LARGE VALUES OF DIRICHLET POLYNOMIALS

1. Introduction and Notation

This is a brief overview with proofs of the classical large values bound for Dirichlet polynomials

$$
D(s) = \sum_{n=1}^{N} a_n n^{-s}
$$
 (1.1) $\boxed{\text{eq:one1}}$

that is quoted in Guth-Maynard. Here the a_n $n = 1, \ldots N$ are complex numbers, where $N \in \mathbb{N}$, and as usual with Dirichlet series and polynomials $s = \sigma + it$ is a complex number with real and imaginary parts σ and t . We will suppose that T is a real number with

$$
T \ge 1, \tag{1.2} \quad \text{eq:one2}
$$

 $R \in \mathbb{N}$ and the $s_r = \sigma_r + it_r$ with $1 \leq r \leq R$ are R complex numbers which satisfy

$$
0 \le \sigma_0 \le \sigma_r \le 1 \text{ and } |t_q - t_r| \ge 1 \quad (1 \le q < r \le R) \tag{1.3}
$$
 $\boxed{\text{eq:one3}}$

for some $\sigma_0 \in [0, 1]$.

We note that $R - 1 \leq \max_r t_r - \min_r t_r \leq T$, so that

$$
R \le T + 1. \tag{1.4} \quad \text{[eq:one4]}
$$

We also introduce the peculiar notation

$$
G = \sum_{n=1}^{N} |a_n|^2 n^{-2\sigma_0}.
$$
 (1.5) $\boxed{\text{eq:one5}}$

We are in particular concerned with bounding the number

$$
R(V) = \text{card}\{1 \le r \le R : |D(s_r)| \ge V\}
$$
\n(1.6) $\boxed{\text{eq:one6}}$

where V is a positive parameter at our disposal, in terms of N, T, C, V . Such estimates are largely equivalent to bounds for

$$
\sum_{r=1}^{R} |D(s_r)|^2
$$

as can be seen as follows. We have

$$
R(V) \le V^{-2} \sum_{r=1}^{R} |D(s_r)|^2 \tag{1.7}
$$
 $\boxed{\text{eq:one7}}$

and

$$
\sum_{r=1}^{R} |D(s_r)|^2 \leq RV^2 + \int_V^{\mathcal{D}} 2XR(X)dx
$$
 (1.8) $\boxed{\text{eq:one8}}$

where $\mathcal{D} = \max_r |D(s_r)|$.

2. The Special Case

To simplify matters we suppose to begin with that $\sigma_r = \sigma_0 = 0$.

thm:two1 Theorem 2.1. Assume the above notation and that $\sigma_r = 0$ (r = $1, \ldots, R$). Then

$$
\sum_{r=1}^{R} |D(it_r)|^2 \ll (T+N)G \log(2N),\tag{2.1}
$$
 $\boxed{\text{eq:two1}}$

$$
\sum_{r=1}^{R} |D(it_r)|^2 \ll \left(RT^{\frac{1}{2}}(\log(2T))^2 + N\right)G,\tag{2.2}
$$
 $\boxed{\text{eq:two2}}$

$$
\sum_{r=1}^{R} |D(it_r)|^2 \ll \left(R^{\frac{2}{3}} T^{\frac{1}{3}} N^{\frac{1}{3}} (\log(2T))^{\frac{4}{3}} + N\right) G, \tag{2.3}
$$
 $\boxed{\text{eq:two3}}$

We remark that by working a bit harder some of the logarithmic powers can be reduced.

Proof. To prove (2.1) we use a method introduced by Gallager. We have

$$
D(it)^{2} - D(iu)^{2} = \int_{u}^{t} 2iD(iv)D'(iv)dv
$$

so that

$$
|D(it_r)|^2 \le \int_{t_r - \frac{1}{2}}^{t_r + \frac{1}{2}} |D(iu)|^2 du + \int_{t_r - \frac{1}{2}}^{t_r + \frac{1}{2}} |D(iv)D'(iv)| dv
$$

and

$$
\sum_{r=1}^{R} |D(it_r)|^2 \le \int_{-\frac{1}{2}}^{T+\frac{1}{2}} |D(iu)|^2 du + \int_{-\frac{1}{2}}^{T+\frac{1}{2}} |D(iv)D'(iv)| dv.
$$

We also have

$$
\int_{-\frac{1}{2}}^{T+\frac{1}{2}} |D(iu)|^2 du = \sum_{n=1}^N |a_n|^2 (T+1) \sum_{m=1}^N \sum_{\substack{n=1 \ n \neq m}}^N \frac{b_m \overline{b}_n - c_m \overline{c}_n}{-i \log(m/n)}
$$

where

$$
b_n = a_n n^{-i(T+1/2)}, \, c_n = a_n n^{i/2}.
$$

Hence, by Hilbert's inequality

$$
\int_{-\frac{1}{2}}^{T+\frac{1}{2}} |D(iu)|^2 du \ll \sum_{n=1}^{N} |a_n|^2 (T+n) \ll G(T+N).
$$

Similarly

$$
\int_{-\frac{1}{2}}^{T+\frac{1}{2}} |D'(iv)|^2 dv \ll \sum_{n=1}^{N} |a_n|^2 (\log n)^2 (T+n) \ll G(T+N) (\log N)^2
$$

equ: two1
equation

so $(\overline{2.1})$ follows from the Cauchy-Schwarx inequality. To prove $(\overline{2.2})$ we invoke the duality lemma.

lem:two1 Lemma 2.2 (Duality). Let $A = [c_{mn}]$ be a fixed $M \times N$ matrix with complex entries. The following three assertions concerning the nonnegative constant λ are equivalent. (*i*) For any $\boldsymbol{z} \in \mathbb{C}^N$,

$$
\sum_{m=1}^{M} \left| \sum_{n=1}^{N} c_{mn} z_n \right|^2 \leq \lambda^2 \sum_{n=1}^{N} |z_n|^2;
$$

(ii) For any $\boldsymbol{z} \in \mathbb{C}^N$ and any $\boldsymbol{w} \in \mathbb{C}^M$,

$$
\bigg|\sum_{m=1}^M\sum_{n=1}^N c_{mn}z_nw_m\bigg|\leq \Delta\bigg(\sum_{n=1}^N|z_n|^2\bigg)^{1/2}\bigg(\sum_{m=1}^M|w_m|^2\bigg)^{1/2};
$$

(iii)

For any $w \in \mathbb{C}^M$,

$$
\sum_{n=1}^{N} \left| \sum_{m=1}^{M} c_{mn} w_m \right|^2 \leq \lambda^2 \sum_{m=1}^{M} |z_m|^2.
$$

em:two1

Proof of Lemma $\mathbb{R} \cdot \mathbb{R}$. We show that (i) and (ii) are equivalent. Then by interchanging the roles of m and n it is clear that (ii) and (iii) are equivalent.

 $(i) \implies (ii)$. By Cauchy's inequality

$$
\Big|\sum_{m}\Big(\sum_{n}c_{mn}x_n\Big)y_m\Big|\leq \Big(\sum_{m}\Big|\sum_{n}c_{mn}x_n\Big|^2\Big)^{1/2}\Big(\sum_{m}|y_m|^2\Big)^{1/2}.
$$

In the first factor on the right we insert the bound provided by (i), and we obtain (ii).

 $n=1$

(ii)
$$
\implies
$$
 (i). Set

$$
w_m = \sum_{n=1}^{N} c_{mn} z_n,
$$

and let S denote the left and side of (i). Then $S = \sum_n c_{mn} z_n \overline{w_m}$, and by (ii) we see that

$$
S \le \Delta \bigg(\sum_{n=1}^N |z_n|^2 \bigg)^{1/2} \bigg(\sum_{m=1}^M |w_m|^2 \bigg)^{1/2} = \lambda \bigg(\sum_{n=1}^N |z_n|^2 \bigg)^{1/2} S^{1/2}.
$$

If $S = 0$, then (ii) is obviously satisfied. Otherwise $S > 0$, and we may square both sides above and divide by S to obtain (i). \Box

We now return to the proof of $\begin{pmatrix} \log: \text{two2} \\ \text{2.2} \end{pmatrix}$. By the duality lemma it suffices to show that

$$
\sum_{n=1}^{N} \left| \sum_{r=1} b_r n^{-it_r} \right|^2 \ll \left(RT^{\frac{1}{2}} (\log(2T))^2 + N \right) \sum_{r=1}^{R} |b_r|^2.
$$
 (2.4) ~~[eq:two4]~~

It is convenient to insert the smooth weights $2(1-n/(2N))$ on the left and extend the summation to $2N$. Then we treat the left hand side by multiplying out and inverting the order. Hence we have

$$
\sum_{n=1}^{N} \left| \sum_{r=1} b_r n^{-it_r} \right|^2 \le 2 \sum_{q=1}^{R} \sum_{r=1}^{R} b_q \overline{b}_r S(t_r - t_s).
$$
 (2.5) $\boxed{\text{eq:two5}}$

where

$$
S(t) = \sum_{n=1}^{2N} (1 - n/(2N))n^{it}.
$$

The terms with $q = r$ contribute

$$
\sum_{r=1}^R |b_r|^2 \left(N - \frac{1}{2}\right).
$$

For the remaining terms we observe that

$$
S(t) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} \zeta(w - it) \frac{(2N)^w}{w(w+1)} dw.
$$

We assume $|t| \leq T$ and let $\theta = c/\log(2+|t|)$ where c is a small constant, sufficiently small to ensure that $\theta \leq \frac{1}{4}$ $\frac{1}{4}$. Then we move the vertical path to the line Re $w = -\theta$, picking up residues from $w = 1 + it$ and $w = 0$. From known estimates for the zeta function we obtain

$$
S(t) = \frac{(2N)^{1+it}}{(1+it)(2+it)} + \zeta(-it) + \frac{1}{2\pi i} \int_{-\theta - i\infty}^{-\theta + i\infty} \zeta(w - it) \frac{(2N)^w}{w(w+1)}.
$$

We have

$$
\zeta(-it) \ll (1+|t|)^{\frac{1}{2}} \log(2+|t|).
$$

and by the functional equation and the bound

$$
\zeta(w - it) = \rho(w - it)\zeta(1 + \theta - iv - it) \ll (1 + |v| + |t|)^{\frac{1}{2} + \theta} \theta^{-1}
$$

we obtain

$$
S(t) \ll \frac{N}{1+|t|^2} + (1+|t|)^{\frac{1}{2}} \log^2(1+|t|).
$$

Thus, by $\left(\frac{\text{eq}:two5}{2.5}\right)$

$$
\sum_{n=1}^{N} \left| \sum_{r=1}^{R} b_r n^{-it_r} \right|^2 \ll \sum_{\substack{q=1 \\ q \equiv 1}}^{R} |b_q|^2 \left(N + \sum_{\substack{r=1 \\ r \neq q}}^{R} \left(\frac{N}{1 + |t_q - t_r|^2} + T^{\frac{1}{2}} \log^2(2T) \right) \right),
$$

and therefore $\begin{array}{c} \n\text{[eq:two4]}\\
\text{(2.4)} \quad \text{[aq:two2]}\\
\text{[q:2]}\n\end{array}$

The inequality (2.3) will follow from (2.2) by a process of divide and rule! If we should have

$$
N > (R^{\frac{2}{3}}T^{\frac{1}{3}}N^{\frac{1}{3}}(\log(2T))^{\frac{4}{3}}
$$

then we would have

$$
N > RT^{\frac{1}{2}}(\log(2T))^2
$$

and the desired bound follows immediately from $\begin{pmatrix} \mathsf{eq:two2} \\ (2.2) \end{pmatrix}$. Thus we may suppose that

$$
N \le (R^{\frac{2}{3}} T^{\frac{1}{3}} N^{\frac{1}{3}} (\log(2T))^{\frac{4}{3}}.
$$

Let

$$
T_1 = (\log(2T))^{-\frac{4}{3}} (NT/R)^{2/3}
$$

and divide the interval $[0, T]$ into $[T/T_1]$ intervals of length $\leq T_1$. By the assumption on N we have

$$
T_1 \leq T.
$$

Note also that if we denote the *j*-th interval by $I_j = [u_j, v_j]$ we can replace the a_n by $a_n n^{-iu_j}$ and the t_r in the interval by $t_r - u_j$ and then apply (2.2) to the j-th interval. Let R_j denote the number of $t_r \in I_j$. Then

$$
\sum_{r=1}^{R} |D(it_r)|^2 \le \sum_{j=1}^{\lceil T/T_1 \rceil} \sum_{t_r \in I_j} |D(it_r)|^2
$$

$$
\ll \sum_{j=1}^{\lceil T/T_1 \rceil} (R_j T_1^{\frac{1}{2}} (\log(2T))^2 + N)G
$$

$$
\ll (RT_1^{1/2} (\log T)^2 + NT/T_1)G
$$

$$
\ll R^{\frac{2}{3}} T^{\frac{1}{3}} N^{\frac{1}{3}} (\log(2T))^{\frac{4}{3}} G
$$

as required \Box

3. The Main Theorems

We now advert to a general $\sigma_0 \in [0, 1]$.

thm:three1 Theorem 3.1. Assume that $\sigma_0 \in [0,1]$ and $\sigma_r \ge \sigma_0$ $(r = 1, \ldots, R)$. Then R

$$
\sum_{r=1}^{R} |D(it_r)|^2 \ll (T+N)G \log^2(2N),\tag{3.1}
$$
 $\boxed{\text{eq:three1}}$

$$
\sum_{r=1}^{R} |D(it_r)|^2 \ll \left(RT^{\frac{1}{2}}(\log(2T))^2 + N\right)G\log(2N),\tag{3.2}
$$
 $\boxed{\text{eq:three2}}$

$$
\sum_{r=1}^{R} |D(it_r)|^2 \ll \left(R^{\frac{2}{3}} T^{\frac{1}{3}} N^{\frac{1}{3}} (\log(2T))^{\frac{4}{3}} + N\right) G \log(2N),\tag{3.3}
$$
 $\boxed{\text{eq:three3}}$

Proof. It suffices to prove the case $\sigma_0 = 0$ because we can reduce to this case by replacing a_n by $a_n n^{-\sigma_0}$ and σ_r by $\sigma_r - \sigma_0$.

We proceed by adapting Gallagher's idea to this situation. We have

$$
n^{-\sigma_r} = 1 - \int_0^{\sigma_r} n^{-v} (\log n) dv
$$

and so

$$
D(s_r) = D(it_r) - \int_0^{\sigma_r} D'(v+it)dv.
$$

Hence

$$
|D(s_r)| \le |D(it_r)| + \int_0^1 |D'(v+it)| dv
$$

and therefore by the Cauchy-Schwarz' inequality

$$
\sum_{r=1}^{R} |D(s_r)|^2 \ll \sum_{r=1}^{R} |D(it_r)|^2 + \int_0^1 \sum_{r=1}^{R} |D'(v+it_r)|^2 dv.
$$

Assuming any one of the bounds $\langle 2.1 \rangle$, $\langle 2.2 \rangle$, $\langle 2.3 \rangle$ with a_n replaced if necessary by $a_n n^{-v} (\log n)$ we obtain

$$
\sum_{r=1}^{R} |D(s_r|^2 \ll \lambda \sum_{n=1}^{N} |a_n|^2 \left(1 + \int_0^1 |a_n|^2 n^{-2v} (\log n)^2 dv\right)
$$

where λ is the appropriate factor on the right of (2.1) , (2.2) or (2.3) . \square

We can now obtain explicit large values theorems.

 $\overline{\text{thm:three2}}$ Theorem 3.2. With the notation of $\frac{\text{[eq:one4]}}{\text{[1.1)},\ldots,\text{[1.6)}}$ in addition to the universal bound (1.4) , $R \leq T+1$, we have

$$
R(V) \ll (T+N)GV^{-2}\log(2N)
$$

when

$$
\frac{T+N}{T}G\log(2N) < V^2 \le \left(\frac{TN}{T+N}\right)^{1/2} G(\log(2T))^2 \log(2N),
$$
\n
$$
R(V) \ll \frac{TNG^3\left(\log(2T)\right)^4 \left(\log(2N)\right)^3}{V^6}
$$

when

$$
\left(\frac{TN}{T+N}\right)^{1/2} G(\log(2T))^2 \log(2N) < V^2 \le T^{1/2} G\left(\log(2T)\right)^2 \log(2N),
$$
\nand

$$
R(V) \ll NGV^{-2} \log(2N)
$$

when

$$
T^{1/2}G\big(\log(2T)\big)^2\log(2N) < V^2.
$$

 $P_{\text{ro.}}$ The bound (3.1) gives the first estimate at once. The estimate $\frac{\text{eq:thref}}{\text{(3.3)}}$ implies

$$
R(V) \ll TNG^3 V^{-6} (\log(2T))^4 (\log(2N))^3 + NGV^{-2} \log(2N)
$$

and this implies the second and third bounds. \Box