LAGRANGE’S FOUR SQUARE THEOREM

Euler’s four squares identity. For any numbers a, b, c,d,w,z,y, z

(a® +0* + 2+ d*)(w? + 22 +y* + 2%) = (aw — bx — cy — dz)*+

(ax + bw + cz — dy)? + (ay + cw + dx — bz)? + (az + dw + by — cx).

Lagrange’s Theorem. Fvery natural number is the sum of four squares.

Proof. In view of Euler’s identity and 12 4+ 12 = 2, it suffices to prove that every odd
prime is such a sum.

Lemma 1. Ifn is even and is a sum of four squares, then so is 3.

Proof of Lemma 1. When n = a? + b? + ¢ + d? is even, an even number of the squares
will be odd. and so the a, b, c,d can be rearranged so that a,b have the same parity and

so do ¢,d. Thus 5 = (GT“’)Z + (aT—b)2 + (cJZrd)2 + (c;d)2‘

Lemma 2. If p is an odd prime, then there are integers a,b,c,d and an m so that
2
0<a*+b*+cE+d*=mp<L.

2
Proof of Lemma 2. The pTH numbers 02,12 ..., (”2;1) are pairwise incongruent modulo

p. Hence, by a box argument there are u,v such that u? = —v? — 1 (mod p) and 0 <
u2 + 'U2 _|_ 1 S %.

By Lemma 2 there is an integer m with 0 < m < p so that for some a, b, ¢, d we have
G+ +E+dE=mp

and we may suppose that m is chosen minimally. Moreover, by Lemma 1 we may suppose
that m is odd. If m = 1, then we are done. Suppose m > 1. If m were to divide
each of a,b,c,d, then we would have m|p contradicting m < p. Choose w,z,y,z so
that w = a (mod m), |w| < 21, z = —b (mod m), |z] < 2 y = —¢ (mod m),
ly| < 221, 2 = —d (mod m), |z| < -1, and then not all of w, z,y, z can be 0. Moreover
w?+22+y*+2%2 =0 (mod m) and so 0 < w? +z%+y*+22 =mn <4 ("”T_l)2 = (m—1)%
Thus 0 < n < m. Now aw—br—cy—dz = a®*+b*+c*+d?> =0 (mod m), ar+bw+cz—dy =
—ab+ab—cd+dc=0 (mod m), ay + cw+dx —bz = —ac+ ac—db+ db =0 (mod m),
az + dw + by — cx = —ad + ad — bc + be = 0 (mod m). By Euler’s identity m2np is the
sum of four squares and each of the squares is divisible by m?. Hence np is the sum of
four squares. But n < m contradicting the minimality of m.
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