Math 597e Primes, Spring 2008, Problems 8

Due Tuesday 25th March

This is the previous homework continued. Let $f(\alpha)$ be as in the lectures, let $Q = N^{1/2}(\log N)^{-B}$ and $P = (\log N)^{D}$ where B and D will be fixed later. Further let $K(\alpha) = |\sum_{h=1}^{H} e(\alpha h)|^2 = \sum_{|h| \leq H} (H - |h|) e(\alpha h)$, where we suppose that $H \ll \log N$. Define $\mathfrak{M}(q, a) = [a/q - P/N, a/q + P/N]$ and take \mathfrak{M} to be the union of the $\mathfrak{M}(q, a)$ with $1 \leq a \leq q \leq Q$ and (a,q) = 1. Also let $\mathfrak{U} = (P/N, 1 + P/N]$ and $R(N,h) = \sum_{p_1,p_1} (\log p_1)(\log p_2)$ where the sum is over primes p_1, p_2 with $p_j \leq N$ and $p_2 - p_1 = h$. The story so far is, if $D \geq 2$, then $HN \log N + 2\sum_{h=1}^{H} (H - h)R(N,h) \geq I_5 + 2\Re I_4 + O(HN)$ where $I_5 = N \sum_{|h| \leq H} (H - |h|) \mathfrak{S}(h,Q)$ and $I_4 \leq \sum_{q \leq Q} \mu(q)^2 \phi(q)^{-1} \sum_{\substack{q=1 \ (r,q)=1}}^{q} |S(r)| I(r) |I(r)|$

here S(r) and I(r) are defined in question 8.

9. In the notation of question 8, prove if $\delta(u,q,r) = \sum_{n \leq u} c(n,q,r)$, then $\Delta(\beta,q,r) = e(\beta N)\delta(N,q,r) - 2\pi i \int_{1}^{N} e(\beta u)\delta(u,q,r)du$. Deduce that if $I_6 = \int_{-P/N}^{P/N} |\sum_{n=1}^{N} e(n\beta)|(1+N|\beta|)d\beta$, then

$$I_4 \ll I_6 \sum_{q \le Q} \mu(q)^2 \phi(q)^{-1} \left(\max_{(r,q)=1} \sup_{u \le N} |\delta(u,q,r)| \right) \sum_{\substack{r=1\\(r,q)=1}}^q |S(r)|.$$

10. Prove that $I_6 \ll \log N + P$.

11. Prove that Ramanujan's sum $c_q(j) = \sum_{\substack{a=1 \ (a,q)=1}}^{q} e(aj/q)$ satisfies $|c_q(j)| \le (q,j)$. Deduce that $S(r) \le H \sum_{|h| \le H} (q, h - r)$, that $\sum_{\substack{r=1 \ (r,q)=1}}^{q} |S(r)| \ll H^2 q d(q)$ and that $I_4 \ll (\log N + P) H^2 \sum_{q \le Q} \mu(q)^2 \phi(q)^{-1} q d(q) (\max_{(r,q)=1} \sup_{u \le N} |\delta(u,q,r)|).$

12. Observe that when $q \leq N$, $\max_{(r,q)=1} \sup_{u \leq N} |\delta(u,q,r)| \ll q^{-1}N \log N$ and prove that $\sum_{q \leq Q} \mu(q)^4 \phi(q)^{-2} q^2 d(q)^2 \left(\max_{(r,q)=1} \sup_{u \leq N} |\delta(u,q,r)| \right) \ll N (\log N)^5$. Deduce from Bombier's theorem that if $B > B_0(A, D)$, then $I_4 \ll N$ and hence $HN \log N + 2\sum_{h=1}^H (H-h)R(N,h) \geq NH\mathfrak{S}(0,Q) + 2N\sum_{h=1}^H (H-h)\mathfrak{S}(h,Q) + O(HN)$.

13. Observe that $\mathfrak{S}(0,Q) = \log Q + 0(1)$ and that $\phi(q)^{-2} \sum_{\substack{a=1 \ (a,q)=1}}^{q} e(ah/q) \ll q^{-3/2}h$. Prove that $\sum_{1 \le h \le H} (H-h) \sum_{R < q \le Q} \phi(q)^{-2} \sum_{\substack{a=1 \ (a,q)=1}}^{q} e(ah/q) \ll H^3 R^{-1/2} \ll H$ when $R = H^4$.

14. Observe that $K(a/q) - H \ll H + \min(H^2, ||a/q||^{-2})$. Deduce that when q > 1, $\sum_{\substack{a=1 \ (a,q)=1}}^{q} (K(a/q) - H) \ll qH$ and that when $R = H^4$, $\sum_{\substack{1 < q \le R}} \sum_{\substack{a=1 \ (a,q)=1}}^{q} (K(a/q) - H) \ll H(\log H)^2$. Conclude that

$$\frac{1}{2}HN\log N + 2\sum_{h=1}^{H}(H-h)R(N,h) \ge H^2N + O(HN(\log\log N)^2).$$

15. Prove that if $H = (\frac{1}{2} + \varepsilon) \log N$ and $N > N_0(\varepsilon)$, then there is an $h \leq H$ such that $R(N,h) \gg_{\varepsilon} N$. Show that there are primes p_1 , p_2 with $p_2 > N/\log^3 N$ such that $p_2 - p_1 = h$. Conclude that $\liminf \frac{p_{n+1}-p_n}{\log p_n} \leq \frac{1}{2}$.