LAGRANGE'S FOUR SQUARE THEOREM

Euler's four squares identity. For any numbers a, b, c, d, w, x, y, z

$$(a^{2} + b^{2} + c^{2} + d^{2})(w^{2} + x^{2} + y^{2} + z^{2}) = (aw - bx - cy - dz)^{2} + (ax + bw + cz - dy)^{2} + (ay + cw + dx - bz)^{2} + (az + dw + by - cx)^{2}.$$

Lagrange's Theorem. Every natural number is the sum of four squares.

Proof. In view of Euler's identity and $1^2 + 1^2 = 2$, it suffices to prove that every odd prime is such a sum.

Lemma 1. If n is even and is a sum of four squares, then so is $\frac{n}{2}$.

Proof of Lemma 1. When $n = a^2 + b^2 + c^2 + d^2$ is even, an even number of the squares will be odd. and so the a, b, c, d can be rearranged so that a, b have the same parity and so do c, d. Thus $\frac{n}{2} = \left(\frac{a+b}{2}\right)^2 + \left(\frac{a-b}{2}\right)^2 + \left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2$.

Lemma 2. If p is an odd prime, then there are integers a, b, c, d and an m so that $0 < a^2 + b^2 + c^2 + d^2 = mp < \frac{p^2}{2}$.

Proof of Lemma 2. The $\frac{p+1}{2}$ numbers $0^2, 1^2 \dots, \left(\frac{p-1}{2}\right)^2$ are pairwise incongruent modulo p. Hence, by a box argument there are u, v such that $u^2 \equiv -v^2 - 1 \pmod{p}$ and $0 < u^2 + v^2 + 1 \leq \frac{p^2 - 2p + 3}{2}$.

By Lemma 2 there is an integer m with 0 < m < p so that for some a, b, c, d we have

$$a^2 + b^2 + c^2 + d^2 = mp$$

and we may suppose that m is chosen minimally. Moreover, by Lemma 1 we may suppose that m is odd. If m = 1, then we are done. Suppose m > 1. If m were to divide each of a, b, c, d, then we would have m|p contradicting m < p. Choose w, x, y, z so that $w \equiv a \pmod{m}$, $|w| \leq \frac{m-1}{2}$, $x \equiv -b \pmod{m}$, $|x| \leq \frac{m-1}{2}$, $y \equiv -c \pmod{m}$, $|y| \leq \frac{m-1}{2}$, $z \equiv -d \pmod{m}$, $|z| \leq \frac{m-1}{2}$, and then not all of w, x, y, z can be 0. Moreover $w^2 + x^2 + y^2 + z^2 \equiv 0 \pmod{m}$ and so $0 < w^2 + x^2 + y^2 + z^2 = mn \leq 4 \left(\frac{m-1}{2}\right)^2 = (m-1)^2$. Thus 0 < n < m. Now $aw - bx - cy - dz \equiv a^2 + b^2 + c^2 + d^2 \equiv 0 \pmod{m}$, $ax + bw + cz - dy \equiv -ab + ab - cd + dc \equiv 0 \pmod{m}$, $ay + cw + dx - bz \equiv -ac + ac - db + db \equiv 0 \pmod{m}$, $az + dw + by - cx \equiv -ad + ad - bc + bc \equiv 0 \pmod{m}$. By Euler's identity m^2np is the sum of four squares and each of the squares is divisible by m^2 . Hence np is the sum of four squares. But n < m contradicting the minimality of m.