MATH 597B, SPRING 2015, PROBLEMS 6

Due Tuesday 24th February

We recall some things from Math 568. Given a Dirichlet character χ modulo q we define

$$\tau(\chi; a) = \sum_{x=1}^{q} \chi(x) e(ax/q), \quad \tau(x) = \tau(x; 1).$$

When χ is a primitive character modulo q, $|\tau(\chi)| = \sqrt{q}$ and $\tau(\chi; a) = \overline{\chi}(a)\tau(\chi)$ for every $a \in \mathbb{Z}$. For a general Dirichlet character modulo q there is an associated conductor q^* with $q^*|q$ and an associated primitive character χ^* modulo q^* such that $\chi(x) = \chi_0 \chi^*(x)$ for every $x \in \mathbb{Z}$ where χ_0 is the principal character modulo q, and we say that χ^* induces χ . We suppose throughout that $M \in \mathbb{Z}$ and $N \in \mathbb{N}$.

1. Given a character χ modulo q show that

$$\sum_{x=M+1}^{M+N} \chi(x) = \frac{1}{q} \sum_{a=1}^{q} \tau(\chi; a) T(-a/q)$$

where $T(\alpha) = \sum_{x=M+1}^{M+N} e(x\alpha)$.

2. Suppose that q > 1 and χ is a primitive character modulo q. Prove that

$$\left|\sum_{x=M+1}^{M+N} \chi(x)\right| \le q^{-\frac{1}{2}} \sum_{\substack{a=1\\(a,q)=1}}^{q-1} \frac{1}{2\|a/q\|} \le q^{\frac{1}{2}} \sum_{a \le (q-1)/2} \frac{1}{a}.$$

3. Prove that if $0 \le \alpha \le 1$, then $\alpha \le \log \frac{1+\frac{\alpha}{2}}{1-\frac{\alpha}{2}}$.

4. Deduce that if q > 1 and χ is a primitive character modulo q, then

$$\left|\sum_{x=M+1}^{M+N} \chi(x)\right| \le q^{\frac{1}{2}} \log q.$$

5. (Pólya–Vinogradov) Prove that if χ is a non–principal character modulo q induced by a primitive character χ^* with conductor q^* . then

$$\sum_{x=M+1}^{M+N} \chi(x) = \sum_{d|q/q^*} \mu(s)\chi^*(d) \sum_{M/d < y \le (M++N)/d} \chi^*(y)$$

and deduce that

$$\left|\sum_{x=M+1}^{M+N} \chi(x)\right| \le d(q/q^*)(q^*)^{\frac{1}{2}} \log q^* \ll q^{\frac{1}{2}} \log q$$