
MATH 597B, SPRING 2015, PROBLEMS 8

Due Tuesday 17th March

1. Let f(n) be an arithmetic function such that f(1) = 1. Show that f is multiplicative if
and only if f(m)f(n) = f((m,n))f([m,n]) for all pairs of positive integers m, n.

2. (Hooley (1972), Montgomery & Vaughan (1979)) By lower and upper bound sifting func-
tions we mean functions λ± : N → R with the properties∑

m|n

λ−
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∑
m|n

µ(m) ≤
∑
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λ+
m

respectively.
(i) Let λ+

d be an upper bound sifting function such that λ+
d = 0 for all d > z. Show that

for any q,

0 ≤ φ(q)

q

∑
d
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d

d
≤

∑
d
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d

d
.

(Hint: Multiply both sides by P/φ(P ) =
∑

1/m where m runs over all integers composed of
the primes dividing P , and P =

∏
p≤z p.)

(ii) Let Λd be real with Λd = 0 for d > z. Show that for any q,
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q
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.

(iii) Let λ−
d be a lower bound sifting function such that λ−

d = 0 for d > z. Show that for any
q,
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.


