LAGRANGE'S FOUR SQUARE THEOREM

Euler's four squares identity. For any numbers a, b, c, d, w, x, y, z

$$
\begin{gathered}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(w^{2}+x^{2}+y^{2}+z^{2}\right)=(a w-b x-c y-d z)^{2}+ \\
(a x+b w+c z-d y)^{2}+(a y+c w+d x-b z)^{2}+(a z+d w+b y-c x)^{2}
\end{gathered}
$$

Lagrange's Theorem. Every natural number is the sum of four squares.
Proof. In view of Euler's identity and $1^{2}+1^{2}=2$, it suffices to prove that every odd prime is such a sum.
Lemma 1. If n is even and is a sum of four squares, then so is $\frac{n}{2}$.
Proof of Lemma 1. When $n=a^{2}+b^{2}+c^{2}+d^{2}$ is even, an even number of the squares will be odd. and so the a, b, c, d can be rearranged so that a, b have the same parity and so do c, d. Thus $\frac{n}{2}=\left(\frac{a+b}{2}\right)^{2}+\left(\frac{a-b}{2}\right)^{2}+\left(\frac{c+d}{2}\right)^{2}+\left(\frac{c-d}{2}\right)^{2}$.

Lemma 2. If p is an odd prime, then there are integers a, b, c, d and an m so that $0<a^{2}+b^{2}+c^{2}+d^{2}=m p<\frac{p^{2}}{2}$.
Proof of Lemma 2. The $\frac{p+1}{2}$ numbers $0^{2}, 1^{2} \ldots,\left(\frac{p-1}{2}\right)^{2}$ are pairwise incongruent modulo p. Hence, by a box argument there are u, v such that $u^{2} \equiv-v^{2}-1(\bmod p)$ and $0<$ $u^{2}+v^{2}+1 \leq \frac{p^{2}-2 p+3}{2}$.

By Lemma 2 there is an integer m with $0<m<p$ so that for some a, b, c, d we have

$$
a^{2}+b^{2}+c^{2}+d^{2}=m p
$$

and we may suppose that m is chosen minimally. Moreover, by Lemma 1 we may suppose that m is odd. If $m=1$, then we are done. Suppose $m>1$. If m were to divide each of a, b, c, d, then we would have $m \mid p$ contradicting $m<p$. Choose w, x, y, z so that $w \equiv a(\bmod m),|w| \leq \frac{m-1}{2}, x \equiv-b(\bmod m),|x| \leq \frac{m-1}{2}, y \equiv-c(\bmod m)$, $|y| \leq \frac{m-1}{2}, z \equiv-d(\bmod m),|z| \leq \frac{m-1}{2}$, and then not all of w, x, y, z can be 0 . Moreover $w^{2}+x^{2}+y^{2}+z^{2} \equiv 0(\bmod m)$ and so $0<w^{2}+x^{2}+y^{2}+z^{2}=m n \leq 4\left(\frac{m-1}{2}\right)^{2}=(m-1)^{2}$. Thus $0<n<m$. Now $a w-b x-c y-d z \equiv a^{2}+b^{2}+c^{2}+d^{2} \equiv 0(\bmod m), a x+b w+c z-d y \equiv$ $-a b+a b-c d+d c \equiv 0(\bmod m), a y+c w+d x-b z \equiv-a c+a c-d b+d b \equiv 0(\bmod m)$, $a z+d w+b y-c x \equiv-a d+a d-b c+b c \equiv 0(\bmod m)$. By Euler's identity $m^{2} n p$ is the sum of four squares and each of the squares is divisible by m^{2}. Hence $n p$ is the sum of four squares. But $n<m$ contradicting the minimality of m.

