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A NOTE ON LEMMA 6.2

1. LEMMA 6.2

A core ingredient in the treatment of Sy, leading to the use of Heath-
Brown’s theorem, is Lemma 6.2. However there are some obscurities
in this which need to be cleared up. Lemma 6.2 as state is

Lemma 6.2. For every t with |t| ~ Ty > T¢, we have

S| sz [ | 5w
ull

m7#0 ~ méTO/N

du + O(T1%).

There are a number of problems with this. The symbols < and
< are non-standard in analytic number theory, and they use ~ in a
non-standard way. Referring to §1.2,

A < B means that A < C'B for an absolute constant C'. They do not
say that C' must be positive, but it would be peculiar if they allowed
it to be 0 or negative! Moreover I am lead to wondering if they really
mean |A| < CB, in which case why not use Vinogradov’s notation!
In the context of the lemma, where the quantities on each side are
non-negative why eschew the use of Vinogradov which is standard and
normal?

A ~ B means B < A < 2B which is contrary to the normal usage
that A/B — 1 in some limiting process. Also one would expect this to
be symmetric, namely A ~ B means the same as B ~ A, but here it
does not. A more commonly used notation for this A ~ B.

A < B means that for every ¢ > 0 there is a positive constant C/(¢)
such that A < C(e)T°B. 1 am again left wondering if they really
mean |A| < C(e)T¢B, and why they don’t just adapt Vinogradov as
in Al <. T°B.

Something else that puzzled me about the statement of the lemma
was whether one was to integrate over all real numbers u < C(e)T".
It turns out that there is a restatement of a form of the lemma at the
bottom of page 16 which makes it clear that |u| < C(e)T* is intended.

Yet another source of puzzlement is, what happens in the lemma
when 7 < N since the sum is then empty and the integral would be
0. It seems that the lemma indeed remains true. Nevertheless I would
have expected some explanation!

Oh, and four other peculiarities in the statement of the lemma are

1. why is the general term in the sum m~*+%) and not m!¢+%,
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2. what is the relationship of T to the other parameters. The only
places T" appears are in the error term and the hypothesis Tg > T¢! 1
am guessing that even if the proof does not require it, there is at least
a tacit assumption that |t| < T

3. Since there is an implicit constant in the < symbols why does one
have a O(...)?

4. The symbol € appears explicitly in the hypothesis and implicitly
twice in J symbols. Is it the same ¢ in each instance or, could it be
different in each instance - in analytic number theory there is often an
assumption that formulae containing an (implicit) € hold for all € > 0
and this can lead to complications on combining formulae, so one needs
to be careful.

Anyway, in view of this I think we should prove the Lemma first
before proceeding to deal with S5. Also, let me restate the lemma in a
form which is actually needed for the treatment of Ss.

Oh, and before we get in to the proof of the lemma I should also
point out that the claim in the second sentence of the proof that W (s)
is entire and satisfies |[W(s)| < |s|™ is false since W would have to be
uniformly bound in a neighbourhood of 0 and hence in C and so by
Liouville’s theorem would a constant, which it plainly is not. Recall
Lemma 4.3 only deals with an object of the kind h;(u) = W (it). Thus
the bound for W (s) should be (because the support of w is on [1,2])

W(s) < 28 s| 7,
i.e. the function can grow exponentially along the positive real axis.

Fortunately it is bounded when one moves to the left.

Lemma 6.2. Suppose that ¢ > 0, T' is sufficiently large in terms of
g, and N is a positive integer with T < N. Suppose also that M 1is
a positive real number with T¢/(2N) < M < 2T /N and MN < |t| <
2MN. Then

Z hy(mN)

m#0

<. (MN)l/Z/ mi(t+u) du_i_TflOO.

ful<T

1<m<TeM
Proof. First, let us dispose of the possibility that the sum in the
integral is empty. Then we have T°M < 1, so that M N < NT~¢ and
SO

[t| <2NT™=.
By Lemma 4.3 for any fixed j we have

- 1+ |t) 1 27
hi(mN —— —— —
N S TopNT S TN TP




A NOTE ON LEMMA 6.2 3

and so on taking j large enough the sum on the left is <, T,

Thus we may suppose that T¢M > 1. At this point it is useful to
add in the term m = 0 on the left. By Lemma 4.3, since |t| > T,

- 1
h(0) < W <, 7100
on taking j large enough.
We have , after a change of variable in the Fourier transform,

~

hi(mN) = /RNlitw(u/N)Quite(—um)du = gi(m; N)

where ‘ A
gi(u; N) = N~ (u/N)2u™,
Hence, by the Poisson summation formula,

> hi(mN) =" gi(m; N)
meZ meZ
so that R
NN " hy(mN) =Y w(m/N)*m™.
meEZ meZ
Since the suppw € [1,2] we have
NN " hy(mN) =) " w(m/N)*m™.
meEZ m=1
The sum on the right is now treated in the same kind of way that
we used for the approximate functional equation for ((s). Recall we
started out by writing a sum like the one on the right in the form
1 0+ioco ;
omi ) C(z—it)W(z)N*dz
where 6 > 1, for some W. We used a rather special pair w and W.
Here things are a little different but the principal is the same. We
define W by the Mellin transform

W(z) :/Rw(u)zuZIdu.

Because of the nature of w this is an entire function of 2z, and because
w is in C* and has its support on [1, 2] repeated integration by parts
gives
W(z) <; 28|z .
The inverse of the Mellin transform is the Perron transform
1 0+ioco
w(u)? = — W(z)u *dz

2mi O—ico
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which here will hold for any fixed 6 > 0.

As an aside, analytic number theorists are more familiar with these
transforms in the context of Dirichlet series, when they are usually put
in to the forms

0+ioco
as)s™! = / A(z)z™*tdr and A(z) = L/ afs)s trtds
R 9

270 Jo_ino

Ax) = Zan and «(s) = Zann_s.

n<x
The translation can be accomplished by taking B(x) = A(1/z), B(s) =

a(s)/s.

Anyway, taking 6§ = 2, say, we have

) R 0 1 24100
NTHEY hu(mN) =y m"o— /2 . WEN/mydz
meZ m=1
1 2+i00
=5 C(z —it)W(z)N*dz.
2—io0
Now the procedure is standard. We move to the line Re z = —1, picking

up the residue
W(1 4+ it) N
at the pole z = 1 + it. This contributes
W1+ it)N"*"* <; N|t| 7 < T

on choosing j large enough.
On the —1 line apply the functional equation

((z—it) =Gz —it)((1+ it — 2)

where G is the gamma factor

G(s) = 2°7°'T'(1 — s) sin g

Note that G is an entire function and G(s) <, (1 + |¢])27. Thus

N1+it Z ]A%(mN) —_
meZ
1 e . . 1 —100
57 G(z —it)C(1 +it — 2)W(2)N*dz+ O(T~ ).
T J _1—ico

Since the ( here is in a region of absolute convergence we can write

CA+4it —2)=Z1(1+it —2) + Za(1 + it — 2)
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where

Zi(14idt — 2) = Z m* 1 Zy(1 4 it — 2) = Z m*
1<m<P m>P
and P = MT* where € is a positive number at our disposal. We move
the part with Z; to the line Re z = 1 and the part with Z5 to the line
Rez = —2k. Thus

R 14400
NIt Z hy(mN) = L/ G(z—it)Zy (1 +it — z)W(z)N*dz
1

21 A
MEZL —e0

1 —2k+ioco

To G(’Z_it)22<1—I—Z't—Z)W(z)NZdZ_i_O(T—lOO).

2mi —2k—i00

The integrand in the second integral is

o (L4 [Imz — )25 3" =2 min(1, | Im 2| )N~
m>P
< (14 [Im 2 — #)2 " min(1, | Im 2| ) (PN) ¥,
Taking j large enough we find that the contribution to the integral

from the z with |Im z| > T* is <. T~'%. The contribution from the 2
with |[Im z| < T¢ is

TE
<k / (L4 [H) 2 H(TMN) 2 < THT
_Te
since on hypothesis we have [t| < 2M N < 4T. Thus choosing k large
enough we again obtain the bound < T71%. Thus
1 —2k+i00

— G(z —it) Zo(1 + it — 2)W (2)N*dz < T,
2mi —2k—i00

Now consider the first integral
1 1+ioc0

— G(z—it)Zy (1 +it — 2)W(2)N*dz
2mi

1—io0

Again the rapid decay of the function W (z) means we obtain
1
27 Jyyl<re

By the standard bound for G the integral here is

G(1 + iy — it) Z1 (it — i)W (1 + iy) N ¥dy + O(T ).

<N (1+ [y — t)) 72| Z1 (it — iy)| min(1, |y|~*)dy
ly|<T=

< (/M) / \Zu(it — i) |dy

ly|<Te
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as on hypothesis we have MN < [t| <2MN.

Dividing through by N'*# and recalling the bound for h,(0) we ob-
tain

S hu(mN) <. (MN)? /

mez\ {0} |u[<T*

du + 7719,

Z mi(t-‘ru)

1<m<TeM

as required.



