Math 597b, Spring 2015, Problems 3
Due Tuesday 3rd February
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1. (i) Prove that if @ is a real number such that > 1, then Z — >log Q.
n
n<Q
(ii) A natural number q is squarefree when it has no repeated prime factors, i.e. u(q)? =
1. Let s(n) denote the squarefree kernel of n, s(n) =[] , p. Prove that if ¢ is squarefree,
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(v) Note that if u(mr) # 0, then (m,r) = 1. Show that Z Z plmr)? =
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2. Suppose that M and N are integers, N > 1, T'(x) is as given in (19.8), 6 > 0 and the

points z,. are well spaced in the sense of (19.9). Suppose also that there are constants A,

B and a real valued function f(N,d) such that N~ *sup f(N,8) — 0as N — oo and for
5

any choice of the above we have
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(i) Prove that min ||z, — x4;|| > 6/H where the min is over pairs r, h; s,j with 7, h # s, j
and deduce that
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SN T (@en)]? < (A(HN — H+1)+ BHS '+ f(HN - H+1,6/H)) Y el
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(ii) Prove that » > " |T*(z)* = HY [T (2)].
r=1 h=0 r=1

r=1 n=M+1



