C:MeanLargeVals

LARGE VALUES OF DIRICHLET POLYNOMIALS

1. INTRODUCTION AND NOTATION

This is a brief overview with proofs of the classical large values bound
for Dirichlet polynomials

N

D(s)=> amn”* (1.1)

n=1

that is quoted in Guth-Maynard. Here the a, n =1,... N are complex
numbers, where N € N, and as usual with Dirichlet series and polyno-
mials s = 0 4 it is a complex number with real and imaginary parts o
and t. We will suppose that T' is a real number with

T>1, (1.2)

R € N and the s, = o, + it, with 1 < r < R are R complex numbers
which satisfy

0<op<o,<land|t,—t|>1 (1<qg<r<R) (1.3)

for some o € [0, 1].
We note that R — 1 < max, t, — min, £, < 7T, so that

R<T+1. (1.4)

We also introduce the peculiar notation

N
G = Z |lan|?*n =20, (1.5)
n=1

We are in particular concerned with bounding the number
R(V)=card{l <r < R:|D(s,)| >V} (1.6)

where V' is a positive parameter at our disposal, in terms of N, T,C, V.
Such estimates are largely equivalent to bounds for

Z |D(s,)|?

as can be seen as follows. We have

R(V) < V>3 |D(s,)f (L.7)
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and
D
Z |D(s,)|> < RV? + / 2XR(X)dx (1.8)
v
where D = max, |D(sr)|.

2. THE SPECIAL CASE

To simplify matters we suppose to begin with that o, = g9 = 0.

Theorem 2.1. Assume the above notation and that o, = 0 (r =
1,...,R). Then
R
> |D(it,)* < (T + N)Glog(2N), (2.1)
r=1
R
> D(it,)? < (RT#(log(2T))* + N)G, (2.2)
r=1

w\»—A
ol

}]Dnﬁ« RST3 N (log(2T))5 + N)G, (2.3)

We remark that by working a bit harder some of the logarithmic
powers can be reduced.

ctwol
Proof. To prove (}‘Ze.l iwvove use a method introduced by Gallager. We
have

t
D(it)? — D(iu)? = / 2D (i) D' (i) dv
so that
trt+3 trt3
\Mng/‘ wwwm+/ D (iv) D' (iv)|dv
tr—3 tr—3

2 2

and
1

+3 T+3
| D(iu) |*du +/ |D(iv)D'(iv)|dv.

1
2

szt =

We also have

T+3 al al Nb_ CmC

D(iu)*du = (T bmbn = cmn

[, R =+ 1 305 2
n;ﬁm

- n=1

1
2

N[

where

—i(T+1/2)

_ _ i/2
b, = a,n ,cn—ann/.
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Hence, by Hilbert’s inequality

T+1 N
/ |D(iu) [P du < Z|an|2(T+n) < G(T+N).

n=1

D=

Similarly

T+3 N
/ D/ (i0) 2o < 3 JanPlog m)*(T +n) < G(T + N)(log N)?
n=1

N

eq:two2

:twol -
SO (B.l iwfgllows from the Cauchy-Schwarx inequality. To prove (2:2) we
invoke the duality lemma.

Lemma 2.2 (Duality). Let A = [¢un] be a fized M x N matriz with
complex entries. The following three assertions concerning the non-

negative constant \ are equivalent.
(i) For any z € CV,

M 2 N
> <ALl
m=1 n=1

(ii) For any z € CV and any w € CM,

M N N 12 , M 1/2
DY conzatom SA(Z\zn\Q) (leml2> :
n m=1

m=1 n=1 =1

N
§ Cmn<n

n=1

(iii)

For any w € CM,

N M 2 M

2 2
> 1D | SN [zl
n=1"'m=1 m=1

Proof of Lemma %%%show that (i) and (ii) are equivalent. Then
by interchanging the roles of m and n it is clear that (ii) and (iii) are
equivalent.

(i) = (ii). By Cauchy’s inequality

’zm: (;cmnxn>ym‘ < (; ) ;Cmn% 2>1/2(zm: |ym\2)1/2.

In the first factor on the right we insert the bound provided by (i), and
we obtain (ii).
(ii)) = (i). Set

N
Wm = E Cmn<n,
n=1
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and let S denote the left and side of (i). Then S = )" cnn2nWn,, and
by (ii) we see that

N 1/2 , M 1/2 N 1/2
SSA(Z\znP) <Z|wm|2> :A<Z|Zn|2> S1/2,
n=1 m=1 n=1

If S =0, then (ii) is obviously satisfied. Otherwise S > 0, and we may
square both sides above and divide by S to obtain (i). O

eq:two2
We now return to the proof of (bb J. By the duality lemma it suffices
to show that

N
> Sht
n=1 | r=1
It is convenient to insert the smooth weights 2(1 —n/(2N )) on the left

and extend the summation to 2N. Then we treat the left hand side by
multiplying out and inverting the order. Hence we have

2 R R
D b <23 N “beb, St — t). (2.5)
r=1

< (RT3 (log(21)* + N) > [b, |- (2.4)

r=1

N

2

where
S(t)=>_(L—n/2N))n".

The terms with ¢ = r contribute
R
1
2 —_—
S (v-3)-
r=1
For the remaining terms we observe that
1 2-+i00 (QN)w
S(t) = — —it) —————dw.
(®) 27i /Q_ioo Clw—i )w(w—l— 1) v

We assume [t| < T and let 6 = ¢/ log(2+|t|) where ¢ is a small constant,
sufficiently small to ensure that § < i. Then we move the vertical path
to the line Rew = —6, picking up residues from w = 1 + it and w = 0.
From known estimates for the zeta function we obtain

B (2N)1+it ‘ 1 —6+ioco ‘ (2N>w
SO =armerm T o /_g_m o= 1)
We have

C(—it) < (1+ [t])2 log(2 + [¢]).
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and by the functional equation and the bound
Clw—it) = p(w — it)((1+ 0 —iv —it) < (14 |v] +|¢])zH0"
we obtain

S(t) < + (14 [t])2 log?(1 + [¢]).

:twob
Thus, by (E.B),wo

N R
§ E : brnfzt,«
n=1

Zyb \2<N+Z (ﬁJrT log (2T))>

q=1

r#q
and therefore ( a d 0 b bi fo llow o0
The 1nequahty ( Wi 1 follow from (b 5 by a process of divide and

rule! If we should have

N
1+ |t)?

2
<

N > (RiT3 N3 (log(27))?
then we would have
N > RT3 (log(2T))?

and the desired bound follows immediately from (B%hus we may
suppose that
N < (RT3 N3 (log(2T))s.
Let
7y = (log(21)) " * (NT/R)¥/3

and divide the interval [0, T into [T/T7] intervals of length < 7. By
the assumption on N we have

Ty <T.

Note also that if we denote the j-th interval by I; = [u;,v;] we can
replace the a, by a,n n~" and the t, in the interval by t, —u; and then
apply ( }’Z bi to the j-th interval. Let R; denote the number of ¢, € ;.
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Then
R [T/T1]
Z (it,)]* < Z Z |D(it,)
r=1 = tTgI
[T/T1] .
< Z T (log(27))? + N)G

< (RTll/z(log T)? + NT/T})G
< RATH N (log(21)) 7 G
as required
3. THE MAIN THEOREMS

We now advert to a general oy € [0, 1].

Theorem 3.1. Assume that oy € [0,1] and 0, > oo (r = 1,...

Then i
> ID(it,)]P < (T + N)Glog*(2N),
r=1
i 1
> |D(it,)[* < (RT2(log(2T))* + N)Glog(2N),
r=1

2 1

Z]D (it,)* < (R5T3 N3 (log(2T))5 + N)Glog(2N),

R).

(3.1)

(3.2)

(3.3)

Proof. 1t suffices to prove the case oy = 0 because we can reduce to

this case by replacing a,, by a,n~?° and o, by o, — gg.

We proceed by adapting Gallagher’s idea to this situation. We have

n =1 —/ n~"(logn)dv
0

and so "
D(s,) = D(it,) — / D' + it)dv
0
Hence .
|D(s,)| < |D(it,)| +/ |D' (v + it)|dv
0

and therefore by the Cauchy-Schwarz’ inequality

R R 1 R
> ID(s)P < Y | D(it,)? +/ > D (v + it,) Pdv.
r=1 r=1 0 =1

eq:threel
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q:twoéq:twodq:two3
Assuming any one of the bounds (u 1), (2.2), (2.3) with a,, replaced if

necessary by a,n""(logn) we obtain

R N 1
Z |D(s,]? < AZ |an|? (1 +/ |an|2n_2”(logn)2dv>

:twadqg:two2 leq:two3d
where A is the appropriate factor on the right of (u 1), (Z.2) or (2.3).

We can now obtain explicit large Values theorems.
g:onel leg:on

Theorem 3.2. With the notation of (u 1),...,(T.6) zn addition to the
universal bound (I EU R <T+1, we have

R(V) < (T + N)GV*1og(2N)

when
T+N TN \Y?
log(2N 2 < 2
Glog(2N) < V=< (T—l—N) G(log(2T))"log(2N),
_ TNG?(log(2T) *(log(2N))*
when

1/2
<TT+NN) G(log(27))* log(2N) < V? < TG (log(21))” log(2N),

and
R(V) < NGV ?log(2N)
when )
T'2G(log(2T)) log(2N) < V2.
:th 1
Progf, The bound (}Ie} l t$ grlff%s the first estimate at once. The estimate
(%%Wﬁes
R(V) < TNG*V5(log(2T))" (10g(2N))’ + NGV 21og(2N)
and this implies the second and third bounds. U



