
5. Uniform Distribution

The central theme in the earlier parts of this course was the question of how small
we can make the quantity ‖αq‖, measured in terms of the size of q, or alternatively,
what is the size of minq≤Q ‖αq‖ for large Q? One can look at various generalizations
of this, and several of the multi-dimensional versions were studied through the use
of the geometry of numbers. One can also ask about the general distribution of αq.
In other words, given β, how small can we make ‖αq−β‖? By Dirichlet’s theorem,
or the continued fraction algorithm, we know that for any given α there are integers
c and s with s > 0 such that |α− c/s| < s−2 and that if α is irrational, then there
are arbitrarily large such s. Now let b = [βs] and choose q so that aq ≡ b (mod s)
and 0 < q ≤ s. Then ‖αq − β‖ = ‖αq − β − cq/s + [βs]/s‖ ≤ qs−2 + s−1 ≤ 2/s.
Thus, at least when α is irrational, we can find q so that ‖αq − β‖ is arbitrarily
small, i.e. the quantities αq − β are dense modulo 1.

It turns out that we can say something more precise than this as when α is
irrational we can show that the sequence ‖αq‖ is very regularly distributed. With
this in mind we define the concept of uniform distribution modulo 1 as follows.

Definition. The real sequence αn is uniformly distributed modulo 1 when for every
sub-interval I = [a, b) of [0, 1) with b ≥ a the limit

lim
N→∞

1

N

N∑
n=1

αn−[αn]∈I

1

exists and equals the length of I, b− a.

In particular, when αn is uniformly distributed modulo 1, then for each real
number β and each positive real number ε there are infinitely many n such that
‖αn − β‖ < ε.

The concept was first studied systematically in a seminal paper by Herman Weyl
in 1916, and much of analytic number theory has benefited from the underlying
ideas in this paper.

One useful observation that we can make imediately is that by taking βn =
αn − [αn], it suffices to consider sequences whose members lie in [0, 1)].

There are two general criteria for uniform distribution modulo 1, both stemming
from Weyl.

First Criterion. Suppose that 0 ≤ αn < 1. Then the sequence αn is uniformly
distributed modulo 1 if and only if for each function f Riemann integrable on [0, 1]
we have

1

N

N∑
n=1

f(αn) converges to

∫ 1

0

f(α)dα as N →∞, (5.1)

Proof of First Criterion. First suppose that (5.1) holds. Let I be any interval [a, b)
and let f be the characteristic function of the interval. Then the left hand side of
(5.1) is 1

N

∑
n=1

αn−[αn]∈I
1 and the right hand side is b− a.

Second suppose that αn is uniformly distributed modulo 1. Let f be any Rie-
mann integrable function on [0, 1], so that, in particular, f is bounded on [0, 1].

We can approximate arbitrarily closely to
∫ 1

0
f(α)dα by upper and lower sums.

1
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Thus for each ε > 0 there is a dissection 0 = a0 < a1 < . . . < aM−1 < aM = 1
of [0, 1] and step functions f±(α) = c±m on [am−1, am), f±(aM ) = c±M , where
c±m = ± sup[am−1,am](±f(α)), such that

f−(α) ≤ f(α) ≤ f+(α) and

∫ 1

0

∣∣f+(α)− f−(α)
∣∣ dα < ε.

Now limN→∞
1
N

∑
n=1

αn∈[am−1,am)
f±(αn) exists and equals c±m(am − am−1). Thus

lim
N→∞

1

N

N∑
n=1

f±(αn) =
M∑
m=1

c±m(am − am−1) =

∫ 1

0

f±(α)dα.

Therefore

0 ≤ lim sup

lim inf

1

N

N∑
n=1

(
f+(αn)− f(αn)

)
≤ lim
N→∞

1

N

N∑
n=1

(
f+(αn)− f +−(αn)

)
< ε.

Hence

0 ≤
∫ 1

0

f+(α)dα− lim sup

lim inf

1

N

N∑
n=1

f(αn) < ε

and so

−ε ≤
∫ 1

0

f(α)dα− lim sup

lim inf

1

N

N∑
n=1

f(αn) < ε.

This is true for every ε > 0, and so the integral, the lim sup and the lim inf are all
equal.

The above crterion is quite useful, but the following is much more so and has
been the basis for a good deal of important work. Indeed the underlying idea is
central to much of analytic number theory. There are also important repercussions
in harmonic analysis, ergodic theory and dynamical systems.

Throughout we use the notation e(β) to denote exp(2πiβ).

The Weyl Criterion. Suppose that αn is a real sequence. Then it is uniformly
distributed modulo 1 if and only if for every h ∈ Z\{0} we have

lim
N→∞

1

N

N∑
n=1

e(hαn) = 0. (5.2)

Proof. The proof in one direction is immediate from the first criterion since∫ 1

0

e(hα)dα = 0

when h 6= 0. There are various ways of proving this in the opposite direction.
One way is to observe that if (5.1) holds for continuous functions f on [0, 1], then
we can deduce the uniform distribution modulo 1 for the sequence αn by taking
for a given interval I = [a, b) upper and lower continuous approximations f± to
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the characteristic function of I. For example we can take f−(α) to be 1 when
a+ ε ≤ α ≤ b− ε, to be 0 when α 6∈ I and elsewhere take the obvious line segments
which make f continuous and then f− will minorise the characteristic function.
This with a similar definition for a majorant shows that the upper and lower limits

of 1
N

∑N
n=1, αn−[αn]∈I 1 as N →∞ differ from b−a by at most ε, and letting ε→ 0

gives the desired conclusion. One then has to deduce (5.1) for continuous f from
(5.2), and to do this one needs to know that the set of trigononmetric polynomials∑H
h=−H che(hα) is dense in the space of continuous functions, and this in turn

requires some knowledge of the basic elements of the theory of Fourier series.

A second line of approach is to use directly the Fourier series for the characteristic
function χI(α) of I. This is

χI(α) ∼ b− a+
∞∑

h=−∞

e(−ha)− e(−hb)
2πih

e(hα), (5.3)

with equality everywhere except at the endpoints of I. and has the disadvantage
that it is only conditionally convergenent. However, when one truncates the series
and estimates the tails by partial summation one finds that

χI(α) = b− a+
H∑

h=−H

e(−ha)− e(−hb)
2πih

e(hα)

+O
(
min{1, H−1‖α− a‖−1}+ min{1, H−1‖α− b‖−1}

)
.

(5.4)

The error term here can itself be expanded as a Fourier series, and this is absolutely
convergent. In fact

min{1, H−1‖α‖−1} =
2

H
log

eH

2
+

∞∑
h=−∞

che(hα)

with the ch satisfying for h 6= 0,

ch =

∫ 1/2

1/H

e(hα)− e(−hα)

Hα22πih
dα

and so

ch � min

{
1

|h|
,
H

h2

}
.

This technique is quite useful in other situations, but in order to adopt it one does
need some rudimentary knolwedge of the theory of Fourier series. The simplest
approach to this is via the Féjer kernel

FH(α) =
1

H

∣∣∣∣∣
H∑
h=1

e(hα)

∣∣∣∣∣
2

.
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However we can also use this kernel directly, without any prior knowledge of the
theory of Fourier series to establish a much more useful result, known as the Erdős-
Turán inequality. For convenience we write β ∈ S (mod 1) when there is an integer
k such that β + k ∈ S. When a ≤ b ≤ a+ 1 and I = [a, b) we let DN (a, b) denote

DN (a, b) =
1

N

N∑
n=1

αn∈I (mod 1)

1− (b− a) (5.5)

and write
D̄N = sup

a≤b≤a+1
|DN (a, b)| (5.6)

for the discrepancy of αn. For convenience we also write

SN (h) =
1

N

N∑
n=1

e(hαn), (5.6)

and for technical reasons it is useful also to define for 0 ≤ b ≤ 1,

D̄N (b) = sup
a∈R
|DN (a, a+ b)| (5.7)

and to sometimes use the Vingradov notation f � g for two expression f and g,
where g is non-negative. This means that there is is a non-negative number C such
that |f | ≤ Cg for all choices of the variables under consideration. If inequalities are
to hold for each postive number ε it useful to allow C to depend on ε. However,
for the time being when I use this notation the implicit constant will be absolute.

Theorem 5.1(Erdős-Turán, 1948). Whenever αn is a real sequence and 0 ≤
b ≤ 1 we have

D̄N (b)� 1

H
+

H∑
h=1

(
1

H
+
| sin(πhb)|

h

)
|SN (h)| . (5.8)

In particular

D̄N ≤ 120

(
1

H
+

H∑
h=1

1

h
|SN (h)|

)
. (5.9)

The completion of the proof of Weyl’s criterion is immediate from this. In
practice, one does not use the Weyl criterion itself because in applications one
usually needs a quantitative bound. Thus one requires something similar to the
Erdős-Turán inequality, anyway. It is essentially best possible, but we now have
very good values known in place of the implicit constant, in fact we know that

|DN (a, b)| ≤ 1

H + 1
+ 2

H∑
h=1

(
1

H + 1
+ min

(
b− a, 1

πh

))
|SN (h)| ,

and this has been obtained via Selberg’s magic functions and their allies (see R.
C. Baker, it Diophantine Approximation, Chapter 2, or H. L. Montgomery, Ten
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Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis,
CBMS Regional Conference Series, Vol. 84, Chapter 1).

Before embarking on the proof of Theorem 5.1 we investigate some of the simple
properties of the Féjer kernel.

1. FH(α) ≥ 0.
2. By writing the modulus squared sum as the sum times its complex conjugate

and collecting togher those terms which contribute to a general term e(jα) we see
that we are simply counting the number of h1, h2 with 1 ≤ hi ≤ H and h1−h2 = j.
By symmetry we may suppose the j ≥ 0 and then the number of pairs h1, h2 is the
number of h2 with 1 ≤ h2 ≤ H − j, i.e H − j. Thus it follows that

FH(α) =
1

H

H∑
j=−H

(H − |j|)e(jα) =
H∑

j=−H

(
1− |j|

H

)
e(jα).

3.
∫ 1

0
FH(α)dα = 1.

4. The sum
∑H
h=1 e(hα) is the sum of a geometric progression with common ratio

e(α). Thus, when α is not an integer its sum is (e((H + 1)α) − e(α))/(e(α) − 1).
Thus

FH(α) =
(sin(πHα))2

H(sin(πα))2
.

5. We have | sin(πα)| ≥ 2‖α‖. Thus

FH(α) ≤ 1

4H‖α‖2
.

6. If H‖α‖ ≤ 1
2 , then | sin(πHα)| ≥ 2H‖α||, and | sin(πα)| ≤ π‖α‖. Thus

FH(α) ≥ 4H

π2

(
‖α‖ ≤ 1

2H

)
.

Before proceeding with the proof of the Erdős-Turán inequality we establish a
special case.

Lemma 5.1. Suppose that a is any real number and H is a positive integer. Then

N∑
n=1

αn∈[a,a+1/H) (mod 1)

1

N
≤ π2

4H
+
π2

2H

H∑
h=1

|SN (h)|.

Proof. By property 6 above, the expression

π2

4H
FH

(
αn − a−

1

2H

)
is greater than or equal to 1 whenever αn is counted in the sum on the left. Thus,
by property 1 above the expression we wish to estimate is bounded by

π2

4H

N∑
n=1

1

N
FH

(
αn − a−

1

2H

)
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and by property 2 this is

π2

4H
+
π2

4H

H∑
h=−H
h 6=0

(
1− |h|

H

)
SN (h)e

(
−ha− h

2H

)

and the lemma follows from this.

We now turn to the proof of the Erdős-Turán inequality.

Proof of Theorem 5.1. We begin by observing that we may suppose that H > 16,
for the bound is trivial for H ≤ 16.

For general real a and b with a ∈ R and 0 ≤ b ≤ 1, we estimate the expression

J =

∫ 1

0

DN (a+ α, a+ b+ α)FH(α)dα

in two different ways. First we insert the definition of DN and appeal to property
4. We integrate term by term. The expression −b in DN when integrated against
FH gives −b by property 3. The remainder of DN when integrated against the
constant term 1 in FH contributes b. Thus it remains to consider∫ 1

0

N∑
n=1

αn∈[a+α,a+b+α) (mod 1)

1

N

H∑
j=−H
j 6=0

(
1− |j|

H

)
e(jα)dα.

Here the result of integrating term by term contributes

N∑
n=1

1

N

H∑
j=−H
j 6=0

(
1− |j|

H

)
e(j(αn − b− a))− e(j(αn − a))

2πij

and so we may conclude that

|J | ≤
H∑
h=1

2| sin(πhb)|
πh

|SN (h)| (5.10)

By property 3, ∫ 1

0

DN (a, a+ b)FH(α)dα = DN (a, a+ b).

Let

K =

∫ 1

0

(DN (a+ α, a+ b+ α)−DN (a, a+ b))FN (α)dα.

Then
DN (a, a+ b) = J −K. (5.11)

By property 5, the contribution to K from the α with 8
H ≤ ‖α‖ ≤

1
2 is bounded by

4D̄N (b)

∫ 1/2

8/H

1

4Hβ2
dβ ≤ 1

2
D̄N (b). (5.12)
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It remains to consider the α with ‖α‖ ≤ 8
H and by periodicity we may suppose that

|α| ≤ 8
H . There are several different cases, but typically DN (a + α, a + b + α) −

DN (a, a+b) can be written as a difference such as DN (a+b, a+b+α)−DN (a, a+α)
where the two terms correspond to two intervals of length |α|. Thus for c = a, or
a+ b, or a− |α|, or a+ b− |α|,

|DN (a+ α, b+ α)−DN (a, b)| ≤
N∑
n=1

αn∈[c,c+|α|) (mod 1)

1

N
+ |α|.

We can divide each of these intervals of length |α| in the sum on the right into at
most 8 subintervals of length at most 1/H and by the lemma each one of these will
contribute at most

π2

4H

(
1 + 2

H∑
h=1

|SN (h)|

)
.

Thus

|DN (a+ α, b+ α)−DN (a, b)| ≤ 4π2

H

(
1 + 2

H∑
h=1

|SN (h)|

)
+

8

H
.

Having bounded this part of the integrand in K in this way we can then extend
the interval of integration to a unit interval and appeal to property 3 once more.
Thus, by (5.12),

|K| ≤ 1

2
D̄N (b) +

4π2

H

(
1 + 2

H∑
h=1

|SN (h)|

)
+

8

H
.

Hence, by (5.10) and (5.11),

|DN (a, a+ b)| ≤ 1

2
D̄N (b) +

4π2 + 8

H
+

H∑
h=1

(
8π2

H
+

2| sin(πhb)|
πh

|SN (h)|
)
.

This holds uniformly for all a ∈ R and so we can choose a so that |DN (a, b)| is
arbitrarily close to D̄N (b). Thus

1

2
D̄N (b) ≤ 4π2 + 8

H
+

H∑
h=1

(
4π2

H
+

2| sin(πhb)|
πh

|SN (h)|
)
.

We have already seen that when α is irrational the sequence nα− [nα] is every-
where dense. Now we are in a position to give a simple proof that nα is uniformly
distributed. It suffices to consider the sum

SN (h) =
1

N

N∑
n=1

e(hnα)
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when h 6= 0. This is the sum of a geometric progression, and since α is irrational,
hα is never an integer. Thus

SN (h) =
e(h(N + 1)α)− e(hα)

N(e(hα)− 1)

so that

|SN (h)| ≤ 1

N | sin(πhα)|
and plainly for each fixed h 6= 0 this tends to 0 as N → ∞. Thus we have just
established

Theorem 5.2. Suppose that α is irrational. Then the sequence nα is uniformly
distributed modulo 1.

One can ask the same question with regard to the sequence p(n)α where p(n)
is a polynomial of degree d ≥ 1 and α is irrational. When d = 1 the conclusion is
immediate from Theorem 5.2 since the uniform distribution property is translation
invariant. However, when d ≥ 2 one immediately runs in to the problem that there
is no longer any simple formula for the corresponding exponential sums SN (h).
Weyl solved this difficulty with a simple device. This is based on the observation
that for any fixed j the polynomial p(n + j)− p(n) is a polynomial in n of degree
d− 1. More generally one can establish the following theorem.

Theorem 5.3 (van der Corput, 1931). Suppose that αn is a real sequence such
that for each fixed non-zero integer j the sequence αn+j−αn is uniformly distributed
modulo 1. Then the sequence αn is uniformly distributed modulo 1.

Proof. Suppose that σ(n) is a sequence of complex numbers with |σ(n)| ≤ 1, and
let H denote a positive integer. Then

H
N∑
n=1

σ(n) =

∫ 1

0

N+H∑
m=1

e(−mβ)
N∑
n=1

σ(n)e(nβ)
H∑
h=1

e(hβ)dβ

as can be seen readily by the observation that the integral picks out precisely those
terms in the multiple sum for which m = n + j and for any one pair n, j in the
given ranges there is exactly one m which meets this requirement.

By Schwarz’s inequality we obtain∣∣∣∣∣H
N∑
n=1

σ(n)

∣∣∣∣∣
2

≤

∫ 1

0

∣∣∣∣∣
N+H∑
m=1

e(mβ)

∣∣∣∣∣
2
∣∣∣∣∣

N∑
n=1

σ(n)e(nβ)

∣∣∣∣∣
2

HFH(β)dβ


= (N +H)

H∑
h=−H

(H − |h|)
∫ 1

0

∣∣∣∣∣
N∑
n=1

σ(n)e(nβ)

∣∣∣∣∣
2

e(−hβ)dβ

= (N +H)
H∑

h=−H

(H − |h|)
N∑
n=1

N∑
m=1

m=n+h

σ(m)σ̄(n).

The terms with j = 0 contribute at most

(N +H)H

N∑
n=1

|σ(n)|2 ≤ (N +H)HN.
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Thus ∣∣∣∣∣ 1

N

N∑
n=1

σ(n)

∣∣∣∣∣
2

≤ 1

H
+

1

N
+ 2

(
1 +

H

N

) H∑
j=1

∣∣∣∣∣ 1

N

N−j∑
n=1

σ(n+ j)σ̄(n)

∣∣∣∣∣ .
We now take σ(n) = e(hαn). Since for each fixed j, αn+j−α is uniformly distributed
modulo 1, by the Weyl criterion the limit superior of the right hand side as N →∞
is at most H−1. But this holds for every positive integer H. Thus

1

N

N∑
n=1

e(hαn)→ 0 as N →∞

and so by the Weyl criterion once more we have the desired conclusion.

The technique utilised in the proof of the previous theorem is sometimes known
as Weyl differencing, but van der Corput was the first to find a way of limiting the
size of the difference parameter j.

The following theorem is an easy deduction from the previous two by induction.

Theorem 5.4. Suppose that p(n) is a polynomial of degree d ≥ 1 with leading
coefficient irrational. Then the sequence p(n) n = 1, 2 . . . is uniformly distributed
modulo 1.

The conclusion also holds if any of the coefficients are irrational, but the result
is not quite immediate and the proof is left as an exercise.

We can also use the Erdős-Turán Theorem to give quantitative bounds. The
earliest of these is due to Vinogradov.

Theorem 5.5 (Vinogradov, 1927?). Suppose that α is irrational and β is any
real number, and let ε be any positive number. Then there are infinitely many
integers n such that

‖αn2 + β‖ < nε−
1
2 .

Before proceeding with the proof of Vinogradov’s result we establish some useful
lemmas. The first one is established by using ideas which we have already explored
in exercises earlier in the term, but for completness I include the proof here. The
condition on α that it can be approximated in this way is easily met in applications
by an appeal to Dirichlet’s theorem or the theory of continued fractions.

Lemma 5.2. Suppose that a and q are integers with q ≥ 1, gcd(a, q) = 1 and
|α − a/q| ≤ q−2, and suppose that X and Y are real numbers with X ≥ 1, Y ≥ 1.
Then ∑

x≤X

min
(
Y, ‖αx‖−1

)
�
(
XY

q
+X + Y + q

)
log(2q).

Proof. The sum in question can be split up in to at most Xq−1 + 1 sub sums in
which the x, for some non-negative integer k, lies in the interval kq < x ≤ (k+ 1)q.
It suffices, therefore, to show that the contribution from such an interval is

� Y + q log(2q).
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Let β = α− a/q. Then for such an x we have x = kq + y with 1 ≤ y ≤ q, and so

αx = ak +
a

q
y + βkq + βy

= ak +
ay + [βkq]

q
+
βkq − [βkq]

q
+ βy.

The expression ay + [βkq] runs through a complete set of residues modulo q as y
does. Thus apart from those five choices of y for which this expression is 0, ±1 or
±2 modulo q we have

‖αx‖ ≥ 1

3
‖(ay + [βkq])/q‖.

Thus the contribution from the x in the interval under consideration is at most

5Y +

q−1∑
j=1

3‖jq−1‖−1 � Y + q log(2q)

as required.

We now use the above lemma to get a good quantitative bound for the average
of the exponential sum which is relevant to Vinogradov’s theorem.

Lemma 5.3. Suppose that H an N are integers and that a and q are integers with
q ≥ 1, gcd(a, q) = 1 and |α− a/q| ≤ q−2. Then for each positive number ε we have

H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣� (
HNq−

1
2 +HN

1
2 + (Hq)

1
2

)
(HN)ε.

Proof. We use Weyl differencing in its classical form. We may certainly suppose
that q ≤ HN2 for otherwise the conclusion is trivial.

Let S denote the expression we wish to estimate. Then, by Cauchy’s inequality
we have

|S|2 ≤ H
H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣
2

.

We square out the inner sum to obtain

N∑
n=1

N∑
m=1

e
(
αh(m2 − n2)

)
and put m = n+ j. The sum over j has range 1−n to N −n. Now we interchange
the order of summation

N−1∑
j=1−n

∑
n

e
(
αh(2nj + j2)

)
where the inner summation is now over those n with 1 ≤ n ≤ N and 1 − j ≤ n ≤
N − j. Now we have a geometric progression which we can sum. For j = 0 the
inner sum is N , and when j 6= 0 it is bounded by min(N, ‖2αhj‖−1). Thus

|S|2 � H2N +H
H∑
h=1

N∑
j=1

min
(
N, ‖2αhj‖−1

)
.
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By standard estimates for the divisor function the double sum here is

� (HN)ε
2HN∑
k=1

min
(
N, ‖αk‖−1

)
.

Hence, by the previous lemma

|S|2 � H2N + (HN)2εH
(
HN2q−1 +HN + q

)
amd the lemma follows

Proof of Theorem 5.5. Let ε > 0 and apply Dirichlet’s Theorem or the theory of
continued fractions to obtain integers a and q with gcd(a, q) = 1, q > q0(ε) and

|α− a/q| ≤ q−2. Now take N = q, a = −β, b = Nε− 1
2 , let δ be a positive number,

sufficiently small in terms of ε and put H = n
1
2−δ. By (5.7) and (5.8) we find that

|DN (a, b)| � H−1 + b
H∑
h=1

∣∣∣∣∣ 1n
N∑
n=1

e(αhn2)

∣∣∣∣∣
and by the last lemma this is

� Nδ− 1
2 + bHN−

1
2 (HN)

1
4 δ

� Nδ− 1
2 + bN−

1
2 δ

and this is small by comparison with b.

There is a localised version of this due to Heilbronn.

Theorem 5.6 (Heilbronn, 1948). Let α be any real number and let ε be a positive
real number. Then for every large natural number N we have

min
1≤n≤N

‖αn2‖ < N ε− 1
2 .

At first sight it would seem desirable ot extend this to the whole real line as
in the previous theorem. However, by constructing certain irrational numbers α
whose continued fraction convergents converge very rapidly one can ensure that the
corresponding inequality really does occur very infrequently.

We require an extension of Lemma 5.3, which again utilises an idea seen earlier
in an exercise.

Lemma 5.4. Suppose that α is a real number, that ε is a positive real number and
that a and q are integers with q ≥ 1, gcd(a, q) = 1 and |α− a/q| ≤ q−2. Then,

H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣
�
(

HN

(q +HN2|αq − a|)1/2
+HN

1
2 +H

1
2 (q +HN2|αq − a|) 1

2

)
(HN)ε.
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Proof. Choose a, q as stated. When HN2|αq − a| ≤ q, then the conclusion is
immediate from Lemma 5.3. Thus we may suppose that

HN2|αq − a| > q. (5.13)

Let Q =
[
2|αq − a|−1

]
. By Dirichlet’s theorem there are b and r with 1 ≤ r ≤ Q

and |αr − b| ≤ (Q + 1)−1. Now either b/r = a/q, whence α = a/q = b/r which
contradicts (5.13), or 1/(qr) ≤ |α− a/q|+ |α− b/r| and the second term here does
not exceed (2r)−1|αq − a| ≤ 1/(2qr). Thus 1

2 |αq − a|
−1 ≤ r ≤ Q Now we apply

Lemma 5.3 with a, q replaced by b and r. Hence

H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣� (
HNr−

1
2 +HN

1
2 + (Hr)

1
2

)
(HN)ε

and the lemma follows once more.

Proof of Theorem 5.6. Let δ denote a positive number which is small comapared
with ε and put H = N

1
2−δ. By Dirichlet’s theorem we may choose a and q with

q ≥ 1, gcd(a, q) = 1, |α − a/q| ≤ 1
qHN and q ≤ HN . Let b = Nε− 1

2 . Then, by

Lemma 5.4, the right hand side of (5.8) is

� 1

H
+ bN

1
2 δ

(
H

(q +HN2|αq − a|) 1
2

+HN−
1
2

)
.

If q + HN2|αq − q| > H2N3δ, then we are done. Suppose not. Then q ≤ H2N3δ

and |αq − a| < HN−2+3δ. Thus

‖αq2‖ < H3N2−6δ = N3δ− 1
2

and we are done anyway!

Zaharescu (1995?) has improved the exponents in Theorems 5.5 and 5.6 to 2
3

and 4
7 respectively.


