MATH 597B, SPRING 2015, PROBLEMS 11

Due Thursday 9th April

1. Suppose that $k \ge 2$ and the $1 < q_1 < q_2 < \cdots < q_k$. Prove that if for each j we have $p|q_j \Rightarrow p > k$, then q_1, \ldots, q_k forms an admissible set.

2. Call a set **h** of distinct non-negative integers h_1, \ldots, h_k sf-admissible when there is no prime p such that every residue class modulo p^2 contains at least one of them. Let $S(x; \mathbf{h})$ denote the number of $n \leq x$ such that $n + h_1, \ldots, n + h_k$ are simultaneously squarefree.

(i) Let f(n) denote the characteristic function of the squarefree numbers. Prove that $S(x; \mathbf{h}) = \sum_{n \le x} f(n + h_1) \dots f(n + h_k)$ and $f(n) = \sum_{d^2 \mid n} \mu(d)$.

(ii) Suppose that $0 < \delta < 1/(3k)$ and let $y = x^{\delta}$ and $f(n; y) = \sum_{\substack{d \le y \\ d^2 \mid n}} \mu(d)$. Prove that

for j = 1, ..., k

$$S(x;\mathbf{h}) = T_j(x;y) + O(x^{1+\varepsilon}y^{-1})$$

where

$$T_j(x;y) = \sum_{n \le x} f(n+h_1;y) \dots f(n+h_j;y) f(n+h_{j+1}) \dots f(n+h_k).$$

(iii) Given a k-tuple of positive integers $\mathbf{d} = d_1, \ldots, d_k$ let $d = d_1 \ldots d_k$ and given another one **r** we use $\mathbf{d}|\mathbf{r}$ to mean $d_j|r_j$ $(j = 1, \ldots, k)$ a and \mathbf{d}^2 to mean d_1^2, \ldots, d_k^2 . Write $n + \mathbf{h}$ for the k-tuple $n + h_1, \ldots, n + h_k$. Let $\rho(\mathbf{d})$ denote the number of solutions of $\mathbf{d}^2|n + \mathbf{h}$ in n modulo d^2 . Prove that $\rho(\mathbf{d}) \leq d^2$ and

$$T_k(x;y) = x \sum_{d_1 \le y, \dots, d_k \le y} \frac{\mu(d_1) \dots \mu(d_k)}{d^2} \rho(\mathbf{d}) + O(y^{3k}).$$

(iv) Let $\nu_p(\mathbf{h})$ denote the number of different residue classes modulo p^2 amongst the h_1, \ldots, h_k . Suppose that k = 2. Prove that

$$S(x;h) = x \prod_{p} \left(1 - \frac{\nu_p(\mathbf{h})}{p^2}\right) + O(x^{1-\delta}).$$

With a little bit of work this can be generalised to all $k \ge 2$ and establishes the squarefree k-tuples theorem (R. R. Hall, Squarefree numbers on short intervals, Mathematika, 29, (1982), 717).