MATH 597B, SPRING 2015, PROBLEMS 8

Due Tuesday 17th March

1. Let f(n) be an arithmetic function such that f(1) = 1. Show that f is multiplicative if and only if f(m)f(n) = f((m, n))f([m, n]) for all pairs of positive integers m, n.

2. (Hooley (1972), Montgomery & Vaughan (1979)) By lower and upper bound sifting functions we mean functions $\lambda^{\pm}:\mathbb{N}\to\mathbb{R}$ with the properties

$$\sum_{m|n} \lambda_m^- \leq \sum_{m|n} \mu(m) \leq \sum_{m|n} \lambda_m^+$$

respectively.

(i) Let λ_d^+ be an upper bound sifting function such that $\lambda_d^+ = 0$ for all d > z. Show that for any q,

$$0 \le \frac{\varphi(q)}{q} \sum_{\substack{d \\ (d,q)=1}} \frac{\lambda_d^+}{d} \le \sum_d \frac{\lambda_d^+}{d}.$$

(Hint: Multiply both sides by $P/\varphi(P) = \sum 1/m$ where m runs over all integers composed of the primes dividing P, and $P = \prod_{p \leq z} p$.) (ii) Let Λ_d be real with $\Lambda_d = 0$ for d > z. Show that for any q,

$$0 \leq \frac{\varphi(q)}{q} \sum_{\substack{d, e \\ (de,q)=1}} \frac{\Lambda_d \Lambda_e}{[d, e]} \leq \sum_{d, e} \frac{\Lambda_d \Lambda_e}{[d, e]}.$$

(iii) Let λ_d^- be a lower bound sifting function such that $\lambda_d^- = 0$ for d > z. Show that for any q,

$$\frac{\varphi(q)}{q} \sum_{\substack{d \\ (d,q)=1}} \frac{\lambda_d^-}{d} \ge \sum_d \frac{\lambda_d^-}{d}.$$