MATH 775, SPRING 2015, PROBLEMS 10

Due Tuesday 31st March

Let $c_q(h)$ denote Ramanujan's sum $\sum_{\substack{a=1\\(a,q)=1}}^{q} e(ah/q)$, and for $k \ge 2$ define $\mathfrak{S}_k(h) = \sum_{q=1}^{\infty} \frac{\mu(q)^k}{\phi(q)^k} c_q(h)$. 1. (i) Prove that if $k \ge 2$ and $h \in \mathbb{N}$, then $\mathfrak{S}_k(h)$ converges absolutely. (ii) Suppose that $H \in \mathbb{N}$ and $q \ge 2$. Prove that $\sum_{h=1}^{H} c_q(h) \ll \sum_{a=1}^{q-1} ||a/q||^{-1} \ll q \log q$. (iii) Suppose that $k \ge 3$. Prove that $\sum_{h=1}^{H} \mathfrak{S}_k(h) = H + O(1)$. (iv) Suppose that Q > 1 and $h \in \mathbb{N}$. Prove that $\sum_{q>Q} \frac{\mu(q)^2}{\phi(q)^2} c_q(h) \ll Q^{-1} \sum_{l|h} \frac{l^2 \mu(l)^2}{\phi(l)^2}$ and that $\sum_{h=1}^{H} \sum_{q>Q} \frac{\mu(q)^2}{\phi(q)^2} c_q(h) \ll Q^{-1} H \log 2H$. (v) Prove that $\sum_{h=1}^{H} \sum_{1 \le q \le Q} \frac{\mu(q)^2}{\phi(q)^2} c_q(h) \ll (\log Q)^2$. (vi) Prove that $\sum_{h=1}^{H} \mathfrak{S}_2(h) = H + O(\log^2 H)$.

2. Let $H \in \mathbb{N}$ and \mathcal{H}_k be the set of k-tuples $\mathbf{h} = h_1, \ldots, h_k$ with h_1, \ldots, h_k distinct and $1 \leq h_j \leq H$ for each j, and let $\nu_p(\mathbf{h})$ be the number of distinct residue classes modulo p amongst the \mathbf{h} . Then define, for $\mathbf{h} \in \mathcal{H}_k$, $\mathfrak{S}_k^*(\mathbf{h}) = \prod_p \left(1 - \frac{\nu_p(\mathbf{h})}{p}\right) \left(1 - \frac{1}{p}\right)^{-k}$. Also, let $F(q; \mathbf{h})$ be the multiplicative function of q with

$$F(p; \mathbf{h}) = \left(1 - \frac{\nu_p(\mathbf{h})}{p}\right) \left(1 - \frac{1}{p}\right)^{-k} - 1, \quad F(p^j; \mathbf{h}) = 0 \ (j > 1).$$

(i) Prove that if $k \geq 2$ and $\mathbf{h} \in \mathcal{H}_k$, then $\mathfrak{S}_k^*(\mathbf{h})$ converges absolutely.

(ii) Prove that if $k \ge 2$ and $\mathbf{h} \in \mathcal{H}_k$, then $\mathfrak{S}_k^*(\mathbf{h}) = \sum_{q=1}^{\infty} F(q; \mathbf{h})$.

(iii) Suppose that k = 2 and $\mathbf{h} \in \mathcal{H}_2$. Prove that $F(q; \mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} c_q(h_2 - h_1)$ and $\mathfrak{S}_2^*(\mathbf{h}) = \mathfrak{S}_2(h_2 - h_1)$.

(iv) Prove that
$$\operatorname{card} \mathcal{H}_k = H^k + O(H^{k-1}).$$

(v) Prove that
$$\sum_{h \in \mathcal{H}_2} \mathfrak{S}_2^*(\mathbf{h}) = 2 \sum_{h=1}^n (H-h) \mathfrak{S}_2(h) = 2 \int_1^H \sum_{h \le x} \mathfrak{S}_2(h) dx = H^2 + O(H \log^2 H).$$