6. Inhomogeneous Approximation

We first show that inhomogeneous approximations cannot be localised in the man-
ner of Dirichlet’s thoerem for homogeneous approximations. The following was
conjectured by Hardy and Littlewood, and proved by Khintchin.

Theorem 6.1 (Khintchin, 1926). Suppose that ¢(q) is a non-negative function
tending to 0 as ¢ — oo. Then there exist irrational o and B such that there are
infinitely many @Q such that the pair of inequalities |q| < @, |lqa — B < ¢(Q) have
no solution.

Proof. We put g = # and take a = [0;ay,aq9,...], where the a, are to be
determined inductively as follows. Choose ) so large that ¢(Q) < #. Then

choose a,+1 so large that ¢,+1 > 6¢,Q. We now show that |[ga — 5| > ¢(Q) when
lq| < Q. Since |a—pn/qn| < 1/(gngns1), it follows that ||ga— B|| > |lqpng, * — Bl —

g/ (@nns1) > lapnayt — Bl — 1/(6¢2). But |y/z — B| > 1/(3x2) for all z, y with
x # 0. Thus the above is > 1/(3¢2) — 1/(6¢2) = 1/(6¢2) > ¢(Q).

We now consider simultaneous inhomogeneous approximation. If real numbers
a1, Qa, ... ,qy are given, then we can ask whether the n-tuples of fractional parts
kay — [kaq], kag — [kasl, ... ko, — [kay] is dense in [0,1)". In other words, for
any 3 and any € > 0 does there exist an integer k such that ||ka; — B;]] < € for
1 < i < n. We can exclude one possibility quite easily. Suppose that there exist
integers a1, as, ... ,a, not all 0 such that Z?Zl a;c; € 7, and suppose there is an
integer k with the property ||ka; — B;|| < e for 1 <i <n. Then

1Y S aiill = 11 ai(Bi — kai)l| < laile.
=1 =1 =1

Thus if the inequalities are to hold for every ¢ > 0, then >, a;8; € Z". However,
in general the point 3 will not satisfy such a relationship. Thus in order for ka; —
[kaq], kas — [kasl,. .., ko, — [kay] to be dense in [0,1)™ we have to exclude all
possible relationships Z?:l a;c; € 7 amongst the a;. Thus the condition that
Qa1,Qs, ..., 0y, 1 be linearly independent over Q is necessary. Kronecker’s theorem,
in its simplest form is the assertion that this condition is sufficient.

Theorem 6.2 (Kronecker). Suppose that oy, s, ... ,ap, 1 are linearly indepen-
dent over Q. Then for each B € R™ and each € > 0 there are arbitrarily large
positive integers k such that ||ka; — B;|| < e for 1 <i<mn.

There are many proofs of Kronecker’s theorem and we offer two of them. The
first is a very simple application of Fourier series and echoes the theme developed in
the previous chapter. We need a special Fourier series and the necessary properties
can be obtained easily via the Féjer kernel.

We have

/a Fur(8)d8 = 2a + i (1_%) e(ah) —e(—ah)

—a . 2mih
h#0

Thus when 0 < a < % we have

H

e(ah e(ah) — e(—ah
1_/ , P (P)dB = 2a+2 2 Q(Wih)_zz ( )2m'h(7 )’
a<|Bl<5 0<|h|<H h=1

1
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and so (ah)
1 e(ah 1
—Z=_ —~ in{1, —— . 1
amgy= > G0 (mn (1)) (6.1)
0<|h|<H

Now suppose % < a < 1 and consider the above formula with « replaced by 1 — a.

By then replacing h by —h we see that (6.1) holds generally for 0 < o < 1. Thus
we have the first part of the following lemma.

Lemma 6.1. Suppose that o is a real number, a is a real number with 0 < a < %,

and H is a positive integer, and let f(a) = 3(a —[a])? — $(a — [o]) + 5. Then
() )
1 e(ah , 1
a—[a]—i—— Z il —I-O(mln(l,m)),
0<|h|<H
(ii)
_ w— e(ah)
f(Oé) - hzz_oo 47T2h2’
h+£0

(iii)

(0.1 L2} _ @) =0 =)~ k)

a

To prove (ii) we observe that we may suppose that 0 < o < 1. We integrate both
sides of (i) from 0 to o. The left hand side becomes a? — s and the error term
is O(H 'log(2H)). The general term in the sum becomes (e(ah) — 1)/(2mwih)?.
Letting H — oo gives the desired conclusion.

To prove (iii) it is a simple matter to verify separately the cases 0 < o < a and

a < o < 1/2 and the general case follows by symmetry and periodicity.
First proof of Theorem 6.2. By the lemma
_lafly S
max (0,1 — — ) =a+ Z bre(ah)

a

h=—o0

h#£0

with the by, satisfying |by| < a='(1 + |h|)=2. Thus, provided that 0 < e < 1, we

have
H max (0, 1-— H%H) ="+ Z c(h)e(~.h)
i=1 € h+#£0
where
T 1

=1

Let L denote the number of k¥ < K such that ||a;k— ;]| < e fori=1,... ,n. Then

K
L>c"K+ ) c(h)) e(a.hk—Bh).

h=£0 k=1
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The terms in the infinite sum with |h;| > H for at least one i contribute O(e ="K /H)
and this will be small compared with the main term provided that H = [Ce™?"]
for a suitable positive number C. In the remaining terms, by hypothesis, we have
a.h ¢ 7Z. Thus they contribute

11
<< -
2 ok

where the sum is over h # 0 with |h;| < H for 1 < i < n. For large K this is
negligible by comparison with the main term, and so L > 0 as required.

For our second proof of Kronecker’s theorem we will make a connection with a
similar formulation of the result with integers k replaced by real numbers t.

Theorem 6.3 (Kronecker). Suppose that ay,as, ... ,a, are linearly independent
over Q. Then for each B3 € R™ and each € > 0 there are arbitrarily large positive
real numbers t such that ||ta; — Bi|| < e for 1 <i<mn.

Proof of Theorems 6.2 and 6.3. The proof is due to Ka-Lam Kueh (1987). Let I,
denote the assertion of Theorem 6.2 and R,, denote the assertion of Theorem 6.3.
We prove Ry, R, = I, I, — R,1.

“R1” The hypothesis of Ry ensures that a; # 0. Consider t of the form ¢t = k:—lﬁl
where k € Z. Then for such a t we have |[tay — f1]] = ||k|| = 0. The set of such ¢
forms an arithmetic progression and thus contains large positive members.

“R, = I,” By Theorem 3.13 (or the standard generalisations of Dirich-
let’s Theorem to simultaneous homogeneous approximation) there exist integers
q,q1,G2, - -+ yqn With ¢ > 0 and such that |ga; — ¢;| < €/2 for 1 < i < n. Sup-
pose that we have a linear relationship amongst the numbers qa; — ¢;, say that
S L ai(qoi — ¢;) = 0. This can be rewritten as 3.7, qazoy — (X0, aiq;) = 0.
But by the hypothesis of I,, we know that ay,...,a,,1 are linearly independent.
Hence all the a; vanish. In other words the qa; — ¢; are linearly independent over
Q. By R, it follows that there exist arbitrarily large real numbers ¢ such that
|t(qai — qi) — Bil| < e/2 for 1 <i <n. Put k = [t]g. Then

ke — Bill = ||([t] — t)(qa; — @) + (t(qas — q;) — Bs) + [ta]|
< llqei — qill + |[t(gei — ;) — Bill

<S4t
2 2 7

“l, = R,4+1” Since aq,...,a,41 are linearly indpendent over Q, it follows

that a1 # 0 and that aq/|an41], @2/|antl, .., an/|ansi], 1 are linearly inde-

pendent over Q. Then by I,, with 3; replaced by 5] = 0; F f;*—fl we see that there

exist arbitrarily large positive integers k such that ||k |ao‘il‘ -l <eforl <i<n.
kB : k+8s

That is, || \af+1+|1 a; — Bil|l = |[te; — Bil| < e fori=1,... ,n where t = ﬁ We

choose the upper sign when a,,+1 > 0, the lower sign when a,,+1 < 0.




