
Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

Math 571, Spring 2025, Vinogradov’s Mean
Value Theorem

Robert C. Vaughan

April 29, 2025



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• Let
ν(n) = (n, n2, . . . , nk)

• and let

α = (α1, α2, . . . , αk),

f (α,A) =
∑
n∈A

e
(
α.ν(n)

)
where A is a finite set of integers.

• We are interested in the mean value

Jk(A, b) =

∫
Tk

|f (α,A)|2b dα.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• Let
ν(n) = (n, n2, . . . , nk)

• and let

α = (α1, α2, . . . , αk),

f (α,A) =
∑
n∈A

e
(
α.ν(n)

)
where A is a finite set of integers.

• We are interested in the mean value

Jk(A, b) =

∫
Tk

|f (α,A)|2b dα.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• Let
ν(n) = (n, n2, . . . , nk)

• and let

α = (α1, α2, . . . , αk),

f (α,A) =
∑
n∈A

e
(
α.ν(n)

)
where A is a finite set of integers.

• We are interested in the mean value

Jk(A, b) =

∫
Tk

|f (α,A)|2b dα.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• Now
f (α,A)b =

∑
m

r
(
m,Ab

)
e(α.m)

where r
(
m,Ab

)
denotes the number of solutions of the

system
n1 + · · · + nb = m1

n21 + · · · + n2b = m2
...

...
...

nk1 + · · · + nkb = mk

(1)

with ni ∈ A.

• Thus by Parseval’s identity,

Jk(A, b) =
∑
m

r
(
m,Ab

)2
.
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• When B and C are subsets of Rb containing only finitely
many lattice points, let N(B, C, ℓ) denote the number of
solutions of

m1 + · · · + mb = n1 + · · · + nb + ℓ1
m2

1 + · · · + m2
b = n21 + · · · + n2b + ℓ2

...
...

...
...

...
mk

1 + · · · + mk
b = nk1 + · · · + nkb + ℓk

with m ∈ B and n ∈ C.

• For brevity write N(B, ℓ) = N(B,B, ℓ), N(B) = N(B, 0)
and N(B, C) = N(B, C, 0).

• Then we can define the more general mean

Jk(A, b, ℓ) = N
(
Ab, ℓ

)
,

so that
Jk(A, b) = N

(
Ab

)
.
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• The following elementary observations are useful.

Lemma 1

In the above notation,
(a) If B ⊆ C, then N(B, ℓ) ≤ N(C, ℓ),
(b) N(B, ℓ) ≤ N(B) for all ℓ,
(c) If C = B1 ∪ · · · ∪ Bj , then N(C) ≤ j

∑j
i=1N(Bi ),

(d) If a ̸= 0 and d = (d , d , . . . , d), then
N(aB + d , aC + d ) = N(B, C),
(e) Jk(A, b, ℓ) ≤ Jk(A, b).

• (d) is the fundamental translation-dilation property.
• Proof. (a) is obvious.
• (b) We have already seen versions of this.

N(B, ℓ) =
∫
Tk

∣∣∣∑
m

r(m,B)e(m ·α)
∣∣∣2e(−ℓ ·α)dα

≤
∫
Tk

∣∣∣∑
m

r(m,B)e(m ·α)
∣∣∣2 dα = N(B),
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• Lemma.
(c) If C = B1 ∪ · · · ∪ Bj , then N(C) ≤ j

∑j
i=1N(Bi ),

(d) If a ̸= 0 and d = (d , d , . . . , d), then
N(aB + d , aC + d ) = N(B, C),
(e) Jk(A, b, ℓ) ≤ Jk(A, b).

• (c) In the above notation,

r(m, C) ≤
j∑

i=1

r(m,Bi )

• and so by Cauchy’s inequality

r(m, C)2 ≤ j

j∑
i=1

r(m,Bi )
2.

• It now suffices to sum this over m, since

N(C) =
∑
m

r(m, C)2, N(Bi ) =
∑
m

r(m,Bi )
2.
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• Lemma 1.
(d) If a ̸= 0 and d = (d , d , . . . , d), then
N(aB + d , aC + d ) = N(B, C),
(e) Jk(A, b, ℓ) ≤ Jk(A, b).

• It is useful to introduce the notation

sj(θ) = sj(θ; b) =
b∑

r=1

θjr .

• Then N(B, C) is the number of solutions of sj(m) = sj(n)
(1 ≤ j ≤ k) with mj ∈ B and nj ∈ C.

• Suppose sj(m) = sj(n) (1 ≤ j ≤ k). By the binomial

theorem sj(am+ d) =

j∑
ℓ=0

(
j

ℓ

)
aℓd j−ℓsℓ(m) = sj(an+ d).

• If instead sj(am+ d) = sj(an+ d) (1 ≤ j ≤ k), then
ajsj(m) = sj

(
(am+ d)− d

)
= ajsj(n) in the same way.

• (e) is a special case of (b).
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• There is a close connection between the sr (θ) and the
elementary symmetric functions of the θj , σr (θ) which can
be defined so that (−1)rσr (θ) is the coefficient of z r in
the polynomial P(z) =

∏b
j=1(1− zθj).

• By considering the power series expansion of zP ′(z)/P(z)
in a small disc centred on 0 one obtains the
Newton-Girard formulæwhich assert that

r−1∑
j=0

(−1)r−1−jσjsr−j = rσr (2)

for 1 ≤ r ≤ b, and that

b∑
j=0

(−1)jσjsr−j = 0 (3)

for r ≥ b.
• In this second identity, the quantity s0 arises when
j = r = b and it is to be understood that s0 = b even if
one or more of the θj vanishes.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• There is a close connection between the sr (θ) and the
elementary symmetric functions of the θj , σr (θ) which can
be defined so that (−1)rσr (θ) is the coefficient of z r in
the polynomial P(z) =

∏b
j=1(1− zθj).

• By considering the power series expansion of zP ′(z)/P(z)
in a small disc centred on 0 one obtains the
Newton-Girard formulæwhich assert that

r−1∑
j=0

(−1)r−1−jσjsr−j = rσr (2)

for 1 ≤ r ≤ b, and that

b∑
j=0

(−1)jσjsr−j = 0 (3)

for r ≥ b.

• In this second identity, the quantity s0 arises when
j = r = b and it is to be understood that s0 = b even if
one or more of the θj vanishes.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• There is a close connection between the sr (θ) and the
elementary symmetric functions of the θj , σr (θ) which can
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the polynomial P(z) =
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• Lemma 2.
(a) Suppose that θ1, . . . , θb, ϕ1, . . . , ϕb are such that

sr (θ) = sr (ϕ) (1 ≤ r ≤ b).

Then the polynomial Q(z ; ξ) =
∏b

r=1(z − ξr ) satisfies
Q(z ;θ) = Q(z ;ϕ) identically.
(b) Suppose that p is a prime number with p > b, that u
is a positive integer and that θ1, . . . , θb, ϕ1, . . . , ϕb are
integers such that

sr (θ) ≡ sr (ϕ) (mod pu) (1 ≤ r ≤ b).

Then
Q(z ;θ) ≡ Q(z ;ϕ) (mod pu)

for all integers z.

• Proof. (a). It is a simple induction on the Newton-Girard
formulæ that σr (θ) = σr (ϕ) for 1 ≤ r ≤ b. (b). Likewise
(mod pu) as long as p > b.
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• Lemma 3. Let Jk(X , b) = Jk((0,X ], b). Then
(a) Jk(X , b) ≤ b!X b when b ≤ k,
(b) Jk(X , b) ≤ k!X 2b−k when b > k,
(c) Jk(X , b) ≥ ⌊X ⌋b,
(d) Jk(x , b) ≥ (2b + 1)−k⌊X ⌋2b−k(k+1)/2.

• (a) Jk(X , b) is the number of choices of m, n in (0,X ]b

such that
sr (m) = sr (n) (1 ≤ r ≤ k).

• Since b ≤ k
Q(z ;m) = Q(z ;n)

identically.

• Thus the ni are permutations of the mi .

• (b) When b ≥ k ,

Jk(X , b) =

∫
Tk

|f (α)|2bdα ≤ x2b−2kJk(X , k).

• (c) Just take the variables on the right to be a
permutation of those on the left.
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• Lemma 3. Let Jk(X , b) = Jk((0,X ], b). Then
(d) Jk(x , b) ≥ (2b + 1)−k⌊X ⌋2b−k(k+1)/2.

• (d) For brevity put N = ⌊X ⌋. We have already seen this.∣∣∣∣ ∫
Tk

|f (α)|2be(α.ℓ)dα

∣∣∣∣ ≤ Jk(N, b).

• The integral on the left is the number of solutions of

sr (m)− sr (n) = ℓr (1 ≤ r ≤ k)

with m, n in (0,N]b.

• Since 0 < sr (m) ≤ bN r there are no solutions unless ℓ
satisfies |ℓr | ≤ bN r (1 ≤ r ≤ k).

• Sum both sides over all such ℓ.

• On the left we are just counting all possible choices of m
and n. N2b in total.

• The number of ℓ is ≤ (2b + 1)kN
1
2
k(k+1).
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• All significant methods to bound Jk(X , b) generally are
motivated by some kind of “completion” process. The
simplest is a p-adic argument due to Linnik.

• Lemma 4. Suppose that p > k. Let A(p,h) be the
number of mr ≤ pk such that

k∑
r=1

mj
r ≡ hj (mod pj) (1 ≤ j ≤ k)

and the mr distinct modulo p. Then A(p,h) ≤ k!p
1
2
k(k−1).

• Proof. Let B(p, g) denote the number of solutions of

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k)

with mr ≤ pk and the mr distinct modulo p.
• Then for each h, A(p,h) is the sum of those B(p, g) with
gj ≡ hj (mod pj) and 1 ≤ gj ≤ pk for 1 ≤ j ≤ k .

• The total number of possible choices for g is p
1
2
k(k−1).

• Thus it suffices to show that B(p, g) ≤ k!.
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It suffices to show that B(p, g) ≤ k!.

• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.

• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.

• Then,
Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).

• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).

• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .

• Since the ns are distinct modulo p, and so are distinct, it
follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• B(p, g) is the number of distinct mr ≤ pk with

k∑
r=1

mj
r ≡ gj (mod pk) (1 ≤ j ≤ k).

It suffices to show that B(p, g) ≤ k!.
• For a given g let m be such a solution. modulo p.
• Suppose that n1, . . . , nk is another such solution.
• Then,

Q(z ;m) ≡ Q(z ;n) (mod pk)

• so Q(ns ;m) ≡ Q(ns ;n) ≡ 0 (mod pk) (1 ≤ s ≤ k).

• Since Q(z ;m) =
k∏

r=1

(z −mr ), for each s there is an r

such that ns ≡ mr (mod p).
• Also, since the mr are distinct modulo p it follows that mr

is unique, and so ns ≡ mr (mod pk).
• Thus ns = mr .
• Since the ns are distinct modulo p, and so are distinct, it

follows that the n are a permutation of the m.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• We now have all the machinery we need to establish the
classical version of the Vinogradov Mean Value Theorem.
Theorem 5. For each k , r ∈ N with k ≥ 2 There is a
positive number C (k , r) such that foe every real number
X ≥ 1 we have

Jk(X , kr) ≤ C (k , r)X 2rk− 1
2
k(k+1)+η(k,r)

where

η(k , r) = 1
2k

2
(
1− 1

k

)r
.

• The proof is inductive on r . More precisely we establish a
reduction formula.
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• Theorem 5. For each k , r ∈ N with k ≥ 2 There is a
positive number C (k , r) such that foe every real number

X ≥ 1 we have Jk(X , kr) ≤ C (k , r)X 2rk− 1
2
k(k+1)+η(k,r)

where η(k , r) = 1
2k

2
(
1− 1

k

)r
.

• Proof. In the case r = 1 we have by Lemma 3(a) that
Jk(X , k) ≤ k!X k , and we also have
2k − 1

2k(k + 1) + η(k , 1) = k and k! ≤ kk = exp(k log k).
• Suppose r ≥ 2 and result holds with r replaced by r − 1.
• Let R1(h) denote the number of solutions to the system

kr∑
r=1

mj
r = hj (1 ≤ j ≤ k)

with mr ≤ X and m1, . . . ,mk distinct, and let R2(h)
denote the number with m1, . . . ,mk not distinct.

• Then Jk(X , kr) =
∑
h

(
R1(h) + R2(h)

)2 ≤ 2(S1 + S2)

where Si =
∑
h

Ri (h)
2.
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• We can quickly deal with S2. One each side of the
equations there are two variables the same, and

(k
2

)
choices for the matching pair.

• Thus S2 ≤
(
k

2

)2 ∫
Tk

|f (2α)|2|f (α)|2kr−4dα.

• By Hölder’s inequality this is

≤
(
k

2

)2(∫
Tk

|f (2α)|2krdα
) 1

kr
(∫

Tk

|f (α)|2krdα
) kr−2

kr

=

(
k

2

)2

Jk(X , kr)1−1/kr .

• Thus

Jk(X , kr) ≤ 2S1 + 2

(
k

2

)2

Jk(X , kr)1−1/kr .

• And so

Js(X , kr) ≤
(
4

(
k

2

)2)kr

+ 4S1.
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• By Hölder’s inequality this is

≤
(
k

2

)2(∫
Tk

|f (2α)|2krdα
) 1

kr
(∫

Tk

|f (α)|2krdα
) kr−2

kr

=

(
k

2

)2

Jk(X , kr)1−1/kr .

• Thus

Jk(X , kr) ≤ 2S1 + 2

(
k

2

)2

Jk(X , kr)1−1/kr .

• And so

Js(X , kr) ≤
(
4

(
k

2

)2)kr

+ 4S1.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• We can quickly deal with S2. One each side of the
equations there are two variables the same, and

(k
2

)
choices for the matching pair.

• Thus S2 ≤
(
k

2

)2 ∫
Tk

|f (2α)|2|f (α)|2kr−4dα.
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• It remains to treat S1. We are concerned with solutions in
which m1, . . . ,mk are distinct and n1, . . . , nk are distinct.

• Let P(m) =
∏k−1

q=1

∏k
r=q+1(mq −mr ) where mj ≤ X .

• The number of possible primes p with p > X 1/k and
p|P(m)P(n) is at most k log |P(m)P(n)|

logX < k2(k − 1).

• Thus if P is a set of ≥ k2(k − 1) primes p with p > X 1/k ,
then for each set of distinct m1, . . . ,mk and n1, . . . , nk
there will always be a prime p ∈ P such that
p ∤ P(m)P(n).

• We can also assume that X > C1e
k , for otherwise trivially

Jk(X ; lk) ≤ X 2lk ≤ C (k , l), and p > k .

• Furthermore we can suppose by a standard form of the
prime number theorem that the set P of primes p can be
chosen so that p ≤ C2k

2X 1/k for some absolute constant
C2 (and probably better than that).
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• Recall that S1 =
∑
h

R1(h)
2 where R1(h) is the number of

solutions to the system
kr∑
r=1

mj
r = hj (1 ≤ j ≤ k) with

mr ≤ X and m1, . . . ,mk distinct.

• We have R1(h) ≤
∑
p∈P

R3(h, p) where R3(h, p) is the no.

of solutions with mr ≤ X & m1, . . . ,mk distinct (mod p).

• Let I (p) =
∑
h

R3(h, p)
2.

• Then I (p) is the no. of solns. of sj(m) = sj(n)
(1 ≤ j ≤ k) with m1, . . . ,mb, n1, . . . , nb in (0, x ],
m1, . . . ,mk distinct modulo p and likewise n1, . . . , nk .

• Thus Jk(X , rk) ≤ 4
∑
h

R1(h))
2 ≤ 4

∑
h

(∑
p∈P

R3(h, p)
)2

≤ 4
∑
h

1

2
k3

∑
p∈P

R3(h, p)
2 ≤ 2k3

∑
p∈P

I (p) ≤ k6max
p

p∈P
I (p).
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• I (p) is the no. of solns. of sj(m) = sj(n) (1 ≤ j ≤ k) with
m1, . . . ,mk , n1, . . . , nk in (0, x ], m1, . . . ,mk distinct mod
p & likewise n1, . . . , nk and Jk(X , rk) ≤ k6max

p∈P
I (p)

• Let g(α, a) =
∑
n≤X

n≡a (modp)

e
(
α.ν(m)

)
, and

• A be the a with 0 ≤ ar < p and ar distinct. Then I (p) =∫
Tk

∣∣∣∑
a∈A

g(α, a1) · · · g(α, ak)
∣∣∣2∣∣∣ p−1∑

a=0

g(α, a)
∣∣∣2b−2k

dα

• By Hölder’s inequality∣∣∣ p−1∑
a=0

g(α, a)
∣∣∣2rk−2k

≤ p2rk−2k−1
p−1∑
a=0

|g(α, a)|2rk−2k ,

• and so I (p) ≤ p2b−2k max0≤a<p I1(p, a) where I1(p, a) =∫
Tk

∣∣∣∑
a∈A

g(α, a1) · · · g(α, ak)
∣∣∣2|g(α, a)|2rk−2k dα.
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• By Hölder’s inequality∣∣∣ p−1∑
a=0

g(α, a)
∣∣∣2rk−2k

≤ p2rk−2k−1
p−1∑
a=0

|g(α, a)|2rk−2k ,

• and so I (p) ≤ p2b−2k max0≤a<p I1(p, a) where I1(p, a) =∫
Tk

∣∣∣∑
a∈A

g(α, a1) · · · g(α, ak)
∣∣∣2|g(α, a)|2rk−2k dα.



Math 571,
Spring 2025,
Vinogradov’s
Mean Value
Theorem

Robert C.
Vaughan

Introduction

General
Inequalities

Symmetric
Functions

Linnnik’s
Lemma

The
Vinogradov
Mean Value
Theorem

• I (p) is the no. of solns. of sj(m) = sj(n) (1 ≤ j ≤ k) with
m1, . . . ,mb, n1, . . . , nrk in (0, x ], m1, . . . ,mk distinct mod
p & likewise n1, . . . , nk and Jk(X , rk) ≤ k6maxp∈P I (p),
I (p) ≤ p2rk−2k max0≤a<p I1(p, a) where I1(p, a) =∫

Tk

∣∣∣∑
a∈A

g(α, a1) · · · g(α, ak)
∣∣∣2|g(α, a)|2rk−2k dα,

and g(α, a) =
∑

n≤X ,n≡a (modp)

e
(
α.ν(m)

)
.

• This is the number of solutions of
k∑

i=1

(
mj

i −nji
)
=

rk−k∑
r=1

(
(pur +a)j −(pvr +a)j

)
(1 ≤ j ≤ k)

with mi , ni ≤ X , −a/p < ur , vr ≤ (X − a)/p, m1, . . . ,mk

distinct mod p and n1, . . . , nk likewise.
• This system is TDI so under the same conditions

k∑
i=1

(
(mi−a)j−(ni−a)j

)
=

rk−k∑
r=1

pj
(
ujr−v jr

)
(1 ≤ j ≤ k)
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m1, . . . ,mb, n1, . . . , nrk in (0, x ], m1, . . . ,mk distinct mod
p & likewise n1, . . . , nk and Jk(X , rk) ≤ k6maxp∈P I (p),
I (p) ≤ p2rk−2k max0≤a<p I1(p, a) where I1(p, a) =∫

Tk

∣∣∣∑
a∈A

g(α, a1) · · · g(α, ak)
∣∣∣2|g(α, a)|2rk−2k dα,

and g(α, a) =
∑

n≤X ,n≡a (modp)

e
(
α.ν(m)

)
.

• This is the number of solutions of
k∑

i=1

(
mj

i −nji
)
=

rk−k∑
r=1

(
(pur +a)j −(pvr +a)j

)
(1 ≤ j ≤ k)

with mi , ni ≤ X , −a/p < ur , vr ≤ (X − a)/p, m1, . . . ,mk

distinct mod p and n1, . . . , nk likewise.
• This system is TDI so under the same conditions

k∑
i=1

(
(mi−a)j−(ni−a)j

)
=

rk−k∑
r=1

pj
(
ujr−v jr

)
(1 ≤ j ≤ k)
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• Jk(X , rk) ≤ k6maxp∈P p2rk−2k maxa I1(p, a) where I1(p, a)
is no. solns.

k∑
i=1

(
(mi−a)j−(ni−a)j

)
=

rk−k∑
h=1

pj
(
ujh−v jh

)
(1 ≤ j ≤ k)

with mi , ni ≤ X , −a/p < uh, vh ≤ (X − a)/p, m1, . . . ,mk

distinct mod p and n1, . . . , nk likewise.

• We can sort the solutions as follows.

• Pick n1, . . . , nk .

• Then choose m1, . . . ,mk modulo pk so that
(mi − a)j ≡ (ni − a)j (mod pj) (1 ≤ j ≤ k).

• Use Linnik’s lemma: There are ≤ k!pk(k−1)/2 choices
modulo pk .

• Since p > X 1/k the mi are uniquely determined modulo
pk , i.e. there are at most k!pk(k−1)/2 choices in all.

• Now given the mi and ni the number of choices for uh, vh
is at most Jk

(
(−a/p, (X − a)/p], rk − k

)
.

• Apply the inductive hypothesis.
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with mi , ni ≤ X , −a/p < uh, vh ≤ (X − a)/p, m1, . . . ,mk

distinct mod p and n1, . . . , nk likewise.

• The total number of solutions is at most the maximum
over p ∈ P of

k6k!X kp
k(k−1)

2
+2rk−2kC (k , r − 1)(1 + X

p )
2rk−2k− k(k+1)

2
+ηr−1

• ≤ k6k!C (k , r − 1)pk
2−ηr−122rkX 2rk−k− k(k+1)

2
+ηr−1 .

• Recall P is a set of k2(k − 1) primes p with
X 1/k < p ≤ C2k

2X 1/k .

• Thus the above is ≤ C (k , r)X k−ηr−1/k+2rk−k− k(k+1)
2

+ηr−1 .

• The exponent here is 2rk − k(k+1)
2 + ηr
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