
COMMENTARY ON AN EXERCISE IN “THE
HARDY-LITTLEWOOD METHOD”

1. Description of the Problem

This is a brief commentary on Exercise 3.3.2 of Vaughan
RV97
[1997]. This

is stated as follows.
2. Suppose that a1, . . . , a4 are fixed non-zero integers with a1, a2, a3

not all the same sign. Show that

R(n) =
∑∑∑
p1≤n p2≤n p3≤n

a1p1+a2p2+a3p3+a4=0

(log p1)(log p2)(log p3)

satisfies

R(n) = J(n)S+O
(
n2(log n)−A

)
where J(n) is the number of solutions of

a1m1 + a2m2 + a3m3 + a4 = 0

with mj ≤ n and

S =
∞∑
q=1

ϕ(q)−3

4∏
j=1

cq(aj).

Here

cq(a) =
ϕ(q)µ

(
q/(q, a)

)
ϕ
(
q/(q, a)

)
is Ramanujan’s sum.

It is clear that if gcd(a1, a2, a3) ∤ a4, then R(n) = J(n) = 0. Thus
we may assume that gcd(a1, a2, a3)|a4, and so

gcd(a1, a2, a3, a4) = gcd(a1, a2, a3). (1.1) eq:gcda

For convenience in what follows write

R(n; a), J(n; a),S(a)

for R(n), J(n) and S respectively. Also let d = gcd(a1, a2, a3, a4) =
gcd(a1, a2, a3) and a′j = aj/d. Clearly

R(n; a) = R(n; a′), J(n; a) = J(n; a′),
1
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but what about S? The general term in the definition of S is a mul-
tiplicative function of q and converges absolutely. Thus

S(a) =
∏(

1 +
∞∑
k=1

ϕ(pk)
4∏

j=1

µ
(
pk/(pk, aj)

)
ϕ
(
pk/(pk, aj)

)) .

Suppose that bj = bj(p) is defined by pbj∥aj. Then without loss of
generality we may suppose that

0 ≤ b1 ≤ b2 ≤ b3 ≤ b4. (1.2) eq:oneb

Then the terms in the sum over k are 0 whenever k ≥ b1 + 2. Hence

S(a) =
∏
p

(
1 +

b1∑
k=1

ϕ(pk) + ϕ(pb1+1)
(−1)

p− 1

4∏
j=2

µ
(
pb1+1/(pb1+1, aj)

)
ϕ
(
pb1+1/(pb1+1, aj)

)) .

(1.3) eq:FrakSa

If b2 ≥ b1 + 1, the expression in the product is

pb1 − pb1 = 0,

S(a) = 0

which is what we would expect since (a2, a3, a4) > 1 but (a2, a3, a4) ∤
a1, which severely limits the number of solutions of our equation in.
primes. Recalling our assumption (

eq:oneb
1.2) the same will hold for any

permutation of the a.
Thus we may suppose that b2(p) = b1(p) for every p. Then, by (

eq:FrakSa
1.3)

S(a) =
∏
p

(
1 +

b1∑
k=1

ϕ(pk) +
ϕ(pb1+1)

(p− 1)2

4∏
j=3

µ
(
pb1+1/(pb1+1, aj)

)
ϕ
(
pb1+1/(pb1+1, aj)

)) .

When b3(p) ≥ b1(p) + 1 the factor corresponding to p becomes

pb1 + ϕ(pb1+1)
1

(p− 1)2
=

pb1+1

p− 1
.

When b3(p) = b1(p) < b4(p) it becomes

pb1 − ϕ(pb1+1)
1

(p− 1)3
= pb1

(
1− 1

(p− 1)2

)
.

Finally, when b4(p) = b1 it becomes

pb1 + ϕ(pb1+1)
1

(p− 1)4
= pb1

(
1 +

1

(p− 1)3

)
.

In fact what we have just demonstrated is that

S(a) = (a1, a2, a3, a4)S(a′),
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whence, by (
eq:gcda
1.1).

S(a) = (a1, a2, a3)S(a′),

In other words the Exercise is wrong when

(a1, a2, a3) > 1 and (a1, a2, a3)|a4.

So how to repair it? The simple solutions would be either to assume
that (a1, a2, a3) = 1, or add a factor (a1, a2, a3)

−1 on the right, as
the conclusion does hold in either case. However it is instructive to
investigate further, and this can be done in two different directions.

2. First direction

We investigate the intended original solution, based on an analysis of

R(n); a) =

∫ 1

0

e(αa4)
3∏

j=1

f(ajα)dα

where

f(α) =
∑
p≤n

(log p)e(αp).

Following the standard approach as described in §3.1 of Vaughan ibid.
one reaches

R(n; a) = S(a)

∫ P/n

−P/n

e(a4β)
3∏

j=11

v(ajβ)dβ +O
(
b2(log n)−A

)
where P = (log n)B with B ≥ 2A and A is some suitably large but
fixed real number, and where

v(γ) =
n∑

m=1

e(γm).

The intent is to use the bound

v(γ) ≪ min
(
n, ∥γ∥−1) (2.1) eq:vbound

to replace the interval [−P/n, P/n] by
[
− 1

2
, 1
2

]
. This is where the

problem occurs. Everything would be fine as long as ∥ajβ∥ ≥ Pn−1 for
at least one of the j. However, if for example β = k/(a1, a2, a3), then
∥ajβ∥ = 0 for every j. Thus one needs to investigate when one can
have simultaneously, for j = 1, 2, 3, an inequality of the kind

|ajβ − lj| ≤ ∆
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for non-zero integers lj. Here we have written ∆ for P/n. Since ∆ is
small it follows that

l1
a1

=
l2
a2

=
l3
a3

=
k

(a1, a2, a3)
=

k

d

for some k ̸= 0. To see this observe that we have

l1
a′1

=
l2
a′2

=
l3
a′3

.

Write the common value as
k

m
with (k,m) = 1. Then ljm = ka′j, whence m|a′j and so m|(a′1, a′2, a′3) =
1.

Thus we can at least show that∫ P/n

−P/n

e(a4β)
3∏

j=1

v(ajβ)dβ

=

∫ 1
2d

− 1
2d

e(a4β)
3∏

j=1

v(ajβ)dβ +O
(
n2(log n)−A

)
.

Now when d|h we have∫ 1
2d

− 1
2d

e(hβ)β =

{
1
d

when h = 0

0 otherwise.

Since d|aj for j = 1, . . . 4, we do indeed have always d|a1m1 + a2m2 +
a3m3 + a4. Hence we obtain

d−1J(n)

for the main term. Thus we have the first form of the corrected exercise.
2. Suppose that a1, . . . , a4 are fixed non-zero integers with a1, a2, a3

not all the same sign. Show that

R(n) =
∑∑∑
p1≤n p2≤n p3≤n

a1p1+a2p2+a3p3+a4=0

(log p1)(log p2)(log p3)

satisfies

R(n) = (a1, a2, a3)
−1J(n)S+O

(
n2(log n)−A

)
where J(n) is the number of solutions of

a1m1 + a2m2 + a3m3 + a4 = 0
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with mj ≤ n and

S =
∞∑
q=1

ϕ(q)−3

4∏
j=1

cq(aj).

3. Second Direction

Hooley
CH98
[1998] requires an estimate for expressions on the kind R(n; a)

and it is clear that he is aware of the lacuna in Exercise 3.3.2. He
therefore adopts the alternative approach, as briefly alluded to on page
15 of Vaughan ibid. of replacing the approximating sum v(β) by an
integral, in this case

w(β) =

∫ n

0

e(βγ)dγ

which in this instance takes the simpler form

w(β) =
e(βn)− 1

2πβ
.

Crucially the bound (
eq:vbound
2.1) is replaced by

w(β) ≪ min
(
n, |β|−1

)
which decays all the way to infinity.

Now following in the footsteps of the first direction we reach

R(n; a) = S(a)I(a) +O
(
n2(log n)−A

)
where

I(a) =

∫
R
e(a4β)

3∏
j=1

w(ajβ)dβ. (3.1) eq:Ia

This integral can be evaluated via the Fourier inversion formula to give

I(a) = V (a4; a1, a2, a3) (3.2) eq:Va

where V (y; a1, a2, a3) is defined for y ∈ R to be the volume of the two
dimensional region in R3 defined by a1x1+a2x2+a3x3 = −y, 0 ≤ xj ≤
n. This follows readily on writing

3∏
j=1

w(ajβ) =

∫
R
e(−βy)V (y; a1, a2, a3)dy,

so that this is V̂ (β; a1, a2, a3), whence

I(a) =

∫
R
e(a4β)V̂ (β; a1, a2, a3)dβ = V (a4; a1, a2, a3).
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The disadvantage of this approach is that there are some technical
details entailed in verifying the conditions for the Fourier inversion.
We nevertheless obtain a new version of the exercise.

2. Suppose that a1, . . . , a4 are fixed non-zero integers with a1, a2, a3
not all the same sign. Show that

R(n) =
∑∑∑
p1≤n p2≤n p3≤n

a1p1+a2p2+a3p3+a4=0

(log p1)(log p2)(log p3)

satisfies
R(n) = K(n)S+O

(
n2(log n)−A

)
where K(n) is the area of that part of the plane in R3 defined by a1x1+
a2x2 + a3x3 + a4 = 0, 0 ≤ xj ≤ n, and S satisfies

S =
∞∑
q=1

ϕ(q)−3

4∏
j=1

cq(aj).

Now recall the lacuna. We have R(n; a) = R(n; a′) but S(a) =
(a1, a2, a3)S(a′). How does V behave? Adverting to (

eq:Va
3.2) and (

eq:Ia
3.1)

and applying the change of variable β = d−1γ we have

V (a) =

∫
R
e(da′4β)

3∏
j=1

w(da′jβ)dβ

= d−1

∫
R
e(a′4γ)

3∏
j=1

w(a′jγ)dγ

= d−1V (a′),

which fits.
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