
C:MeanLargeVals
LARGE VALUES OF DIRICHLET POLYNOMIALS

1. Introduction and Notation

This is a brief overview with proofs of the classical large values bound
for Dirichlet polynomials

D(s) =
N∑

n=1

ann
−s (1.1) eq:one1

that is quoted in Guth-Maynard. Here the an n = 1, . . . N are complex
numbers, where N ∈ N, and as usual with Dirichlet series and polyno-
mials s = σ + it is a complex number with real and imaginary parts σ
and t. We will suppose that T is a real number with

T ≥ 1, (1.2) eq:one2

R ∈ N and the sr = σr + itr with 1 ≤ r ≤ R are R complex numbers
which satisfy

0 ≤ σ0 ≤ σr ≤ 1 and |tq − tr| ≥ 1 (1 ≤ q < r ≤ R) (1.3) eq:one3

for some σ0 ∈ [0, 1].
We note that R− 1 ≤ maxr tr −minr tr ≤ T , so that

R ≤ T + 1. (1.4) eq:one4

We also introduce the peculiar notation

G =
N∑

n=1

|an|2n−2σ0 . (1.5) eq:one5

We are in particular concerned with bounding the number

R(V ) = card{1 ≤ r ≤ R : |D(sr)| ≥ V } (1.6) eq:one6

where V is a positive parameter at our disposal, in terms of N, T, C, V .
Such estimates are largely equivalent to bounds for

R∑
r=1

|D(sr)|2

as can be seen as follows. We have

R(V ) ≤ V −2

R∑
r=1

|D(sr)|2 (1.7) eq:one7
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and
R∑

r=1

|D(sr)|2 ≤ RV 2 +

∫ D

V

2XR(X)dx (1.8) eq:one8

where D = maxr |D(sr)|.

2. The Special Case

To simplify matters we suppose to begin with that σr = σ0 = 0.

thm:two1 Theorem 2.1. Assume the above notation and that σr = 0 (r =
1, . . . , R). Then

R∑
r=1

|D(itr)|2 ≪ (T +N)G log(2N), (2.1) eq:two1

R∑
r=1

|D(itr)|2 ≪
(
RT

1
2 (log(2T ))2 +N

)
G, (2.2) eq:two2

R∑
r=1

|D(itr)|2 ≪
(
R

2
3T

1
3N

1
3 (log(2T ))

4
3 +N

)
G, (2.3) eq:two3

We remark that by working a bit harder some of the logarithmic
powers can be reduced.

Proof. To prove (
eq:two1
2.1) we use a method introduced by Gallager. We

have

D(it)2 −D(iu)2 =

∫ t

u

2iD(iv)D′(iv)dv

so that

|D(itr)|2 ≤
∫ tr+

1
2

tr− 1
2

|D(iu)|2du+

∫ tr+
1
2

tr− 1
2

|D(iv)D′(iv)|dv

and
R∑

r=1

|D(itr)|2 ≤
∫ T+ 1

2

− 1
2

|D(iu)|2du+

∫ T+ 1
2

− 1
2

|D(iv)D′(iv)|dv.

We also have∫ T+ 1
2

− 1
2

|D(iu)|2du =
N∑

n=1

|an|2(T + 1)
N∑

m=1

N∑
n=1
n̸=m

bmbn − cmcn
−i log(m/n)

where
bn = ann

−i(T+1/2), cn = ann
i/2.
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Hence, by Hilbert’s inequality∫ T+ 1
2

− 1
2

|D(iu)|2du ≪
N∑

n=1

|an|2(T + n) ≪ G(T +N).

Similarly∫ T+ 1
2

− 1
2

|D′(iv)|2dv ≪
N∑

n=1

|an|2(log n)2(T + n) ≪ G(T +N)(logN)2

so (
eq:two1
2.1) follows from the Cauchy-Schwarx inequality. To prove (

eq:two2
2.2) we

invoke the duality lemma.

lem:two1 Lemma 2.2 (Duality). Let A = [cmn] be a fixed M × N matrix with
complex entries. The following three assertions concerning the non-
negative constant λ are equivalent.
(i) For any z ∈ CN ,

M∑
m=1

∣∣∣∣ N∑
n=1

cmnzn

∣∣∣∣2 ≤ λ2

N∑
n=1

|zn|2;

(ii) For any z ∈ CN and any w ∈ CM ,∣∣∣∣ M∑
m=1

N∑
n=1

cmnznwm

∣∣∣∣ ≤ ∆

( N∑
n=1

|zn|2
)1/2( M∑

m=1

|wm|2
)1/2

;

(iii)
For any w ∈ CM ,

N∑
n=1

∣∣∣∣ M∑
m=1

cmnwm

∣∣∣∣2 ≤ λ2

M∑
m=1

|zm|2.

Proof of Lemma
lem:two1
2.2. We show that (i) and (ii) are equivalent. Then

by interchanging the roles of m and n it is clear that (ii) and (iii) are
equivalent.

(i) =⇒ (ii). By Cauchy’s inequality∣∣∣∑
m

(∑
n

cmnxn

)
ym

∣∣∣ ≤ (∑
m

∣∣∣∑
n

cmnxn

∣∣∣2)1/2(∑
m

|ym|2
)1/2

.

In the first factor on the right we insert the bound provided by (i), and
we obtain (ii).

(ii) =⇒ (i). Set

wm =
N∑

n=1

cmnzn,
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and let S denote the left and side of (i). Then S =
∑

n cmnznwm, and
by (ii) we see that

S ≤ ∆

( N∑
n=1

|zn|2
)1/2( M∑

m=1

|wm|2
)1/2

= λ

( N∑
n=1

|zn|2
)1/2

S1/2.

If S = 0, then (ii) is obviously satisfied. Otherwise S > 0, and we may
square both sides above and divide by S to obtain (i). □

We now return to the proof of (
eq:two2
2.2). By the duality lemma it suffices

to show that

N∑
n=1

∣∣∣∣∣∑
r=1

brn
−itr

∣∣∣∣∣
2

≪
(
RT

1
2 (log(2T ))2 +N

) R∑
r=1

|br|2. (2.4) eq:two4

It is convenient to insert the smooth weights 2
(
1−n/(2N)

)
on the left

and extend the summation to 2N . Then we treat the left hand side by
multiplying out and inverting the order. Hence we have

N∑
n=1

∣∣∣∣∣∑
r=1

brn
−itr

∣∣∣∣∣
2

≤ 2
R∑

q=1

R∑
r=1

bqbrS(tr − ts). (2.5) eq:two5

where

S(t) =
2N∑
n=1

(
1− n/(2N)

)
nit.

The terms with q = r contribute

R∑
r=1

|br|2
(
N − 1

2

)
.

For the remaining terms we observe that

S(t) =
1

2πi

∫ 2+i∞

2−i∞
ζ(w − it)

(2N)w

w(w + 1)
dw.

We assume |t| ≤ T and let θ = c/ log(2+|t|) where c is a small constant,
sufficiently small to ensure that θ ≤ 1

4
. Then we move the vertical path

to the line Rew = −θ, picking up residues from w = 1+ it and w = 0.
From known estimates for the zeta function we obtain

S(t) =
(2N)1+it

(1 + it)(2 + it)
+ ζ(−it) +

1

2πi

∫ −θ+i∞

−θ−i∞
ζ(w − it)

(2N)w

w(w + 1)
.

We have

ζ(−it) ≪ (1 + |t|)
1
2 log(2 + |t|).
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and by the functional equation and the bound

ζ(w − it) = ρ(w − it)ζ(1 + θ − iv − it) ≪ (1 + |v|+ |t|)
1
2
+θθ−1

we obtain

S(t) ≪ N

1 + |t|2
+ (1 + |t|)

1
2 log2(1 + |t|).

Thus, by (
eq:two5
2.5),

N∑
n=1

∣∣∣∣∣
R∑

r=1

brn
−itr

∣∣∣∣∣
2

≪

R∑
q=1

|bq|2
(
N +

R∑
r=1
r ̸=q

(
N

1 + |tq − tr|2
+ T

1
2 log2(2T )

))
,

and therefore (
eq:two4
2.4), and so (

eq:two2
2.2), follow.

The inequality (
eq:two3
2.3) will follow from (

eq:two2
2.2) by a process of divide and

rule! If we should have

N > (R
2
3T

1
3N

1
3 (log(2T ))

4
3

then we would have

N > RT
1
2 (log(2T ))2

and the desired bound follows immediately from (
eq:two2
2.2). Thus we may

suppose that

N ≤ (R
2
3T

1
3N

1
3 (log(2T ))

4
3 .

Let

T1 =
(
log(2T )

)− 4
3 (NT/R)2/3

and divide the interval [0, T ] into ⌈T/T1⌉ intervals of length ≤ T1. By
the assumption on N we have

T1 ≤ T.

Note also that if we denote the j-th interval by Ij = [uj, vj] we can
replace the an by ann

−iuj and the tr in the interval by tr −uj and then
apply (

eq:two2
2.2) to the j-th interval. Let Rj denote the number of tr ∈ Ij.
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Then
R∑

r=1

|D(itr)|2 ≤
⌈T/T1⌉∑
j=1

∑
r

tr∈Ij

|D(itr)|2

≪
⌈T/T1⌉∑
j=1

(
RjT

1
2
1 (log(2T ))

2 +N
)
G

≪ (RT
1/2
1 (log T )2 +NT/T1)G

≪ R
2
3T

1
3N

1
3

(
log(2T )

) 4
3G

as required □

3. The Main Theorems

We now advert to a general σ0 ∈ [0, 1].

thm:three1 Theorem 3.1. Assume that σ0 ∈ [0, 1] and σr ≥ σ0 (r = 1, . . . , R).
Then

R∑
r=1

|D(itr)|2 ≪ (T +N)G log2(2N), (3.1) eq:three1

R∑
r=1

|D(itr)|2 ≪
(
RT

1
2 (log(2T ))2 +N

)
G log(2N), (3.2) eq:three2

R∑
r=1

|D(itr)|2 ≪
(
R

2
3T

1
3N

1
3 (log(2T ))

4
3 +N

)
G log(2N), (3.3) eq:three3

Proof. It suffices to prove the case σ0 = 0 because we can reduce to
this case by replacing an by ann

−σ0 and σr by σr − σ0.
We proceed by adapting Gallagher’s idea to this situation. We have

n−σr = 1−
∫ σr

0

n−v(log n)dv

and so

D(sr) = D(itr)−
∫ σr

0

D′(v + it)dv.

Hence

|D(sr)| ≤ |D(itr)|+
∫ 1

0

|D′(v + it)|dv

and therefore by the Cauchy-Schwarz’ inequality

R∑
r=1

|D(sr)|2 ≪
R∑

r=1

|D(itr)|2 +
∫ 1

0

R∑
r=1

|D′(v + itr)|2dv.
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Assuming any one of the bounds (
eq:two1
2.1), (

eq:two2
2.2), (

eq:two3
2.3) with an replaced if

necessary by ann
−v(log n) we obtain

R∑
r=1

|D(sr|2 ≪ λ

N∑
n=1

|an|2
(
1 +

∫ 1

0

|an|2n−2v(log n)2dv

)
where λ is the appropriate factor on the right of (

eq:two1
2.1), (

eq:two2
2.2) or (

eq:two3
2.3). □

We can now obtain explicit large values theorems.

thm:three2 Theorem 3.2. With the notation of (
eq:one1
1.1),...,(

eq:one6
1.6) in addition to the

universal bound (
eq:one4
1.4), R ≤ T + 1, we have

R(V ) ≪ (T +N)GV −2 log(2N)

when

T +N

T
G log(2N) < V 2 ≤

(
TN

T +N

)1/2

G(log(2T ))2 log(2N),

R(V ) ≪
TNG3

(
log(2T )

)4(
log(2N)

)3
V 6

when(
TN

T +N

)1/2

G(log(2T ))2 log(2N) < V 2 ≤ T 1/2G
(
log(2T )

)2
log(2N),

and
R(V ) ≪ NGV −2 log(2N)

when
T 1/2G

(
log(2T )

)2
log(2N) < V 2.

Proof. The bound (
eq:three1
3.1) gives the first estimate at once. The estimate

(
eq:three3
3.3) implies

R(V ) ≪ TNG3V −6
(
log(2T )

)4(
log(2N)

)3
+NGV −2 log(2N)

and this implies the second and third bounds. □


