THE SECOND SUM

1. Recap

Recall

$$
w \in C^{\infty}(\mathbb{R})
$$
, supp $w \in [1, 2]$, $w(x) = 1$ ($x \in [6/5, 9/5]$),

$$
h_t(u) = w(u)^2 u^{it}
$$

and its Fourier transform

$$
\hat{h}_t(v) = \int_{\mathbb{R}} h_t(u)e(-uv)du.
$$

Theorem 4.6. [Proposition 4.6] Suppose that W is T^{ε} separated and $|D_N(t)| > V$ for each $t \in \mathcal{W}$. Then

$$
\operatorname{card} W \ll_{\varepsilon} \left(N + \Big(\sum_{\mathbf{m} \in \mathbb{Z}^3 \backslash \{\mathbf{0}\}} I_{\mathbf{m}} \Big)^{1/3} \right) \| \mathbf{b} \|^2 V^{-2}.
$$

where

$$
I_{\mathbf{m}} = N^3 \sum_{\mathbf{t} \in \mathcal{W}^3} \hat{h}_{t_1 - t_2}(m_1 N) \hat{h}_{t_2 - t_3}(m_2 N) \hat{h}_{t_3 - t_1}(m_3 N).
$$

Thus we have reduced the investigation to bounding

$$
\sum_{\mathbf{m}\in\mathbb{Z}^3\backslash\{\mathbf{0}\}}I_{\mathbf{m}}=S_1+S_2+S_3.
$$

where S_j denotes the sum over **m** with exactly j of the m_j being nonzero. We already saw that

Theorem 5.1.(Proposition 5.1) We have

$$
S_1 \ll_{\varepsilon} T^{-10}.
$$

Now is the turn of S_2 where

$$
S_2 = N^3 \sum_{\mathbf{m} \in (\mathbb{Z}\backslash \{0\})^2} \sum_{\mathbf{t} \in \mathcal{W}^3} \hat{h}_{t_1 - t_2}(0) \hat{h}_{t_2 - t_3}(m_1 N) \hat{h}_{t_3 - t_1}(m_2 N)
$$

+ $\hat{h}_{t_1 - t_2}(m_1 N) \hat{h}_{t_2 - t_3}(0) \hat{h}_{t_3 - t_1}(m_2 N)$
+ $\hat{h}_{t_1 - t_2}(m_1 N) \hat{h}_{t_2 - t_3}(m_2 N) \hat{h}_{t_3 - t_1}(0)$
= $3N^3 \sum_{\mathbf{m} \in (\mathbb{Z}\backslash \{0\})^2} \sum_{\mathbf{t} \in \mathcal{W}^3} \hat{h}_{t_1 - t_2}(m_1 N) \hat{h}_{t_2 - t_3}(m_2 N) \hat{h}_{t_3 - t_1}(0)$
= $3N^3 \sum_{\mathbf{t} \in \mathcal{W}^3} \hat{h}_{t_3 - t_1}(0) \sum_{m_1 \in \mathbb{Z}\backslash \{0\}} \hat{h}_{t_1 - t_2}(m_1 N) \sum_{m_2 \in \mathbb{Z}\backslash \{0\}} \hat{h}_{t_2 - t_3}(m_2 N).$

This is where Heath-Brown's theorem comes into play.

First we require some preparation. When $t_1 \neq t_3$ we have, by Lemma 4.3,

$$
\hat{h}_{t_3-t_1}(0) \ll |t_3-t_1|^j \ll T^{-100}
$$

and for $m\neq 0$

$$
\hat{h}_t(mN) \ll \frac{1+|t|^2}{m^2N^2}.
$$

Thus the total contribution from the terms with $t_1 \neq t_3$ is

$$
\ll T^{-100}T^3(1+T^4)N^{-2} \ll T^{-10}.
$$

The remaining terms contribute

$$
= 3N^{3}\hat{h}_{0}(0) \sum_{\mathbf{t}\in\mathcal{W}^{2}} \sum_{m_{1}\in\mathbb{Z}\backslash\{0\}} \hat{h}_{t_{1}-t_{2}}(m_{1}N) \sum_{m_{2}\in\mathbb{Z}\backslash\{0\}} \hat{h}_{t_{2}-t_{1}}(m_{2}N)
$$

\n
$$
= 3N^{3}\hat{h}_{0}(0) \sum_{\mathbf{t}\in\mathcal{W}^{2}} \sum_{m_{1}\in\mathbb{Z}\backslash\{0\}} \hat{h}_{t_{1}-t_{2}}(m_{1}N) \sum_{m_{2}\in\mathbb{Z}\backslash\{0\}} \hat{h}_{t_{2}-t_{1}}(-m_{2}N)
$$

\n
$$
= 3N^{3}\hat{h}_{0}(0) \sum_{\mathbf{t}\in\mathcal{W}^{2}} \left| \sum_{m\in\mathbb{Z}\backslash\{0\}} \hat{h}_{t_{1}-t_{2}}(mN) \right|^{2}
$$

since

$$
\hat{h}_{-t}(-v) = \int_{\mathbb{R}} w(u)^2 u^{-it} e(vu) du = \overline{\hat{h}_t(v)}.
$$

Thus to summarise the story so far

$$
S_2 = 3N^3 \hat{h}_0(0) \sum_{t \in W^2} \left| \sum_{m \in \mathbb{Z} \setminus \{0\}} \hat{h}_{t_1 - t_2}(mN) \right|^2 + O(T^{-10}).
$$

Since, by Lemma 4.3,

$$
\hat{h}_0(mN) \ll |m|^{-j}N^{-j}
$$

and

$$
\hat{h}_0(0) = \int_{\mathbb{R}} w(u)^2 du \ll 1,
$$

the contribution of the terms with $t_1 = t_2$ to the above sum is

$$
\ll N^{3-2j}T \ll T^{-10}.
$$

Thus

$$
S_2 \ll N^3 \sum_{\substack{\mathbf{t} \in \mathcal{W}^2 \\ t_1 \neq t_2}} \left| \sum_{m \in \mathbb{Z} \setminus \{0\}} \hat{h}_{t_1 - t_2}(m) \right|^2 + T^{-10}.
$$

The sum over the pairs t_1 , t_2 is now divided dyadically according to the size of $|t_1 - t_2|$. This quantity satisfies $T^{\varepsilon} < |t_1 - t_2| \leq T$ so $T^{\varepsilon}N^{-1} \leq |t_1-t_2|N^{-1} \leq TN^{-1}$. Thus we can suppose that $2^{j} <$ $|t_1 - t_2| N^{-1} \leq 2^{j+1}$ for some integer j with $T^{\varepsilon}(2N)^{-1} < 2^j \leq 2TN^{-1}$. There are $\ll_{\varepsilon} \log T$ choices for j. Hence by taking $M = 2^j$ we have

$$
S_2 \ll
$$

$$
T^{\varepsilon}N^{3}\sup_{T^{\varepsilon}/(2N)\leq M\leq 2T/N}\sum_{\substack{M\\MN<|t_{1}-t_{2}|\leq 2MN}}\left|\sum_{m\in\mathbb{Z}\setminus\{0\}}\hat{h}_{t_{1}-t_{2}}(mN)\right|^{2}+T^{-10}.
$$

At this point we employ

Lemma 6.2. Suppose that $\varepsilon > 0$, T is sufficiently large in terms of ε , and N is a positive integer with $T^{\varepsilon} \leq N$. Suppose also that M is a positive real number with $T^{\varepsilon}/(2N) < M < 2T/N$ and $MN < |t| \le$ 2MN. Then

$$
\left|\sum_{m\in\mathbb{Z}\setminus\{0\}}\hat{h}_t(mN)\right|\ll_{\varepsilon} (MN)^{-1/2}\int_{|u|\leq T^{\varepsilon}}\left|\sum_{1\leq m\leq T^{\varepsilon}M}m^{i(t+u)}\right|du+T^{-100}.
$$

We apply this with $t = t_1 - t_2$. Thus, by Schwarz' inequality

$$
\left| \sum_{m \in \mathbb{Z} \backslash \{0\}} \hat{h}_{t_1 - t_2}(mN) \right|^2 \ll \frac{T^{\varepsilon}}{MN} \int_{|u| \le T^{\varepsilon}} \left| \sum_{1 \le m \le T^{\varepsilon}M} m^{i(t_1 - t_2 + u)} \right|^2 du + T^{-200}
$$

and so

$$
S_2 \ll \sup_{T^{\varepsilon}/(2N) \le M \le 2T/N} \int_{|u| \le T^{\varepsilon}} \frac{N^2}{M} \sum_{\substack{\mathbf{t} \in \mathcal{W}^2 \\ MN < |t_1 - t_2| \le 2MN}} \left| \sum_{1 \le m \le T^{\varepsilon}M} m^{i(t_1 - t_2 + u)} \right|^2 du + T^{-10}
$$

Put $a(m) = a(m, u) = m^{iu}$ Then

$$
S_2 \ll \sum_{\substack{M \\ T^{\varepsilon}/(2N) \le M \le 2T/N}} \sup_{|u| \le T^{\varepsilon}} \frac{N^2}{M} \sum_{\substack{\mathbf{t} \in \mathcal{W}^2 \\ MN < |t_1 - t_2| \le 2MN}} \left| \sum_{1 \le m \le T^{\varepsilon}M} a(m)m^{i(t_1 - t_2)} \right|^2 + T^{-10}
$$

Having worked really hard to get here we can now relax and throw some things away! We have

2

$$
S_2 \ll T^{3\varepsilon} \sup_{\substack{M,u\\M \leq 2T/N\\|u| \leq T^{\varepsilon}}} \frac{N^2}{M} \sum_{\mathbf{t} \in \mathcal{W}^2} \left| \sum_{1 \leq m \leq T^{\varepsilon}M} a(m)m^{i(t_1 - t_2)} \right|^2 + T^{-10}.
$$

We divide the sum over M into $\ll \log T$ dyadic ranges $K < m \leq 2K$ where $K \leq T^{\varepsilon}M$. Thus

$$
S_2 \ll T^{4\varepsilon} \sup_{\substack{K,u\\ K \leq T^{1+\varepsilon}/N\\ |u| \leq T^{\varepsilon}}} \frac{N^2}{K} \sum_{\mathbf{t} \in \mathcal{W}^2} \left| \sum_{K < m \leq 2K} a(m) m^{i(t_1 - t_2)} \right|^2 + T^{-10}
$$

We now pick extremal values for K and u . The only information about $a(m) = m^{iu}$ that we will use is that $|a(m)| = 1$. Thus for some $K \leq$ $T^{1+\varepsilon}N^{-1}$ and $|u| \leq T^{\varepsilon}$

$$
S_2 \ll T^{5\varepsilon} \frac{N^2}{K} \sum_{\mathbf{t} \in \mathcal{W}^2} \left| \sum_{K < m \leq 2K} a(m) m^{i(t_1 - t_2)} \right|^2 + T^{-10}
$$

Thus we can just concentrate on

$$
\Psi = \sum_{\mathbf{t} \in \mathcal{W}^2} \left| \sum_{K < m \leq 2K} a(m) m^{i(t_1 - t_2)} \right|^2.
$$

By Hölder's inequality for any $k \in \mathbb{N}$ we have

$$
\Psi^k \ll (\text{card }\mathcal{W})^{2k-2} \sum_{\mathbf{t} \in \mathcal{W}^2} \left| \sum_{K^k < m \leq (2K)^k} b(m) m^{i(t_1 - t_2)} \right|^2
$$

where

$$
b(m) = \sum_{\substack{\mathbf{m} \in (K, 2K]^k \\ m_1 \dots m_k = m}} a(m_1) \dots a(m_k)
$$

satisfies

$$
|b(m)| \leq d_k(m)
$$

This is exactly the kind of expression considered by Heath-Brown.

Theorem 1.6(Heath-Brown). Let $\mathcal T$ be a 1-separated set of real numbers contained in an interval of length $[-T, T]$ and suppose $R = \text{card } \mathcal{T}$ and $N \geq 1$, and that the c_n are complex numbers. Then there is a positive constant c such that

$$
\sum_{\mathbf{t}\in\mathcal{T}^2} \left| \sum_{n=1}^N c(n)n^{i(t_1-t_2)} \right|^2 \ll \exp\left(\frac{c\log T}{\log\log T}\right) \left(NR + R^2 + R^{\frac{5}{4}}T^{\frac{1}{2}}\right) \max_{n\leq N} n|c(n)|^2
$$

We apply this to Ψ^k . For brevity write $W = \text{card } W$. Then $\Psi^k \ll_{\varepsilon} W^{2k-2} T^{\varepsilon/2} \left(K^{2k} W + K^k W^2 + K^k W^{\frac{5}{4}} T^{\frac{1}{2}} \right) \max_{K^k < m \leq (2K)^k} d_k(m)^2$

so that

$$
\Psi \ll_{\varepsilon} T^{\varepsilon} \left(K^2 W^{2 - \frac{1}{k}} + KW^2 + KW^{2 - \frac{3}{4k}} T^{\frac{1}{2k}} \right)
$$

Thus we have established

Theorem 6.1(Proposition 6.1, S_2 bound). For any $k \in \mathbb{N}$ we have

$$
S_2 \ll_{\varepsilon} T^{7\varepsilon} \left(T N W^{2-\frac{1}{k}} + N^2 W^2 + N^2 W^{2-\frac{3}{4k}} T^{\frac{1}{2k}} \right)
$$

2. Comment

One thing that worries me a little bit here is that Guth and Maynard do not keep track of the powers of T^{ϵ} that arise in their arguments. They blithely use the notation $A \leq B$ to just mean $A \leq C(\varepsilon)T^{\varepsilon}B$. Normally one can get round any build up of powers of T^{ε} with the observation that the bounds hold for all small ε and one can replace ε by ε/k for a suitable k. However here ε is fixed by the assumption that W is ε separated. If one keeps track of the powers of T^{ε} as is done above one

6 THE SECOND SUM

has the get out of gaol card at the end of the proof by observing that any 1-separated set can be divided into at most T^{ε} separated sets, so one has a bound in the 1-separated case, of course dependent on ε , but which holds for any fixed $\varepsilon > 0$. Thus I think it would be more satisfactory to state the final conclusions for 1-separated sets.