≤ T ε is

≪j,k

∫ T ε

−T ε

(1 + |t|)
1
2
+2k(T ϵMN)−2k ≪j,k T

1
2T−2kϵ

since on hypothesis we have |t| ≤ 2MN ≤ 4T . Thus choosing k large
enough we again obtain the bound ≪ T−100. Thus

1

2πi

∫ −2k+i∞

−2k−i∞
G(z − it)Z2(1 + it− z)W (z)N zdz ≪ T−100.

Now consider the first integral

1

2πi

∫ 1+i∞

1−i∞
G(z − it)Z1(1 + it− z)W (z)N zdz

Again the rapid decay of the function W (z) means we obtain

1

2π

∫
|y|≤T ε

G(1 + iy − it)Z1(it− iy)W (1 + iy)N1+iydy +O(T−100).

By the standard bound for G the integral here is

≪ N

∫
|y|≤T ε

(1 + |y − t|)−1/2|Z1(it− iy)|min(1, |y|−2)dy

≪ (N/M)1/2
∫
|y|≤T ε

|Z1(it− iy)|dy
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as on hypothesis we have MN < |t| ≤ 2MN .

Dividing through by N1+it and recalling the bound for ĥt(0) we ob-
tain∑

m∈Z\{0}

ĥt(mN) ≪ε (MN)−1/2

∫
|u|≤T ε

∣∣∣∣∣ ∑
1≤m≤T εM

mi(t+u)

∣∣∣∣∣du+ T−100.

as required.


