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THE SECOND SUM

1. Recap

Recall

w ∈ C∞(R), suppw ∈ [1, 2], w(x) = 1 (x ∈ [6/5, 9/5]),

ht(u) = w(u)2uit

and its Fourier transform

ĥt(v) =

∫
R
ht(u)e(−uv)du.

Theorem 4.6.[Proposition 4.6] Suppose that W is T ε separated and
|DN(t)| > V for each t ∈ W. Then

cardW ≪ε

(
N +

( ∑
m∈Z3\{0}

Im

)1/3)
∥b∥2V −2.

where

Im = N3
∑
t∈W3

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N).

Thus we have reduced the investigation to bounding∑
m∈Z3\{0}

Im = S1 + S2 + S3.

where Sj denotes the sum over m with exactly j of the mj being non-
zero. We already saw that
Theorem 5.1.(Proposition 5.1) We have

S1 ≪ε T
−10.
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Now is the turn of S2 where

S2 = N3
∑

m∈(Z\{0})2

∑
t∈W3

ĥt1−t2(0)ĥt2−t3(m1N)ĥt3−t1(m2N)

+ĥt1−t2(m1N)ĥt2−t3(0)ĥt3−t1(m2N)

+ ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(0)

= 3N3
∑

m∈(Z\{0})2

∑
t∈W3

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(0)

= 3N3
∑
t∈W3

ĥt3−t1(0)
∑

m1∈Z\{0}

ĥt1−t2(m1N)
∑

m2∈Z\{0}

ĥt2−t3(m2N).

This is where Heath-Brown’s theorem comes into play.
First we require some preparation. When t1 ̸= t3 we have, by Lemma

4.3,

ĥt3−t1(0) ≪ |t3 − t1|j ≪ T−100

and for m ̸= 0

ĥt(mN) ≪ 1 + |t|2

m2N2
.

Thus the total contribution from the terms with t1 ̸= t3 is

≪ T−100T 3(1 + T 4)N−2 ≪ T−10.

The remaining terms contribute

= 3N3ĥ0(0)
∑
t∈W2

∑
m1∈Z\{0}

ĥt1−t2(m1N)
∑

m2∈Z\{0}

ĥt2−t1(m2N)

= 3N3ĥ0(0)
∑
t∈W2

∑
m1∈Z\{0}

ĥt1−t2(m1N)
∑

m2∈Z\{0}

ĥt2−t1(−m2N)

= 3N3ĥ0(0)
∑
t∈W2

∣∣∣∣∣ ∑
m∈Z\{0}

ĥt1−t2(mN)

∣∣∣∣∣
2

since

ĥ−t(−v) =

∫
R
w(u)2u−ite(vu)du = ĥt(v).

Thus to summarise the story so far

S2 = 3N3ĥ0(0)
∑
t∈W2

∣∣∣∣∣ ∑
m∈Z\{0}

ĥt1−t2(mN)

∣∣∣∣∣
2

+O(T−10).

Since, by Lemma 4.3,

ĥ0(mN) ≪ |m|−jN−j
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and

ĥ0(0) =

∫
R
w(u)2du ≪ 1,

the contribution of the terms with t1 = t2 to the above sum is

≪ N3−2jT ≪ T−10.

Thus

S2 ≪ N3
∑
t∈W2

t1 ̸=t2

∣∣∣∣∣ ∑
m∈Z\{0}

ĥt1−t2(mN)

∣∣∣∣∣
2

+ T−10.

The sum over the pairs t1, t2 is now divided dyadically according to
the size of |t1 − t2|. This quantity satisfies T ε < |t1 − t2| ≤ T so
T εN−1 ≤ |t1 − t2|N−1 ≤ TN−1. Thus we can suppose that 2j <
|t1 − t2|N−1 ≤ 2j+1 for some integer j with T ε(2N)−1 < 2j ≤ 2TN−1.
There are ≪ε logT choices for j. Hence by taking M = 2j we have

S2 ≪

T εN3 sup
M

T ε/(2N)≤M≤2T/N

∑
t∈W2

MN<|t1−t2|≤2MN

∣∣∣∣∣ ∑
m∈Z\{0}

ĥt1−t2(mN)

∣∣∣∣∣
2

+ T−10.

At this point we employ
Lemma 6.2. Suppose that ε > 0, T is sufficiently large in terms of
ε, and N is a positive integer with T ε ≤ N . Suppose also that M is
a positive real number with T ε/(2N) < M < 2T/N and MN < |t| ≤
2MN . Then∣∣∣∣∣ ∑

m∈Z\{0}

ĥt(mN)

∣∣∣∣∣≪ε (MN)−1/2

∫
|u|≤T ε

∣∣∣∣∣ ∑
1≤m≤T εM

mi(t+u)

∣∣∣∣∣du+ T−100.

We apply this with t = t1 − t2. Thus, by Schwarz’ inequality∣∣∣∣∣ ∑
m∈Z\{0}

ĥt1−t2(mN)

∣∣∣∣∣
2

≪ T ε

MN

∫
|u|≤T ε

∣∣∣∣∣ ∑
1≤m≤T εM

mi(t1−t2+u)

∣∣∣∣∣
2

du+T−200
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and so

S2 ≪

T 2ε sup
M

T ε/(2N)≤M≤2T/N

∫
|u|≤T ε

N2

M

∑
t∈W2

MN<|t1−t2|≤2MN

∣∣∣∣∣ ∑
1≤m≤T εM

mi(t1−t2+u)

∣∣∣∣∣
2

du

+ T−10

Put a(m) = a(m,u) = miu Then

S2 ≪

T 3ε sup
M

T ε/(2N)≤M≤2T/N

sup
|u|≤T ε

N2

M

∑
t∈W2

MN<|t1−t2|≤2MN

∣∣∣∣∣ ∑
1≤m≤T εM

a(m)mi(t1−t2)

∣∣∣∣∣
2

+ T−10

Having worked really hard to get here we can now relax and throw
some things away! We have

S2 ≪ T 3ε sup
M,u

M≤2T/N
|u|≤T ε

N2

M

∑
t∈W2

∣∣∣∣∣ ∑
1≤m≤T εM

a(m)mi(t1−t2)

∣∣∣∣∣
2

+ T−10.

We divide the sum over M into ≪ log T dyadic ranges K < m ≤ 2K
where K ≤ T εM . Thus

S2 ≪ T 4ε sup
K,u

K≤T 1+ε/N
|u|≤T ε

N2

K

∑
t∈W2

∣∣∣∣∣ ∑
K<m≤2K

a(m)mi(t1−t2)

∣∣∣∣∣
2

+ T−10

We now pick extremal values for K and u. The only information about
a(m) = miu that we will use is that |a(m)| = 1. Thus for some K ≤
T 1+εN−1 and |u| ≤ T ε

S2 ≪ T 5εN
2

K

∑
t∈W2

∣∣∣∣∣ ∑
K<m≤2K

a(m)mi(t1−t2)

∣∣∣∣∣
2

+ T−10

Thus we can just concentrate on

Ψ =
∑
t∈W2

∣∣∣∣∣ ∑
K<m≤2K

a(m)mi(t1−t2)

∣∣∣∣∣
2

.
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By Hölder’s inequality for any k ∈ N we have

Ψk ≪ (cardW)2k−2
∑
t∈W2

∣∣∣∣∣ ∑
Kk<m≤(2K)k

b(m)mi(t1−t2)

∣∣∣∣∣
2

where
b(m) =

∑
m∈(K,2K]k
m1...mk=m

a(m1) . . . a(mk)

satisfies
|b(m)| ≤ dk(m)

This is exactly the kind of expression considered by Heath-Brown.

Theorem 1.6(Heath-Brown). Let T be a 1-separated set of real num-
bers contained in an interval of length [−T, T ] and suppose R = card T
and N ≥ 1, and that the cn are complex numbers. Then there is a
positive constant c such that

∑
t∈T 2

∣∣∣∣∣
N∑

n=1

c(n)ni(t1−t2)

∣∣∣∣∣
2

≪

exp

(
c log T

log log T

)(
NR +R2 +R

5
4T

1
2

)
max
n≤N

n|c(n)|2

We apply this to Ψk. For brevity write W = cardW . Then

Ψk ≪ε W
2k−2T ε/2

(
K2kW +KkW 2 +KkW

5
4T

1
2

)
max

Kk<m≤(2K)k
dk(m)2

so that
Ψ ≪ε T

ε
(
K2W 2− 1

k +KW 2 +KW 2− 3
4kT

1
2k

)
Thus we have established

Theorem 6.1(Proposition 6.1, S2 bound). For any k ∈ N we have

S2 ≪ε T
7ε
(
TNW 2− 1

k +N2W 2 +N2W 2− 3
4kT

1
2k

)
2. Comment

One thing that worries me a little bit here is that Guth and Maynard do
not keep track of the powers of T ε that arise in their arguments. They
blithely use the notation A ⪅ B to just mean A ≤ C(ε)T εB. Normally
one can get round any build up of powers of T ε with the observation
that the bounds hold for all small ε and one can replace ε by ε/k for
a suitable k. However here ε is fixed by the assumption that W is ε
separated. If one keeps track of the powers of T ε as is done above one
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has the get out of gaol card at the end of the proof by observing that
any 1-separated set can be divided into at most T ε separated sets, so
one has a bound in the 1-separated case, of course dependent on ε,
but which holds for any fixed ε > 0. Thus I think it would be more
satisfactory to state the final conclusions for 1-separated sets.


