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SECTION 11

1. Recap

Recall

w ∈ C∞(R), suppw ∈ [1, 2], w(x) = 1 (x ∈ [6/5, 9/5]),

ht(u) = w(u)2uit

and its Fourier transform

ĥt(v) =

∫
R
ht(u)e(−uv)du.

Suppose that W is T ε separated. Then∑
t∈W

|Dn(it)|2 ≪ε

(
N +

( ∑
m∈Z3\{0}

Im

)1/3) 2N∑
n=N+1

|bn|2. (1.1) eq:one1

where

DN(s) =
2N∑

n=N+1

bnn
s (1.2) eq:one2

and

Im = N3
∑
t∈W3

ĥt1−t2(m1N)ĥt2−t3(m2N)ĥt3−t1(m3N). (1.3) eq:one3

Theorem 4.6.(Proposition 4.6) Suppose that W is T ε separated and
|DN(t)| > V for each t ∈ W. Then

cardW ≪ε

(
N +

( ∑
m∈Z3\{0}

Im

)1/3)
∥b∥2V −2.

Thus we have reduced the investigation to bounding∑
m∈Z3\{0}

Im = S1 + S2 + S3.

where Sj denotes the sum over m with exactly j of the mj being non-
zero. We already saw that
Theorem 5.1(Proposition 5.1, S1 bound) Suppose that W is T ε sep-
arated. Then

S1 ≪ε T
−10.
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2 SECTION 11

Theorem 6.1(Proposition 6.1, S2 bound). Suppose that W is T ε sep-
arated. Then for any k ∈ N we have

S2 ≪ε T
7ε
(
TNW 2− 1

k +N2W 2 +N2W 2− 3
4kT

1
2k

)
Theorem 8.1.(Proposition 8.1) Suppose that W is a T ε separated set
in an interval of length T . Then

S3 ≪ T 2+ε(cardW)1/2E(W)1/2

where

E(W) = card{t ∈ W4 : |t1 − t2 + t3 − t4| < 1}.
Theorem 10.1.(Proposition 10.1) Suppose that W is a T ε separated
set contained in an interval of length T . Then

S3 ≪ε T
2+ε(cardW)3/2 + T 1+εN(cardW)1/2E(W)1/2.

This is a useful improvement compared with Theorem 8.1 when E(W)
is between (cardW)2 and (cardW)3 in size.

2. Energy Bound

Here they are concerned with the interrelationship between Dirichlet
polynomials and E(W) when either is large. As usual we suppose that

DN(s) =
2N∑

n=N+1

bnn
s

with |bn| ≤ 1.
Theorem 11.2 (Proposition 11.2.) Suppose that W is a 1-separated set
contained in an interval of length T , that T ≥ N3/4 and that σ ∈ [0, 1]
is such that DN(it) ≥ Nσ for t ∈ W. Let R = cardW. Then

S3 ≪ T 2+εR3/2 + TRN3−2σ + T 9/8R29/16N3/2−σ.

This depends on inserting the following in Theorem 10.1.
Theorem 11.1 (Proposition 11.1.) Suppose that W is a 1-separated
set contained in an interval of length T , that N3/4 ≤ T ≤ N and that
σ ∈ [0, 1] is such that DN(it) ≥ Nσ for t ∈ W. Let R = cardW. Then

E(W) ≪ T εRN4−4σ + T
1
4
+εR21/8N1−2σ + T εR3N1−2σ.

The proof of Theorem 11.1 is quite complex and is divided into lem-
mas.
Lemma 11.3 We have

DN(it) ≪A

∫ t+T ε

t−T ε

|DN(iu)|du+ T−A.
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The proof has some more nonsense in it, including a spurious factor
w(n/N)!

Proof. Let ψ(x) be a C∞ with the properties that ψ(x) = 1 when
logN ≤ 2πx ≤ log(2N), that there is a constant C > 1 such that
ψ(x) = 0 when 2πx ≤ log(N/C) and when 2πx ≥ log(NC), and that

for every j ∈ N we have ψ̂(ξ) ≪j |ξ|−j. Then

DN(it) =
2N∑

n=N+1

bnn
itψ

(
log n

2π

)

=
2N∑

n=N+1

bnn
it

∫
R
ψ̂(ξ)e

(
ξ(log n)

2π

)
dξ.

Since ψ is real the above is

=
2N∑

n=N+1

bnn
it

∫
R
ψ̂(ξ)e

(
−ξ(log n)

2π

)
dξ

=

∫
R
ψ̂(ξ)DN(it− iξ)dξ.

The usual integration by parts argument gives the conclusion. □

This is used in the proof of the next lemma.
Lemma 11.4. Recall that

R(u) =
∑
t∈W

uit

and we are assuming σ ∈ [0, 1] is such that DN(it) ≥ Nσ for t ∈ W.
Then

E(W) ≪ T εN−2σ
∑

n1,n2∼N

|R(n1/n2)|3.

The is more nonsense in the proof with spurious factors of w(n/N)!
They also say that W is T ε-separated when the hypothesis of the the-
orem says 1-separated.

Proof. We have, by Lemma 11.3,

E(W) ≤
∑
t∈W4

|t1−t2+t3−t4|≤1

N−2σ|DN(it4)|2

≪A T
−A +N−2σ

∑
t∈W4

|t1−t2+t3−t4|≤1

∫
|u−t4|≤T ε

|DN(iu)|2du
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Since the next bound is trivial when E(W) = 0 we may suppose
E(W) ≥ 1 and then suppress the T−A. Also, since W is 1-separated,
given t1, t2, t3 there are ≪ 1 choices for t4. Thus E(W)

≪ N−2σ
∑
t∈W3

∫
|v|≤2T ε

|DN(iv + it1 − it2 + it3)|2dv

= N−2σ
∑

N<n1,n2≤2N

an1an2

∫
|v|≤2T ε

∑
t∈W3

(n1/n2)
iv+it1−it2+it3dv

= N−2σ
∑

N<n1,n2≤2N

an1an2

∫
|v|≤2T ε

(n1/n2)
ivR(n1/n2)

2R(n2/n1)dv

≪ N−2σ
∑

N<n1,n2≤2N

|R(n1/n2)|3.

□

At this point they use Heath-Brown’s result to bound the second
moment of R. Recall that this says that if W is a 1-separated subset
of an interval of length T , and |bn| ≪ T ε, then∑

t∈W2

|DN(it1 − it2)|2

≪ T ε(card(W)2N + card(W)N2 + card(W)5/4T 1/2N).

Lemma 11.5. For any M ≥ 1 we have∑
M≤n1,n2≤2M

|R(n1/n2)|2

≪ T ε
(
card(W)M2 + card(W)2M + card(W)5/4T 1/2M

)
.

Proof. Note that∑
M<n1,n2≤2M

|R(n1/n2)|2 =
∑

M<n1,n2≤2M

∑
t∈W2

(n1/n2)
it1−it2

=
∑
t∈W2

∑
M<n1,n2≤2M

(n1/n2)
it1−it2

=
∑
t∈W2

|DN(it1 − it2)|2

□

Corollary. (Lemma 1.7) We are assuming σ ∈ [0, 1] is such that
DN(it) ≥ Nσ for t ∈ W. Suppose also that N ≥ T 2/3. Then

E(W) ≪ T ε
(
card(W)2N2−2σ + card(W)3N1−2σ

)
.
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Proof. Lemma 11.4 and the crude bound R(n1/n2)| ≤ card(W) gives
the above and an extra term

card(W)9/4T 1/2N1−2σ ≤ card(W)9/4N7/4−2σ

=
(
card(W)2N2−2σ

)1/4(
card(W)3N1−2σ

)3/4
□

It seems that this is good enough to break the Huxley barrier, but
they go on to make an improvement when E(W) is very large.
The above is wasteful in that it uses the crude estimate R(n1/n2)| ≤

card(W). To avoid this one needs to invoke the fourth moment.
Lemma 11.6. For any M ≥ 1 we have∑

n∈[M,2M ]2

|R(n1/n2)|4

≪ T ε
(
M2E(W) +M card(W)4 +MT 1/2E(W)3/4 card(W)

)
.

I think much of this material can be streamlined by using the observa-
tion that we made earlier, namely that in bounding E(W) it suffices
to do so when the elements t of W are integers. Another observa-
tion which comes home to roost later is that in dealing with objects
like R(n1/n2) one should really reduce (as quickly as possible) to the
case (n1, n2) = 1. A further observation is that then the points n1/n2

are discrete and well spaced and one can use the technology that was
developed to treat the large sieve.

Proof. For u ∈ Z let r(u) denote the number of pairs t ∈ W2 such
that ⌊t1 − t2⌋ = u and then let UB denote the set of u ∈ Z such that
B ≤ r(u) ≤ 2B. Since for UB ̸= ∅ we must have for each u ∈ UB that
1 ≤ r(u) ≤ card(W) it follows that 1

2
B ≤ card(W) = R, say. Also

every u for which r(u) ̸= 0 will be in some set UB with B = 2j for some
j with −1 ≤ j ≪ log card(W). Thus

|R(x)|2 =
∑
B=2j

∑
u∈UB

∑
t∈W2

⌊t1−t2⌋=u

xit1−it2 .

Therefore by the Cauchy-Schwarz inequality

|R(x)|4 ≪ (log T )
∑
B=2j

∣∣∣∣∣∣∣∣
∑
u∈UB

∑
t∈W2

⌊t1−t2⌋=u

xit1−it2

∣∣∣∣∣∣∣∣
2

.
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Hence∑
n∈[M,2M ]2

|R(n1/n2)|4

≪ (log T )
∑
B=2j

∑
n∈[M,2M ]2

∣∣∣∣∣ ∑
u∈UB

∑
t∈W2

⌊t1−t2⌋=u

(n1/n2)
it1−it2

∣∣∣∣∣
2

Opening out the inside multiple sum on the right gives for each given
B = 2j∑

u∈U2
B

∑
t∈W4

⌊t1−t2⌋=u1

⌊t3−t4⌋=u2

∑
n1∈[M,2M ]

nit1−it2+it3−it4
1

∑
n2∈[M,2M ]

nit2−it1+it4−it3
2 .

At this point there are some circumlocutions because the tj are not
necessarily integers. For the purposes of this exposition I will assume
they are, since our earlier observation means that one can always reduce
to that case anyway. If you want to see the unnecessary details feel
free to look at the ArXiv paper. Thus assuming integrality the above
becomes ∑

u∈U2
B

r(u1)r(u2)

∣∣∣∣∣ ∑
n∈[M,2M ]

niu1−iu2

∣∣∣∣∣
2

.

Hence∑
n∈[M,2M ]2

|R(n1/n2)|4 ≪ (log T )
∑
B=2j

B2
∑
u∈U2

B

∣∣∣∣∣ ∑
n∈[M,2M ]

niu1−iu2

∣∣∣∣∣
2

.

Once more we can apply Heath-Brown’s theorem and obtain∑
n∈[M,2M ]2

|R(n1/n2)|4 ≪ (log T )
∑
B=2j

B2
(
M2 card(UB)

+M card(UB)
2 + T 1/2M card(UB)

5/4
)
.

The lemma then follows from the observations that B card(UB) ≪
card(W)2 and B2 card(UB) ≪ E(W). □

At this point they observe that there is some advantage in looking
at d = gcd(n1, n2). This will mean that n can be replaced by N/d in
the bounds and if there is a term in the bound of the form (N/d)θ with
θ > 1 then there are further savings to be had from summing over d
separately. Also puttingmj = nj/d since now we have gcd(m1,m2) = 1
the fractions m1/m2 are well spaced and one can use the technology of



SECTION 11 7

the large sieve. Since time is short and the technology is well under-
stood I will just state the results.
Lemma 11.8. We have∑

n∈[N,2N ]2

gcd(n1,n2)≤∆

|R(n1/n2)|3 ≪ (N2 + T∆)E(W)1/2
(
card(W)

)1/2
.

Lemma 11.9 Suppose that N ≥ T 3/4. Then∑
n∈[N,2N ]2

gcd(n1,n2)≥N2/T

|R(n1/n2)|3 ≪ N
(
card(W)

)3
+

NT 1/4
(
card(W)

)21/8
+ E(W)1/2

(
card(W)

)1/2
N2.

Now we can complete the proof of Theorem 11.1. Lemma 11.4 gives

E(W) ≪ T εN−2σ
∑

n∈[N,2N ]2

|R(n1/n2)|3.

Then we apply Lemma 11.8 when gcd(n1, n2) ≤ N2/T and Lemma 11.9
in the contrary case. Of course N2/T has been chosen as the optimal
choice, i.e. the bounds are the same. This gives
Theorem 11.1 (Proposition 11.1.) Suppose that W is a 1-separated
set contained in an interval of length T , that N3/4 ≤ T ≤ N and that
σ ∈ [0, 1] is such that DN(it) ≥ Nσ for t ∈ W. Let R = cardW. Then

E(W) ≪ T εRN4−4σ + T
1
4
+εR21/8N1−2σ + T εR3N1−2σ.


