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1. (H.-E. Richert, unpublished) (a) Show that
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(b) Let f(n) = n2
∏

p|n
(
1− p−2

)
. Show that

∑
d|n f(d) = n2.

(c) For 1 ≤ d ≤ z let Λd be real numbers such that Λ1 = 1. Show that, subject to this
condition, the minimum of

∑
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2 is 1/L where L =
∑
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2/f(n). Show

also that Λd ≪ 1 for the extremal Λd.
(d) Show that if z ∈ N, then ζ(2)− 1/z ≤ L ≤ ζ(2).
(e) Let Q(x) denote the number of squarefree numbers not exceeding x. Show that for
x ≥ 0, y ≥ 1,

Q(x+ y)−Q(x) ≤ y
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.


