
C:Sthree
THE THIRD SUM

1. Recap

Recall

w ∈ C∞(R), suppw ∈ [1, 2], w(x) = 1 (x ∈ [6/5, 9/5]),

ht(u) = w(u)2uit

and its Fourier transform

ĥt(v) =

∫
R
ht(u)e(−uv)du.

Suppose that W is T ε separated. Then∑
t∈W

|Dn(t)|2 ≪ε

(
N +

( ∑
m∈Z3\{0}

Im

)1/3) 2N∑
n=1N+1

|bn|2. (1.1) eq:one1

where

DN(s) =
2N∑

n=N+1

bnn
s (1.2) eq:one2

and

Im = N3
∑
t∈W3

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N). (1.3) eq:one3

Theorem 4.6.[Proposition 4.6] Suppose that W is T ε separated and
|DN(t)| > V for each t ∈ W. Then

cardW ≪ε

(
N +

( ∑
m∈Z3\{0}

Im

)1/3)
∥b∥2V −2.

Thus we have reduced the investigation to bounding∑
m∈Z3\{0}

Im = S1 + S2 + S3.

where Sj denotes the sum over m with exactly j of the mj being non-
zero. We already saw that
Theorem 5.1(Proposition 5.1, S1 bound). Suppose that W is T ε

separated. Then

S1 ≪ε T
−10.
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2 THE THIRD SUM

Theorem 6.1(Proposition 6.1, S2 bound). Suppose that W is T ε

separated. Then for any k ∈ N we have

S2 ≪ε T
7ε
(
TNW 2− 1

k +N2W 2 +N2W 2− 3
4kT

1
2k

)
2. The reduction of S3

Now is the turn of S3 where

S3 =
∑

m∈(Z\{0})3
Im

and

Im = N3
∑
t∈W

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N). (2.1) eq:two1

An immediate observation is that if we permute m1,m2,m3, then by
relabeling the t1, t2, t3 to correspond we find that Im is invariant. The
number of permutations will vary according as the m1,m2,m3 are dis-
tinct or not. However we are ultimately only concerned with the size
of Im. Hence

|S3| ≤ 6
∑

m∈(Z\{0})3
|m1|≤|m2|≤|m3|

|Im| (2.2) eq:two2

Since ĥt is a Fourier transform,

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N) =∫
R3

w1(u)
2u

i(t1−t2)
1 u

i(t2−t3)
2 u

i(t3−t1)
3 e(−Nm.u)du. (2.3) eq:two3

where

w1(u) = w(u1)w(u2)w(u3). (2.4) eq:two4

The crucial thing is that Nm.u = N(m1u1+m2u2+m3u3) is linear in
u. They speak of “stationary phase” and “non-stationary phase”, but
the usual terminology in analytic number theory would be “the saddle
point method”. In an integral of the form∫

I

g(x)e
(
f(x)

)
dx

the standard technique, going back to at least Dirichlet and probably
to the Bernoullis, is to integrate by parts after first writing the integral
as ∫

I

g(x)

2πif ′(x)
2πif ′(x)e

(
f(x)

)
dx.
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This is fine as long as the derivative is not close to 0. This leads to a
bound of the form

≪ sup
I

|g(x)/f ′(x)|.

If f ′(x) = 0 (a saddle point), then in a neighbourhood of such a point
one can use a simple argument based on the second derivative to show
that under fairly mild conditions one has a bound of the form

≪ supI |g(x)|
infI |f ′′(x)|1/2

and if this fails one can go on to higher derivatives. Anyway this is
not relevant to our situation. Here N(m1u1+m2u2+m3u3) is linear in
each of the variables uj. If we pick one of them, say u3 and work with
that as G&M do, then the derivative will be a “constant”, and we are
in good shape as long as the constant is not too small. It is useful first
to get rid of the large mj.

An immediate observation is that Lemma 4.3 gives, for any non-
negative integer j,

ĥt(mN) ≪j
1 + |t|j

|m|jN j

(G & M have this the wrong way round - see the top of page 20!) and
indeed we can use this to discard the large mj. Thus if maxk |mk| >
T 1+εN−1, then for any j ≥ 4 we have∑

m
maxk |mk|>T 1+εN−1

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N)

≪j

∑
0<|m1|≤|m2|≤|m3|
|m3|>T 1+εN−1

T j

|m3|jN j

≪j

∑
m3>T 1+εN−1

m2
3T

j

mj
3N

j

≪j T
3N−3T (3−j)ε.

Thus for some j = j0(ε), by (
eq:two2
2.2),

|S3| ≤ 6
∑

m∈(Z\{0})3
|m1|≤|m2|≤|m3|≤T 1+εN−1

|Im|+Oε(T
−100). (2.5) eq:two5

Suppose |m1| ≤ |m2| ≤ |m3| ≤ T 1+εN−1. By (
eq:two1
2.1) and (

eq:two2
2.2)

Im = N3

∫
R3

w1(u)
2R(u1/u3)R(u2/u1)R(u3/u2)e(−Nm.u)du
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where

R(u) =
∑
t∈W

uit.

Make the change of variables

u1, u2 → v1, v2 : u1 = u3v1, u2 = u3v2.

One can do this one variable at a time, or the more sophisticated way
by computing the Jacobian. Either way note that the support for each
uj is in [1, 2] so there are no complications with negative u3. Moreover
the support for v1 and v2 will lie in [1/u3, 2/u3] ⊆ [1/2, 2]. Thus

Im = N3

∫
[1/2,2]2

R(v)R
(v2
v1

)
R
( 1

v2

)
J(v,m)dv. (2.6) eq:two6

where

J(v,m) =

∫
R
w(v1u)

2w(v2u)
2w(u)2u2e

(
−Nu(m1v1 +m2v2 +m3)

)
du.

Here we have an integral of the form∫
R
F (u)e(λu)du

where F ∈ C∞(R) and F (j)(u) = 0 when u /∈ [1/2, 2]. Thus integrating
by parts j times we have∫

R
F (u)e(λu)du =

(−1)j

(2πiλ)j

∫
R
F (j)(u)e(λu)du.

Clearly when v ∈ [1/2, 2]2, F (u) = w(v1u)
2w(v2u)

2w(u)2u2 and j is a
non-negative integer we have

F (j)(u) ≪j 1.

Thus, when |m1v1 +m2v2 +m3| ≥ T ε/N we have

J(v,m) ≪j T
−jε

and so ∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≥T ε/N

R(v1)R
(v2
v1

)
R
( 1

v2

)
J(v,m)dv

≪j T
6T−jε.

Hence, by (
eq:two6
2.6)

Im = N3

∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

R(v1)R
(v2
v1

)
R
( 1

v2

)
J(v,m)dv+O(T−200).
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Hence, noting also that |R(1/v2)| = |R(v2)|,

Im ≪ε N
3

∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

|R(v1)R
(v2
v1

)
R(v2)|J(v,m)dv + T−200.

Observe that 4|m2| ≥ |m1v1 +m2v2| ≥ |m3| − |m1v1 +m2v2 +m3| so
the integral will be 0 unless 4|m2| ≥ |m3| − T ε/N > 4|m3|/5. We also
have J(v,m) ≪ 1. Thus, by (

eq:two4
2.4)

Theorem 7.1(Proposition 7.1). Suppose that W is T ε separated. Then

S3 ≪ε

∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T 1+εN−1

|Im|

≪ε

∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T 1+εN−1

N3

∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

|R(v1)R
(v2
v1

)
R(v2)|dv

+ T−200

and, when |m1| ≤ |m2| ≤ |m3|, the integral here is 0 unless |m2| ≍
|m3|.

3. Commentary

At this point I want to deviate a little from the narrative to point
something out. Let me jump ahead a little and consider the L2 mean
of R.

Lemma 8.2(L2 bound). Suppose that W is a T ε separated set lying in
an interval of length T . Then∫

[1/4,4]

|R(v)|2dv ≪ε cardW .

Proof. We may certainly suppose that cardW ≥ 1.
Let ψ(u) ∈ C∞([0,∞)) have compact support and be ψ(u) ≫ 1 for

u ∈ [1/4, 4]. Then∫
[1/4,4]

|R(u)|2du≪
∫ ∞

0

ψ(u)|R(u)|2

=
∑
t∈W2

∫ ∞

0

ψ(u)uit1−it2du

= cardW
∫ ∞

0

ψ(u)du+
∑
t∈W2

t1 ̸=t2

∫ ∞

0

ψ(u)uit1−it2du.
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As previously, we may apply the saddle point method and obtain∫ ∞

0

ψ(u)uit1−it2du =

∫
R
evψ(ev)ei(t1−t2)vdv ≪ε T

−2

when t1 ̸= t2. □

Thus we have square root cancellation. We can speculate as to what
happens if this continues to hold for the integrand in Theorem 7.1. For
brevity write R = cardW and suppose R ≥ 1. We would then have

S3 ≪ε

∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T 1+εN−1

N3

∫
v∈[1/2,2]2∣∣∣v2+m1v1+m3

m2

∣∣∣≤ Tε

N|m2|

R3/2dv + T−200

≪ε

∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T 1+εN−1

N3 T ε

N |m2|
R3/2 + T−200

≪ε N
2R3/2+ε(T 1+εN−1)2

≪ε T
2+3εR3/2

Now recall that ∑
t∈W

|DN(t)|2 ≪ (N +Θ1/3)∥b∥2

where
Θ =

∑
m∈Z\{0}

Im.

Putting in the bounds for the Sj gives

Θ ≪ T 7ε
(
TNR2− 1

k +N2R2 +N2R2− 3
4kT

1
2k

)
+ T 2+3εR3/2

This is probably good enough to establish the density hypothesis.
OK, so how real is this? Well in∫

v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

|R(v1)R
(v2
v1

)
R(v2)|dv

we would like, if possible to “save” an amount

T ε

N |m2|
when we integrate over v2, or similarly over v1. That means we realis-
tically need to understand ∫

[1/4,4]

|R(u)|3du.
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But third moments are troublesome, and the normal approach is to
estimate the fourth moment and use Cauchy-Schwarz.

Lemma 8.3* Suppose that W is a T ε separated set lying in an interval
of length T . Then∫

[1/4,4]

|R(v)|4dv ≪ε T
2ε(cardW)3.

More precisely ∫
[1/4,4]

|R(v)|4dv ≪ε 1 + T εE(W)

where

E(W) = card{t ∈ W4 : |t1 − t2 + t3 − t4| < 1},
the, so-called, additive energy of W. We also have

E(W) ≫ max
(
(cardW)4T−1, (cardW)2

)
The last bound is probably close to best possible in most cases. How-
ever, the first bound is not very good for us in general but is achieved
when the elements of W are close to being in arithmetic progression.

For example consider W = {tr : tr = rT/R, 0 ≤ r ≤ R − 1}. Put

v = exp
(
2πRu
T

)
. Then

∫
[1/4,4]

|R(v)|4dv

=
2πR

T

∫
|u|≤T

R
log 4

∣∣∣∣∣
R−1∑
r=0

e(ur)

∣∣∣∣∣
4

exp

(
2πRu

T

)
du

≫
∫ 1

0

∣∣∣∣∣
R−1∑
r=0

e(ur)

∣∣∣∣∣
4

du =

∫ 1

0

∣∣∣∣∣∣
∑
|h|≤R

(R− |h|)e(uh)

∣∣∣∣∣∣
2

du

=
R∑

h=−R

(R− |h|)2 = 2R3 +R

3
.

This may seem a problem but if W were like this, then∑
t∈W

|DN(it)|2 ≪ (R +RN/T )
N∑

n=1

|bn|2

and I think the density hypothesis would follow.
If we replace each t in W by, say, the nearest integer to t, and call

the new set N , then E(W ) is bounded by the number of solutions of
|n1 − n2 + n3 − n4| < 3 and so it suffices to bound the number E∗(N )
of solutions of n1 − n2 + n3 − n4 = 0.
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There ought to be theorems in additive combinatorics that tell us
what happens in general when E∗(N ) is large. This will be large when
n1 − n2 + n3 has excessive overlap with N .

The work in this area, such as Freiman’s theorem, is concerned
mostly with what happens when expressions such as n+n′ have exces-
sive overlap with N , and Freiman’s theorem tells us that in that case
the elements of N are in arithmetic progression.

Is that what is happening here? Understanding this might be the
key to the density hypothesis.

Proof. We may certainly suppose that cardW ≥ 1.
Let ψ(u) ∈ C∞([0,∞)) have compact support and be ψ(u) ≫ 1 for

u ∈ [1/4, 4]. Then∫
[1/4,4]

|R(u)|4du≪
∫ ∞

0

ψ(u)|R(u)|4 =
∑
t∈W4

∫ ∞

0

ψ(u)uit1−it2+it3−it4du

As previously, we may apply the saddle point method when |t1 − t2 +
t3 − t4| > T ε and obtain a total contribution ≪ε 1. Thus∫

[1/4,4]

|R(u)|2du≪ε 1 +
∑
t∈W4

|t1−t2+t3−t4|≤T ε

1.

Now, given any t1, t2, t3 ∈ W there can be ≪ 1 t4 ∈ W with |t1 −
t2 + t3 − t4| ≤ T ε. Now there is a general principle that the number
of solutions of an inequality such as (or an equation for that matter)
|t1− t2+ t3− t4−α| < 1 for some real number alpha is bounded by the
number of solutions with α = 0. Thus we can just divide the interval
−T ε, T ε into ≪ T ε intervals of length, say, 1/2. To prove the principle
in our case observe that∫

R

(sinπu)2

π2u2
e(−vu)du = max(0, 1− |v|)

and so ∑
t∈W4

|t1−t2+t3−t4−α|<1/2

1 ≤ 2

∫
R

(sinπu)2

π2u2
|R(e2πu)|2e(−αu)du

≤ 2

∫
R

(sinπu)2

π2u2
|R(e2πu)|2du

≤ 2E(W)

which gives the second bound.
Summing over a set of ≫ T α spaced 1/2 apart picks up every

possible tj and proves part of the last bound. The trivial observation
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that there are (cardW)2 solutions to |t1− t2+ t3− t4| < 1 with t1 = t2,
t3 = t4 gives the other part. □

Corollary. We have∫
[1/4,4]

|R(u)|3du≪ε T
ε(cardW)2.

This is not good enough. The set W in practice is quite “thin”.
That is the cardinality is small compared with T . For example the
numbers t1 − t2 + t3 − t4 are spread, presumably, between −2T and
2T , but there are only (cardW)4 of them so one can expect at best, in
a general interval of length 1 that there are only about (cardW)4T−1

of the t1 − t2 + t3 − t4 and this will of necessity be much smaller than
(cardW)3.

4. Back to Reality

Theorem 8.1.(Proposition 8.1) Suppose that W is a T ε separated set
in an interval of length T . Then

S3 ≪ T 2+ε(cardW)1/2E(W)1/2.

Proof. By Lemmas 8,2 and 8.3 and Schwarz’s inequality we have∫
[1/4,4]

|R(u)|3du≪ε T
ε(cardW)1/2E(W)1/2.

Also

|R(v1)R(v2/v1)R(v2)| ≤ |R(v1)|3 + |R(v2/v1)|3 + |R(v2)|3.

Thus∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

|R(v1)|3dv ≪ T ε(cardW)1/2E(W)1/2
T ε

N |m2|
.

Hence, summing over m we have∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T 1+εN−1

N3

∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

|R(v1)|3dv

≪ T 2+4ε(cardW)1/2E(W)1/2.

A similar argument holds for |R(v2)|3. For the term |R(v2/v1)|3 we
make the substitute v2 = wv1 and note that then w ∈ [1/(2v1), 2/v1] ⊆
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[1/4, 4] and the contribution becomes∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T 1+εN−1

N3

∫
v∈[1/2,2]2

|m1v1+m2v1w+m3|≤Tε

N

|R(v2/v1)|3dv =

N3

∫
[1/4,4]

|R(w)|3
∑

m∈(Z\{0})3
|m1|≤|m2|≤|m3|≤T 1+εN−1

∫
v∈[1/2,2]∩[1/(2w),2/w]

|v(m1+m2w)+m3|≤Tε

N

vdvdw

The condition |v(m1 +m2w) +m3| ≤ T ε

N
together with m3 ̸= 0 implies

that |v(m1+m2w)| > 1
2
and so |m1+m2w| > 1

16
. Moreover the integral

over v is

≪ T ε

N |m1 +m2w|
.

and again we can proceed as for |R(v1)|3. Thus, by Theorem 7.1,

S3 ≪ T 2+4ε(cardW)1/2E(W)1/2

as required.
Let me go back to §7. I have the feeling that §§9 onwards are over-

complicated and this starts with Proposition 7.2. I would like to find a
simpler approach, perhaps based on the observation that as far as EW)
and related objects are concerned one can suppose that W is a subset
of integers in [0, T ] and this ought to simplify much of the argument.
Unfortunately I don’t have the time to sort all that out, so am forced
largely to follow G&M.

Recall that
R(u) =

∑
t∈W

uit.

and Theorem 7.1 gives

S3 ≪ε∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤T1+ε

N
|m2|≍|m3|

N3

∫
v∈[1/2,2]2

|m1v1+m2v2+m3|≤Tε

N

|R(v1)R
(v2
v1

)
R(v2)|dv

+ T−200

By dividing the sum over m into dyadic ranges we find that for some
pair M1,M with 0 < M1 ≤M ≤ T 1+ε/N we have

S3 ≪ε T
−200 +N3(log T )3

∑
m∈(Z\{0})3

|m1|≤|m2|≤|m3|≤M
|m1|≍M1,|m2|≍|m3|≍M

I ′m
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where

I ′m =

∫
v1∈[1/2,2]

|R(v1)|
∫

v2∈[1/(2),2]
|m1v1m

−1
2 +v2+m3m

−1
2 |≤ Tε

MN

∣∣∣R(v2
v1

)
R(v2)

∣∣∣dv
At this point the R(v2/v1) and R(v2) are replaced by smooth versions
but the details are mostly missing and the motivation is non-existent.
By Cauchy-Schwarz and a change of variable v = v1w we have∫

v∈[1/2,2]
|v−(m1v1+m3)/(−m2)|≤ Tε

MN

∣∣∣R( v
v1

)
R(v)

∣∣∣dv ≤

∫
w∈[1/(2v1),2/v1]

|w−(m1+m3v
−1
1 )/(−m2)|≤ 2Tε

MN

|R(w)|2dw

1/2

×

∫
v∈[1/2,2]

|v−(m1v1+m3)/(−m2)|≤ Tε

MN

|R(v)|2dv

1/2

.

Now let ψ̃(x) be another C∞ function which majorizes the characteristic
function of [1/4, 4] and is 0 outside [−CT ε, CT ε], and also satisfies

∥ψ̃(j)∥∞ ≪j T
ε. Then∫

w∈[1/(2v1),2/v1]
|w−(m1+m3v

−1
1 )/(−m2)|≤ 2Tε

MN

|R(w)|2dw

is bounded by
1

MN
R̃
(
(m1 +m3v

−1
1 )/(−m2)

)2
where

R̃(u) =

(∫
[1/4,4]

MNψ̃
(
MN(u− w)

)
|R(w)|2dw

)1/2

.

They have an extra factor ψ̃(eu) in their integrand, but I don’t see why.
I see that later in §10 it has disappeared! Also they do not include a
domain of integration. But [1/4, 4] is reasonable and works.

We can treat the second integral the same way. Thus

I ′m ≪ 1

MN

∫
v∈[1/2,2]

|R(v)|R̃
(
m1v +m3

−vm2

)
R̃

(
m1v +m3

−m2

)
dv

Since the sums are symmetric in positive and negative values of m2 we
have just established
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Theorem 7.2(Proposition 7.2) For some M1, M with 0 < M1 ≤M ≤
T/N we have

S3 ≪
N2

M

∑
|m1|≍M1,|m2|≍|m3|≍M

Ĩm + T−100

where

Ĩm =

∫
v∈[1/2,2]

|R(v)|R̃
(
m1v +m3

vm2

)
R̃

(
m1v +m3

m2

)
dv.

Having belatedly introduced R̃ we should now restate the second part
of Lemma 8.3
Lemma 8.2�. For any M we have∫

v≍1

|R̃(v)|4 ≪ T εE(W ).

5. Affine Transformations

Here they obtain a rather general bound for objects of the kind

J(f) = sup
0<Mj≤M

∫
R

 ∑
mj≍Mj

f

(
m1u+m3

m2

)2

du

where f is smooth and compactly supported. They do not state the
region of integration, but in practice it will certainly be contained in
[1/4, 4] and probably in [1/2, 2].
Theorem 9.1.(Proposition 9.1.) Suppose that f is non-negative and
supported on [1/C,C] for some constant C > 1. Suppose also that for
all j ≥ 0

|f̂(ξ)| ≪j T
ε−j|ξ|j.

(or do they mean |f̂(ξ)| ≪j T
ε+j|ξ|−j? See their assertion at the top

of page 31.) Then

J(f) ≪ T εM6

(∫
R
f(u)du

)2

+ T εM4

∫
R
f(u)2du.

I am going to skip the proof of this for the time being, The proof is
not very illuminating. It is really analysis, not number theory, and I
wonder if there should be a more succinct and illuminating proof. I
am also puzzled by the hypothesis |f̂(ξ)| ≪j T

ε−j|ξ|j. Later they ask
for “rapid decay for |ξ| > T” which is not what is being asserted here.

I suspect that they mean |f̂(ξ)| ≪j T
ε+j|ξ|−j, and this is what I will

assume henceforward.
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6. A Further Bound for S3

Theorem 10.1.(Proposition 10.1) Suppose that W is a T ε separated
set contained in an interval of length T . Then

S3 ≪ε T
2+ε(cardW)3/2 + T 1+εN(cardW)1/2E(W)1/2.

This is a useful improvement compared with Theorem 8.1,

T 2+ε(cardW)1/2E(W)1/2,

when E(W) is between (cardW)2 and (cardW)3 in size. The proof is
now fairly straightforward.
Proof. Theorem 7.2 states that for some M1, M with 0 < M1 ≤ M ≤
T/N we have

S3 ≪
N2

M

∑
|m1|≍M1,

|m2|≍|m3|≍M

Ĩm + T−100

where

Ĩm =

∫
v∈[1/2,2]

|R(v)|R̃
(
m1v +m3

vm2

)
R̃

(
m1v +m3

m2

)
dv.

By the Cauchy-Schwarz inquality∑∗

m

R̃

(
m1v +m3

vm2

)
R̃

(
m1v +m3

m2

)

≤

(∑∗

m

R̃

(
m1v +m3

vm2

)2
)1/2(∑∗

m

R̃

(
m1v +m3

m2

)2
)1/2

where
∑∗

denotes summation over |m1| ≍ M1, |m2| ≍ |m3| ≍ M .

Hence by Hölder’s inequality

S3 ≪ T−100 +N2M−1S
1/2
3,1 S

1/4
3,3 S

1/4
3,4

where
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S3,1 =

∫
v∈[1/2,2]

|R(v)|2dv,

S3,3 =

∫
v∈[1/2,2]

(∑∗

m

R̃

(
m1v +m3

vm2

)2
)2

dv,

=

∫
v∈[1/2,2]

(∑∗

m

R̃

(
m1 +m3v

m2

)2
)2

dv,

S3,4 =

∫
v∈[1/2,2]

(∑∗

m

R̃

(
m1v +m3

m2

)2
)2

dv.

Note that in S3,3 we made the change of variable v → 1/v.
Since

S3,1 ≪ cardW

we have

S3 ≪ T−100 +N2M−1(cardW)1/2S
1/4
3,3 S

1/4
3,4

Recall that

R̃(u)2 =

∫
[1/4,4]

MNψ̃
(
MN(u− w)

)
|R(w)|2dw

and its Fourier transform is∫
R
R̃(u)2e(−uξ)du

=

∫
R

∫
[1/4,4]

MNψ̃
(
MN(u− w)

)
|R(w)|2dwe(−uξ)du

=

∫
[1/4,4]

|R(w)|2
∫
R
MNψ̃

(
MN(u− w)

)
e(−uξ)dudw.

Also recall that it is assumed that ∥ψ̃(j)∥∞ ≪j T
ε. Hence standard

integration by parts j times shows that this is

≪j (cardW)(MN)j|ξ|−jT ε

which seems to be consistent with what they probably intended to
assume in the hypothesis of Theorem 9.1. Thus we can apply that
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theorem to S3,3 and S3,4 with C = 2 and f(u) = R̃(u)2. Then∫
R
f(u)du =

∫
[1/4,4]

∫
R
MNψ̃

(
MN(u− w)

)
|R(w)|2dudw

≪
∫
[1/4,4]

|R(w)|2dw

≪ cardW .

and∫
R
f(u)2du =∫

[1/4,4]2

∫
R
M2N2ψ̃

(
MN(u− v1)

)
ψ̃
(
MN(u− v2)

)
du|R(v1)R(v2)|2dv.

In the latter integrand write |R(v1)R(v2)|2 ≤ |R(v1)|4 + |R(v2)|4 and
then proceed as before. Thus∫

R
f(u)2du≪

∫
[1/4,4]

|R(w)|4dw ≪ε T
εE(W)

and we obtain

max(S3,3, S3,4) ≪M6(cardW)2 +M4T εE(W).

Recalling that

S3 ≪ T−100 +N2M−1(cardW)1/2S
1/4
3,3 S

1/4
3,4

we have

S3 ≪ N2M2(cardW)3/2 + T εN2M(cardW)1/2E(W)1/2.

This completes the proof of Theorem 10.1.


