C:MeanLargeVals

THE SECOND SUM

1. REcAP
Recall

w € C*(R), suppw € [1,2], w(z) =1 (z € [6/5,9/5]),

he(w) = w(u)u®

and its Fourier transform
he(v) = / hi(u)e(—uv)du.
R

Theorem 4.6.[Proposition 4.6] Suppose that W is T¢ separated and
|Dn(t)| >V for eacht € W. Then

1/3
card W <, (N—i- < Z [m> >||b||2V_2.
mez3\ {0}

where

]m = N3 Z Btl—tz(mlN)iLQ—tg, (mQN)ItLt?)_tl (m3N)

tews

Thus we have reduced the investigation to bounding

Z [m251+52+53

meZ3\ {0}

where S; denotes the sum over m with exactly j of the m; being non-
zero. We already saw that
Theorem 5.1.(Proposition 5.1) We have

S <. T71°.
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Now is the turn of Sy where
So=N"" 3" > iy, (0)huy—ty (M1 N) gy, (maN)
me(Z\{0})2 tew?
Fhey 1y (M Ny 1y (0) 1y, (Mo N)
+ hey 1y (My N )iy —gy (Mo N) by, —y, (0)

= 3N3 Z Z }AltlftQ (mlN)]tLtQ*t3 <m2N>iLt3*t1 (O)
me(Z\{0})? tew?

= 3N? Z iLtS_tl (0) Z ﬁt1—t2 (m1N> Z iLt2—t3 (m2N)
tews m1€Z\{0} mo€Z\{0}

This is where Heath-Brown’s theorem comes into play.

First we require some preparation. When t; # t3 we have, by Lemma
4.3,

Ht3—t1 (0> < |t3 - tl’j < T—lOO
and for m # 0

. 1+ |t)?
ht(mN) < mZN?2 .

Thus the total contribution from the terms with #; # t3 is
< T_100T3(]. + T4)N—2 < T_IO.
The remaining terms contribute

= 3N3ﬁ0(0> Z Z Btl_tQ (mlN) Z Btz—tl (mQN)

teWw? m1€Z\{0} mo€Z\{0}

= 3N3BO(O> Z Z iltl—t2 (mlN) Z htZ—tl (_m2N)

teW? m1€Z\{0} mo€Z\{0}

=3N%ho(0) D | D huygy(mN)

tew? | meZ\{0}

since

Thus to summarise the story so far
2
Sy = 3N%ho(0) +O(T™1).

tew?

Z iLt1—t2 (mN)

meZ\{0}

Since, by Lemma 4.3,
ho(mN) < |m| N~
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and
o 0) = / w(u)du < 1,
R
the contribution of the terms with ¢; = t3 to the above sum is

< N3f2jT<< Tflo.

Thus
2
Sy < N* Y| " by, (mN)| + T
tew? | mez\{0}
t1#to

The sum over the pairs ¢, t5 is now divided dyadically according to
the size of |[t; — t3]. This quantity satisfies T° < |ty — t3] < T so
TEN~! < Jt; — t]N7! < TN~'. Thus we can suppose that 2/ <
[t — to] N71 < 27%1 for some integer j with T°(2N)~! < 2/ < 2TN-L.
There are <. logT choices for j. Hence by taking M = 27 we have

Sy <K

TN sup Z

T¢/(2N)<M<2T/N tew?
MN<|t1—ta|<2MN

2

Z ]Alh —t2 (mN)

meZ\{0}

+ 7710

At this point we employ

Lemma 6.2. Suppose that ¢ > 0, T' is sufficiently large in terms of
g, and N is a positive integer with T < N. Suppose also that M 1is
a positive real number with T¢/(2N) < M < 2T /N and MN < |t| <
2MN. Then

> h(mN)

mez\{0}

M) | gy + =100,

<. (MN)—I/Q/

lu|<T*®

1<m<TeM

We apply this with ¢t = t; — t5. Thus, by Schwarz’ inequality

2
du+ T2

2
Te

MN Jyyj<r-

mi(tl —to +u)

1<m<TeM

<

Z ;Altl —t2 (mN>

meZ\{0}
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and so
Sy K

2 2

T2€ sup / i Z Z mi(t1 —totu) du
M |’U,|<T5 M .
T¢/(2N)<M<2T/N - 2 1<m<TeM
MN<‘t17t2|§2MN
+ 7710

Put a(m) = a(m,u) = m™ Then
Sy K

T3 su E Z
p sup

M ul<re M 2
T¢/(2N)<M<2T/N te
MN<|t;—ta|<2MN

2

1<m<T<M

+ T*lO

Having worked really hard to get here we can now relax and throw
some things away! We have

2
2

N .
SQ < TS& sup —r alm ml(tl—m) + T—IO‘
Mu M 22 ZE ( )
M<2T/N tew? | 1ISm<T<M
u|<T*®

We divide the sum over M into < logT' dyadic ranges K < m < 2K
where K < T¢M. Thus

2
2

N o B
ser mp 3| S ammien] Lo
K§T1+E/N tEW2 K<m§2K
u|<T*=

We now pick extremal values for K and u. The only information about
a(m) = m™ that we will use is that |a(m)| = 1. Thus for some K <
T'eN-'and |u| <T°

2

Sy < T55£2 Z 410
2 K

tew?

Z a(m)mi(tl—tz)

K<m<2K

Thus we can just concentrate on

U= Z Z a(m)mith—t2)

tew? | K<m<2K

2
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By Holder’s inequality for any k£ € N we have

UF < (card W) 2 Z Z b(m)m ' —t2)

tew? | Kk<m<(2K)k

where
b(m) = Z a(my)...a(mg)
me (K, 2K]F
mi..mp=m
satisfies

[b(m)| < di.(m)
This is exactly the kind of expression considered by Heath-Brown.

Theorem 1.6(Heath-Brown). Let T be a 1-separated set of real num-
bers contained in an interval of length [—T,T] and suppose R = card T
and N > 1, and that the ¢, are complex numbers. Then there is a
positive constant ¢ such that

Z Z C(n>ni(t1*tz)

te7? | n=1

2
<

logT
exp (%) (NR + R? + R%T%) max nle(n)]?

We apply this to W*. For brevity write W = card W. Then
Uk <, WH2Te/ (K%W MW 4 KkW%T%) max  dy(m)?
Kk<m<(2K)*
so that ) .
U< T" <K2W2‘E L EKW? 4+ KW2‘@T%>
Thus we have established

Theorem 6.1(Proposition 6.1, Sy bound). For any k € N we have
Sp <. T (TNW2E 4 N*W? 4 N2 2Tk )

2. COMMENT

One thing that worries me a little bit here is that Guth and Maynard do
not keep track of the powers of T that arise in their arguments. They
blithely use the notation A $ B to just mean A < C'(¢)T°B. Normally
one can get round any build up of powers of T¢ with the observation
that the bounds hold for all small € and one can replace € by ¢/k for
a suitable k. However here ¢ is fixed by the assumption that W is ¢
separated. If one keeps track of the powers of T° as is done above one
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has the get out of gaol card at the end of the proof by observing that
any l-separated set can be divided into at most 7T° separated sets, so
one has a bound in the 1-separated case, of course dependent on &,
but which holds for any fixed ¢ > 0. Thus I think it would be more
satisfactory to state the final conclusions for 1-separated sets.



