> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

Math 571, Spring 2025, Vinogradov's Mean Value Theorem

Robert C. Vaughan

April 29, 2025

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem Let

$$\boldsymbol{\nu}(\boldsymbol{n}) = (\boldsymbol{n}, \boldsymbol{n}^2, \dots, \boldsymbol{n}^k)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogrado Mean Valu Theorem Let

$$\boldsymbol{\nu}(\boldsymbol{n}) = (\boldsymbol{n}, \boldsymbol{n}^2, \dots, \boldsymbol{n}^k)$$

• and let

$$\boldsymbol{lpha} = (lpha_1, lpha_2, \dots, lpha_k),$$

 $f(\boldsymbol{lpha}, \mathcal{A}) = \sum_{n \in \mathcal{A}} e(\boldsymbol{lpha}. \boldsymbol{
u}(n))$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

where \mathcal{A} is a finite set of integers.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

Let

$$\boldsymbol{\nu}(\boldsymbol{n}) = (\boldsymbol{n}, \boldsymbol{n}^2, \dots, \boldsymbol{n}^k)$$

and let

$$\boldsymbol{lpha} = (lpha_1, lpha_2, \dots, lpha_k),$$

 $f(\boldsymbol{lpha}, \mathcal{A}) = \sum_{n \in \mathcal{A}} e(\boldsymbol{lpha}. \boldsymbol{
u}(n))$

where \mathcal{A} is a finite set of integers.

• We are interested in the mean value

$$J_k(\mathcal{A},b) = \int_{\mathbb{T}^k} |f(lpha,\mathcal{A})|^{2b} \, dlpha.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Now

$$f(\boldsymbol{\alpha}, \mathcal{A})^b = \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{A}^b) e(\boldsymbol{\alpha}.\mathbf{m})$$

where $r(\mathbf{m}, \mathcal{A}^b)$ denotes the number of solutions of the system

$$n_{1} + \cdots + n_{b} = m_{1}$$

$$n_{1}^{2} + \cdots + n_{b}^{2} = m_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$n_{1}^{k} + \cdots + n_{b}^{k} = m_{k}$$
(1)

with $n_i \in \mathcal{A}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Now

$$f(\boldsymbol{\alpha}, \mathcal{A})^b = \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{A}^b) e(\boldsymbol{\alpha}.\mathbf{m})$$

where $r(\mathbf{m}, \mathcal{A}^b)$ denotes the number of solutions of the system

$$n_{1} + \cdots + n_{b} = m_{1}$$

$$n_{1}^{2} + \cdots + n_{b}^{2} = m_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$n_{1}^{k} + \cdots + n_{b}^{k} = m_{k}$$
(1)

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

with $n_i \in \mathcal{A}$.

• Thus by Parseval's identity,

$$J_k(\mathcal{A}, b) = \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{A}^b)^2.$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogrado Mean Val When B and C are subsets of ℝ^b containing only finitely many lattice points, let N(B, C, ℓ) denote the number of solutions of

・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

with $\boldsymbol{m} \in \mathcal{B}$ and $\boldsymbol{n} \in \mathcal{C}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem When B and C are subsets of ℝ^b containing only finitely many lattice points, let N(B, C, ℓ) denote the number of solutions of

with $\boldsymbol{m} \in \mathcal{B}$ and $\boldsymbol{n} \in \mathcal{C}$.

• For brevity write $N(\mathcal{B}, \ell) = N(\mathcal{B}, \mathcal{B}, \ell)$, $N(\mathcal{B}) = N(\mathcal{B}, \mathbf{0})$ and $N(\mathcal{B}, \mathcal{C}) = N(\mathcal{B}, \mathcal{C}, \mathbf{0})$.

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem When B and C are subsets of ℝ^b containing only finitely many lattice points, let N(B, C, ℓ) denote the number of solutions of

with $\boldsymbol{m} \in \mathcal{B}$ and $\boldsymbol{n} \in \mathcal{C}$.

- For brevity write $N(\mathcal{B}, \ell) = N(\mathcal{B}, \mathcal{B}, \ell)$, $N(\mathcal{B}) = N(\mathcal{B}, \mathbf{0})$ and $N(\mathcal{B}, \mathcal{C}) = N(\mathcal{B}, \mathcal{C}, \mathbf{0})$.
- Then we can define the more general mean

$$J_k(\mathcal{A}, b, \ell) = N(\mathcal{A}^b, \ell),$$

so that

$$J_k(\mathcal{A},b) = N(\mathcal{A}^b).$$

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • The following elementary observations are useful.

Lemma 1

In the above notation, (a) If $\mathcal{B} \subseteq \mathcal{C}$, then $N(\mathcal{B}, \ell) \leq N(\mathcal{C}, \ell)$, (b) $N(\mathcal{B}, \ell) \leq N(\mathcal{B})$ for all ℓ , (c) If $\mathcal{C} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_j$, then $N(\mathcal{C}) \leq j \sum_{i=1}^j N(\mathcal{B}_i)$, (d) If $a \neq 0$ and $\mathbf{d} = (d, d, \dots, d)$, then $N(a\mathcal{B} + \mathbf{d}, a\mathcal{C} + \mathbf{d}) = N(\mathcal{B}, \mathcal{C})$, (e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b)$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • The following elementary observations are useful.

Lemma 1

In the above notation, (a) If $\mathcal{B} \subseteq \mathcal{C}$, then $N(\mathcal{B}, \ell) \leq N(\mathcal{C}, \ell)$, (b) $N(\mathcal{B}, \ell) \leq N(\mathcal{B})$ for all ℓ , (c) If $\mathcal{C} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_j$, then $N(\mathcal{C}) \leq j \sum_{i=1}^j N(\mathcal{B}_i)$, (d) If $a \neq 0$ and $\mathbf{d} = (d, d, \dots, d)$, then $N(a\mathcal{B} + \mathbf{d}, a\mathcal{C} + \mathbf{d}) = N(\mathcal{B}, \mathcal{C})$, (e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b)$.

• (d) is the fundamental *translation-dilation* property.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • The following elementary observations are useful.

Lemma 1

In the above notation, (a) If $\mathcal{B} \subseteq \mathcal{C}$, then $N(\mathcal{B}, \ell) \leq N(\mathcal{C}, \ell)$, (b) $N(\mathcal{B}, \ell) \leq N(\mathcal{B})$ for all ℓ , (c) If $\mathcal{C} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_j$, then $N(\mathcal{C}) \leq j \sum_{i=1}^j N(\mathcal{B}_i)$, (d) If $a \neq 0$ and $\mathbf{d} = (d, d, \dots, d)$, then $N(a\mathcal{B} + \mathbf{d}, a\mathcal{C} + \mathbf{d}) = N(\mathcal{B}, \mathcal{C})$, (e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b)$.

• (d) is the fundamental *translation-dilation* property.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Proof. (a) is obvious.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • The following elementary observations are useful.

Lemma 1

In the above notation, (a) If $\mathcal{B} \subseteq \mathcal{C}$, then $N(\mathcal{B}, \ell) \leq N(\mathcal{C}, \ell)$, (b) $N(\mathcal{B}, \ell) \leq N(\mathcal{B})$ for all ℓ , (c) If $\mathcal{C} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_j$, then $N(\mathcal{C}) \leq j \sum_{i=1}^j N(\mathcal{B}_i)$, (d) If $a \neq 0$ and $\mathbf{d} = (d, d, \dots, d)$, then $N(a\mathcal{B} + \mathbf{d}, a\mathcal{C} + \mathbf{d}) = N(\mathcal{B}, \mathcal{C})$, (e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b)$.

- (d) is the fundamental *translation-dilation* property.
- Proof. (a) is obvious.
- (b) We have already seen versions of this.

$$N(\mathcal{B}, \boldsymbol{\ell}) = \int_{\mathbb{T}^k} \left| \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{B}) e(\boldsymbol{m} \cdot \boldsymbol{\alpha}) \right|^2 e(-\boldsymbol{\ell} \cdot \boldsymbol{\alpha}) \, \boldsymbol{d} \boldsymbol{\alpha}$$
$$\leq \int_{\mathbb{T}^k} \left| \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{B}) e(\boldsymbol{m} \cdot \boldsymbol{\alpha}) \right|^2 \, \boldsymbol{d} \boldsymbol{\alpha} = N(\mathcal{B}),$$

Lemma.

Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

(c) If $C = B_1 \cup \cdots \cup B_i$, then $N(C) \leq j \sum_{i=1}^j N(B_i)$, (d) If $a \neq 0$ and $d = (d, d, \dots, d)$, then $N(a\mathcal{B}+d, a\mathcal{C}+d) = N(\mathcal{B}, \mathcal{C}),$ (e) $J_k(\mathcal{A}, b, \ell) < J_k(\mathcal{A}, b)$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem (c) If $C = B_1 \cup \cdots \cup B_j$, then $N(C) \leq j \sum_{i=1}^j N(B_i)$, (d) If $a \neq 0$ and $\boldsymbol{d} = (d, d, \dots, d)$, then $N(aB + \boldsymbol{d}, aC + \boldsymbol{d}) = N(B, C)$, (e) $J_k(A, b, \ell) \leq J_k(A, b)$.

• (c) In the above notation,

Lemma.

$$r(\boldsymbol{m}, \mathcal{C}) \leq \sum_{i=1}^{j} r(\boldsymbol{m}, \mathcal{B}_i)$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma.

(c) If
$$C = B_1 \cup \cdots \cup B_j$$
, then $N(C) \leq j \sum_{i=1}^j N(B_i)$,
(d) If $a \neq 0$ and $\boldsymbol{d} = (d, d, \dots, d)$, then
 $N(aB + \boldsymbol{d}, aC + \boldsymbol{d}) = N(B, C)$,
(e) $J_k(A, b, \ell) \leq J_k(A, b)$.

• (c) In the above notation,

$$r(\boldsymbol{m}, \mathcal{C}) \leq \sum_{i=1}^{j} r(\boldsymbol{m}, \mathcal{B}_i)$$

• and so by Cauchy's inequality

$$r(\boldsymbol{m}, \mathcal{C})^2 \leq j \sum_{i=1}^{j} r(\boldsymbol{m}, \mathcal{B}_i)^2.$$

イロト 不得 トイヨト イヨト

3

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

(c) If
$$C = B_1 \cup \cdots \cup B_j$$
, then $N(C) \leq j \sum_{i=1}^j N(B_i)$,
(d) If $a \neq 0$ and $\boldsymbol{d} = (d, d, \dots, d)$, then
 $N(aB + \boldsymbol{d}, aC + \boldsymbol{d}) = N(B, C)$,
(e) $J_k(A, b, \ell) \leq J_k(A, b)$.

• (c) In the above notation,

Lemma.

$$r(\boldsymbol{m}, \mathcal{C}) \leq \sum_{i=1}^{j} r(\boldsymbol{m}, \mathcal{B}_i)$$

• and so by Cauchy's inequality

$$r(\boldsymbol{m}, \mathcal{C})^2 \leq j \sum_{i=1}^{j} r(\boldsymbol{m}, \mathcal{B}_i)^2.$$

• It now suffices to sum this over *m*, since

$$N(\mathcal{C}) = \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{C})^2, \quad N(\mathcal{B}_i) = \sum_{\boldsymbol{m}} r(\boldsymbol{m}, \mathcal{B}_i)^2.$$

イロト 人間ト イヨト イヨト

3

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 1.

(d) If $a \neq 0$ and $\boldsymbol{d} = (d, d, \dots, d)$, then $N(a\mathcal{B}+d, a\mathcal{C}+d) = N(\mathcal{B}, \mathcal{C}),$ (e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 1.

(d) If
$$a \neq 0$$
 and $\boldsymbol{d} = (d, d, \dots, d)$, then
 $N(a\mathcal{B} + \boldsymbol{d}, a\mathcal{C} + \boldsymbol{d}) = N(\mathcal{B}, \mathcal{C})$,
(e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b)$.

人口 医水理 医水理 医水理 医小

Sac

• It is useful to introduce the notation $s_j(\theta) = s_j(\theta; b) = \sum_{r=1}^{b} \theta_r^j.$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 1.

(d) If
$$a \neq 0$$
 and $\boldsymbol{d} = (d, d, \dots, d)$, then
 $N(a\mathcal{B} + \boldsymbol{d}, a\mathcal{C} + \boldsymbol{d}) = N(\mathcal{B}, \mathcal{C}),$
(e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b).$

- It is useful to introduce the notation $s_j(\theta) = s_j(\theta; b) = \sum_{r=1}^{b} \theta_r^j.$
- Then $N(\mathcal{B}, \mathcal{C})$ is the number of solutions of $s_j(\mathbf{m}) = s_j(\mathbf{n})$ $(1 \le j \le k)$ with $m_j \in \mathcal{B}$ and $\mathbf{n}_j \in \mathcal{C}$.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 1.

(d) If
$$a \neq 0$$
 and $\boldsymbol{d} = (d, d, \dots, d)$, then
 $N(a\mathcal{B} + \boldsymbol{d}, a\mathcal{C} + \boldsymbol{d}) = N(\mathcal{B}, \mathcal{C}),$
(e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b).$

- It is useful to introduce the notation $s_j(\theta) = s_j(\theta; b) = \sum_{r=1}^{b} \theta_r^j.$
- Then $N(\mathcal{B}, \mathcal{C})$ is the number of solutions of $s_j(\mathbf{m}) = s_j(\mathbf{n})$ $(1 \le j \le k)$ with $m_j \in \mathcal{B}$ and $\mathbf{n}_j \in \mathcal{C}$.
- Suppose $s_j(\mathbf{m}) = s_j(\mathbf{n})$ $(1 \le j \le k)$. By the binomial theorem $s_j(a\mathbf{m} + d) = \sum_{\ell=0}^j {j \choose \ell} a^\ell d^{j-\ell} s_\ell(\mathbf{m}) = s_j(a\mathbf{n} + d)$.

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 1.

(d) If
$$a \neq 0$$
 and $\boldsymbol{d} = (d, d, ..., d)$, then
 $N(a\mathcal{B} + \boldsymbol{d}, a\mathcal{C} + \boldsymbol{d}) = N(\mathcal{B}, \mathcal{C}),$
(e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b).$

- It is useful to introduce the notation $s_j(\theta) = s_j(\theta; b) = \sum_{r=1}^{b} \theta_r^j.$
- Then $N(\mathcal{B}, \mathcal{C})$ is the number of solutions of $s_j(\mathbf{m}) = s_j(\mathbf{n})$ $(1 \le j \le k)$ with $m_j \in \mathcal{B}$ and $\mathbf{n}_j \in \mathcal{C}$.
- Suppose $s_j(\mathbf{m}) = s_j(\mathbf{n})$ $(1 \le j \le k)$. By the binomial theorem $s_j(a\mathbf{m} + d) = \sum_{\ell=0}^j {j \choose \ell} a^\ell d^{j-\ell} s_\ell(\mathbf{m}) = s_j(a\mathbf{n} + d)$.
- If instead $s_j(a\mathbf{m} + d) = s_j(a\mathbf{n} + d)$ $(1 \le j \le k)$, then $a^j s_j(\mathbf{m}) = s_j((a\mathbf{m} + d) d) = a^j s_j(\mathbf{n})$ in the same way.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 1.

(d) If
$$a \neq 0$$
 and $\boldsymbol{d} = (d, d, ..., d)$, then
 $N(a\mathcal{B} + \boldsymbol{d}, a\mathcal{C} + \boldsymbol{d}) = N(\mathcal{B}, \mathcal{C}),$
(e) $J_k(\mathcal{A}, b, \ell) \leq J_k(\mathcal{A}, b).$

- It is useful to introduce the notation $s_j(\theta) = s_j(\theta; b) = \sum_{r=1}^{b} \theta_r^j.$
- Then $N(\mathcal{B}, \mathcal{C})$ is the number of solutions of $s_j(\mathbf{m}) = s_j(\mathbf{n})$ $(1 \le j \le k)$ with $m_j \in \mathcal{B}$ and $\mathbf{n}_j \in \mathcal{C}$.
- Suppose $s_j(\mathbf{m}) = s_j(\mathbf{n}) \ (1 \le j \le k)$. By the binomial theorem $s_j(a\mathbf{m} + d) = \sum_{\ell=0}^j {j \choose \ell} a^\ell d^{j-\ell} s_\ell(\mathbf{m}) = s_j(a\mathbf{n} + d)$.
- If instead $s_j(a\mathbf{m} + d) = s_j(a\mathbf{n} + d)$ $(1 \le j \le k)$, then $a^j s_j(\mathbf{m}) = s_j((a\mathbf{m} + d) d) = a^j s_j(\mathbf{n})$ in the same way.
- (e) is a special case of (b).

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • There is a close connection between the $s_r(\theta)$ and the elementary symmetric functions of the θ_j , $\sigma_r(\theta)$ which can be defined so that $(-1)^r \sigma_r(\theta)$ is the coefficient of z^r in the polynomial $P(z) = \prod_{j=1}^{b} (1 - z\theta_j)$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogrado Mean Valu Theorem

- There is a close connection between the $s_r(\theta)$ and the elementary symmetric functions of the θ_j , $\sigma_r(\theta)$ which can be defined so that $(-1)^r \sigma_r(\theta)$ is the coefficient of z^r in the polynomial $P(z) = \prod_{j=1}^{b} (1 z\theta_j)$.
- By considering the power series expansion of zP'(z)/P(z) in a small disc centred on 0 one obtains the Newton-Girard formulæ which assert that

$$\sum_{j=0}^{r-1} (-1)^{r-1-j} \sigma_j s_{r-j} = r \sigma_r$$
 (2)

for $1 \leq r \leq b$, and that

$$\sum_{j=0}^{b} (-1)^{j} \sigma_{j} s_{r-j} = 0$$
 (3)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

for $r \geq b$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Valu Theorem

- There is a close connection between the $s_r(\theta)$ and the elementary symmetric functions of the θ_j , $\sigma_r(\theta)$ which can be defined so that $(-1)^r \sigma_r(\theta)$ is the coefficient of z^r in the polynomial $P(z) = \prod_{j=1}^{b} (1 z\theta_j)$.
- By considering the power series expansion of zP'(z)/P(z) in a small disc centred on 0 one obtains the Newton-Girard formulæ which assert that

$$\sum_{j=0}^{r-1} (-1)^{r-1-j} \sigma_j s_{r-j} = r \sigma_r$$
 (2)

for $1 \leq r \leq b$, and that

$$\sum_{j=0}^{b} (-1)^{j} \sigma_{j} s_{r-j} = 0$$
 (3)

for $r \geq b$.

In this second identity, the quantity s₀ arises when
 j = r = b and it is to be understood that s₀ = b even if
 one or more of the θ_j vanishes.

> Robert C. Vaughan

Introduction

General Inequalitie

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Lemma 2.

(a) Suppose that $\theta_1, \ldots, \theta_b, \phi_1, \ldots, \phi_b$ are such that

$$s_r(heta) = s_r(\phi) \qquad (1 \leq r \leq b).$$

Then the polynomial $Q(z; \xi) = \prod_{r=1}^{b} (z - \xi_r)$ satisfies $Q(z; \theta) = Q(z; \phi)$ identically. (b) Suppose that p is a prime number with p > b, that u is a positive integer and that $\theta_1, \ldots, \theta_b, \phi_1, \ldots, \phi_b$ are integers such that

$$s_r(oldsymbol{ heta})\equiv s_r(\phi)\pmod{p^u}$$
 $(1\leq r\leq b).$

Then

$$Q(z; oldsymbol{ heta}) \equiv Q(z; \phi) \pmod{p^u}$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sar

for all integers z.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Lemma 2.

(a) Suppose that $\theta_1, \ldots, \theta_b, \phi_1, \ldots, \phi_b$ are such that

$$s_r(heta)=s_r(\phi) \qquad (1\leq r\leq b).$$

Then the polynomial $Q(z; \xi) = \prod_{r=1}^{b} (z - \xi_r)$ satisfies $Q(z; \theta) = Q(z; \phi)$ identically. (b) Suppose that p is a prime number with p > b, that u is a positive integer and that $\theta_1, \ldots, \theta_b, \phi_1, \ldots, \phi_b$ are integers such that

$$s_r(oldsymbol{ heta})\equiv s_r(\phi)\pmod{p^u}$$
 $(1\leq r\leq b).$

Then

$$Q(z; oldsymbol{ heta}) \equiv Q(z; \phi) \pmod{p^u}$$

for all integers z.

Proof. (a). It is a simple induction on the Newton-Girard formulæ that σ_r(θ) = σ_r(φ) for 1 ≤ r ≤ b. (b). Likewise (mod p^u) as long as p > b.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let
$$J_k(X, b) = J_k((0, X], b)$$
. Then
(a) $J_k(X, b) \le b! X^b$ when $b \le k$,
(b) $J_k(X, b) \le k! X^{2b-k}$ when $b > k$,
(c) $J_k(X, b) \ge \lfloor X \rfloor^b$,
(d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

590

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (a) $J_k(X, b) \le b! X^b$ when $b \le k$, (b) $J_k(X, b) \le k! X^{2b-k}$ when b > k, (c) $J_k(X, b) \ge \lfloor X \rfloor^b$, (d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.
- (a) $J_k(X, b)$ is the number of choices of \boldsymbol{m} , \boldsymbol{n} in $(0, X]^b$ such that

$$s_r(\boldsymbol{m}) = s_r(\boldsymbol{n}) \quad (1 \leq r \leq k).$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (a) $J_k(X, b) \le b! X^b$ when $b \le k$, (b) $J_k(X, b) \le k! X^{2b-k}$ when b > k, (c) $J_k(X, b) \ge \lfloor X \rfloor^b$, (d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.
- (a) $J_k(X, b)$ is the number of choices of \boldsymbol{m} , \boldsymbol{n} in $(0, X]^b$ such that

$$s_r(\boldsymbol{m}) = s_r(\boldsymbol{n}) \quad (1 \leq r \leq k).$$

• Since
$$b \leq k$$

$$Q(z; \boldsymbol{m}) = Q(z; \boldsymbol{n})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

identically.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (a) $J_k(X, b) \le b! X^b$ when $b \le k$, (b) $J_k(X, b) \le k! X^{2b-k}$ when b > k, (c) $J_k(X, b) \ge \lfloor X \rfloor^b$, (d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.
- (a) $J_k(X, b)$ is the number of choices of \boldsymbol{m} , \boldsymbol{n} in $(0, X]^b$ such that

$$s_r(\boldsymbol{m}) = s_r(\boldsymbol{n}) \quad (1 \leq r \leq k).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Since $b \leq k$ $Q(z; \mathbf{m}) = Q(z; \mathbf{n})$

identically.

• Thus the n_i are permutations of the m_i.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (a) $J_k(X, b) \le b! X^b$ when $b \le k$, (b) $J_k(X, b) \le k! X^{2b-k}$ when b > k, (c) $J_k(X, b) \ge \lfloor X \rfloor^b$, (d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.
- (a) $J_k(X, b)$ is the number of choices of \boldsymbol{m} , \boldsymbol{n} in $(0, X]^b$ such that

$$s_r(\boldsymbol{m}) = s_r(\boldsymbol{n}) \quad (1 \leq r \leq k).$$

• Since $b \leq k$ $Q(z; \mathbf{m}) = Q(z; \mathbf{n})$

identically.

- Thus the *n_i* are permutations of the *m_i*.
- (b) When $b \ge k$,

$$J_k(X,b) = \int_{\mathbb{T}^k} |f(\alpha)|^2 b dlpha \leq x^{2b-2k} J_k(X,k).$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (a) $J_k(X, b) \le b! X^b$ when $b \le k$, (b) $J_k(X, b) \le k! X^{2b-k}$ when b > k, (c) $J_k(X, b) \ge \lfloor X \rfloor^b$, (d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.
- (a) $J_k(X, b)$ is the number of choices of \boldsymbol{m} , \boldsymbol{n} in $(0, X]^b$ such that

$$s_r(\boldsymbol{m}) = s_r(\boldsymbol{n}) \quad (1 \leq r \leq k).$$

• Since $b \leq k$ $Q(z; \mathbf{m}) = Q(z; \mathbf{n})$

identically.

- Thus the *n_i* are permutations of the *m_i*.
- (b) When $b \ge k$,

$$J_k(X,b) = \int_{\mathbb{T}^k} |f(\alpha)|^2 b dlpha \leq x^{2b-2k} J_k(X,k).$$

• (c) Just take the variables on the right to be a permutation of those on the left.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (d) $J_k(x,b) \ge (2b+1)^{-k} |X|^{2b-k(k+1)/2}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let
$$J_k(X, b) = J_k((0, X], b)$$
. Then
(d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.

• (d) For brevity put $N = \lfloor X \rfloor$. We have already seen this.

$$\left|\int_{\mathbb{T}^k} |f(\alpha)|^{2b} e(\alpha.\ell) d\alpha\right| \leq J_k(N,b).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let
$$J_k(X, b) = J_k((0, X], b)$$
. Then
(d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.

• (d) For brevity put $N = \lfloor X \rfloor$. We have already seen this.

$$\left|\int_{\mathbb{T}^k} |f(\alpha)|^{2b} e(\alpha.\ell) d\alpha\right| \leq J_k(N,b).$$

• The integral on the left is the number of solutions of

$$s_r(\boldsymbol{m}) - s_r(\boldsymbol{n}) = \ell_r \quad (1 \le r \le k)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= 900

with m, n in $(0, N]^{b}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let
$$J_k(X, b) = J_k((0, X], b)$$
. Then
(d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.

• (d) For brevity put $N = \lfloor X \rfloor$. We have already seen this.

$$\left|\int_{\mathbb{T}^k} |f(\alpha)|^{2b} e(\alpha.\ell) d\alpha\right| \leq J_k(N,b).$$

• The integral on the left is the number of solutions of

$$s_r(\boldsymbol{m}) - s_r(\boldsymbol{n}) = \ell_r \quad (1 \leq r \leq k)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

with m, n in $(0, N]^{b}$.

• Since $0 < s_r(\boldsymbol{m}) \le bN^r$ there are no solutions unless ℓ satisfies $|\ell_r| \le bN^r$ $(1 \le r \le k)$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Lemma 3. Let $J_k(X, b) = J_k((0, X], b)$. Then (d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.
- (d) For brevity put $N = \lfloor X \rfloor$. We have already seen this.

$$\left|\int_{\mathbb{T}^k} |f(\alpha)|^{2b} e(\alpha.\ell) d\alpha\right| \leq J_k(N,b).$$

• The integral on the left is the number of solutions of

$$s_r(\boldsymbol{m}) - s_r(\boldsymbol{n}) = \ell_r \quad (1 \leq r \leq k)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

with m, n in $(0, N]^{b}$.

- Since 0 < s_r(m) ≤ bN^r there are no solutions unless ℓ satisfies |ℓ_r| ≤ bN^r (1 ≤ r ≤ k).
- Sum both sides over all such ℓ .

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let
$$J_k(X, b) = J_k((0, X], b)$$
. Then
(d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.

• (d) For brevity put $N = \lfloor X \rfloor$. We have already seen this.

$$\left|\int_{\mathbb{T}^k} |f(\alpha)|^{2b} e(\alpha.\ell) d\alpha\right| \leq J_k(N,b).$$

• The integral on the left is the number of solutions of

$$s_r(\boldsymbol{m}) - s_r(\boldsymbol{n}) = \ell_r \quad (1 \leq r \leq k)$$

with m, n in $(0, N]^{b}$.

- Since 0 < s_r(m) ≤ bN^r there are no solutions unless ℓ satisfies |ℓ_r| ≤ bN^r (1 ≤ r ≤ k).
- Sum both sides over all such ℓ .
- On the left we are just counting all possible choices of *m* and *n*. N^{2b} in total.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

• Lemma 3. Let
$$J_k(X, b) = J_k((0, X], b)$$
. Then
(d) $J_k(x, b) \ge (2b+1)^{-k} \lfloor X \rfloor^{2b-k(k+1)/2}$.

• (d) For brevity put $N = \lfloor X \rfloor$. We have already seen this.

$$\left|\int_{\mathbb{T}^k} |f(\alpha)|^{2b} e(\alpha.\ell) d\alpha\right| \leq J_k(N,b).$$

• The integral on the left is the number of solutions of

$$s_r(\boldsymbol{m}) - s_r(\boldsymbol{n}) = \ell_r \quad (1 \leq r \leq k)$$

with m, n in $(0, N]^{b}$.

- Since 0 < s_r(m) ≤ bN^r there are no solutions unless ℓ satisfies |ℓ_r| ≤ bN^r (1 ≤ r ≤ k).
- Sum both sides over all such ℓ .
- On the left we are just counting all possible choices of *m* and *n*. N^{2b} in total.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• The number of ℓ is $\leq (2b+1)^k N^{\frac{1}{2}k(k+1)}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem All significant methods to bound J_k(X, b) generally are motivated by some kind of "completion" process. The simplest is a p-adic argument due to Linnik.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- All significant methods to bound J_k(X, b) generally are motivated by some kind of "completion" process. The simplest is a p-adic argument due to Linnik.
- Lemma 4. Suppose that p > k. Let A(p, h) be the number of m_r ≤ p^k such that

$$\sum_{r=1}^{k} m_r^j \equiv h_j \pmod{p^j} \qquad (1 \le j \le k)$$

and the m_r distinct modulo p. Then $A(p, \mathbf{h}) \leq k! p^{\frac{1}{2}k(k-1)}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- All significant methods to bound J_k(X, b) generally are motivated by some kind of "completion" process. The simplest is a p-adic argument due to Linnik.
- Lemma 4. Suppose that p > k. Let A(p, h) be the number of m_r ≤ p^k such that

$$\sum_{r=1}^{k} m_r^j \equiv h_j \pmod{p^j} \qquad (1 \le j \le k)$$

and the m_r distinct modulo p. Then $A(p, \mathbf{h}) \le k! p^{\frac{1}{2}k(k-1)}$. • **Proof.** Let $B(p, \mathbf{g})$ denote the number of solutions of

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k} \qquad (1 \leq j \leq k)$$

with $m_r \leq p^k$ and the m_r distinct modulo p.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- All significant methods to bound J_k(X, b) generally are motivated by some kind of "completion" process. The simplest is a p-adic argument due to Linnik.
- Lemma 4. Suppose that p > k. Let A(p, h) be the number of m_r ≤ p^k such that

$$\sum_{r=1}^{k} m_r^j \equiv h_j \pmod{p^j} \qquad (1 \le j \le k)$$

and the m_r distinct modulo p. Then $A(p, \mathbf{h}) \le k! p^{\frac{1}{2}k(k-1)}$. • **Proof.** Let $B(p, \mathbf{g})$ denote the number of solutions of

 $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$ $(1 \leq j \leq k)$

with $m_r \leq p^k$ and the m_r distinct modulo p.

• Then for each \boldsymbol{h} , $A(p, \boldsymbol{h})$ is the sum of those $B(p, \boldsymbol{g})$ with $g_j \equiv h_j \pmod{p^j}$ and $1 \leq g_j \leq p^k$ for $1 \leq j \leq k$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- All significant methods to bound J_k(X, b) generally are motivated by some kind of "completion" process. The simplest is a p-adic argument due to Linnik.
- Lemma 4. Suppose that p > k. Let A(p, h) be the number of m_r ≤ p^k such that

$$\sum_{r=1}^{k} m_r^j \equiv h_j \pmod{p^j} \qquad (1 \le j \le k)$$

and the m_r distinct modulo p. Then $A(p, \mathbf{h}) \leq k! p^{\frac{1}{2}k(k-1)}$. **Proof** Let $B(p, \mathbf{g})$ denote the number of solutions of

• **Proof.** Let B(p, g) denote the number of solutions of

$$\sum_{r=1}^{\infty} m_r^j \equiv g_j \pmod{p^k} \qquad (1 \le j \le k)$$

with $m_r \leq p^k$ and the m_r distinct modulo p.

- Then for each \boldsymbol{h} , $A(p, \boldsymbol{h})$ is the sum of those $B(p, \boldsymbol{g})$ with $g_j \equiv h_j \pmod{p^j}$ and $1 \leq g_j \leq p^k$ for $1 \leq j \leq k$.
- The total number of possible choices for g is $p^{\frac{1}{2}k(k-1)}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- All significant methods to bound J_k(X, b) generally are motivated by some kind of "completion" process. The simplest is a p-adic argument due to Linnik.
- Lemma 4. Suppose that p > k. Let A(p, h) be the number of m_r ≤ p^k such that

$$\sum_{r=1}^{k} m_r^j \equiv h_j \pmod{p^j} \qquad (1 \le j \le k)$$

and the m_r distinct modulo p. Then $A(p, \mathbf{h}) \leq k! p^{\frac{1}{2}k(k-1)}$. **Proof** Let $B(p, \mathbf{g})$ denote the number of solutions of

• **Proof.** Let B(p, g) denote the number of solutions of

$$\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k} \qquad (1 \leq j \leq k)$$

with $m_r \leq p^k$ and the m_r distinct modulo p.

- Then for each \boldsymbol{h} , $A(p, \boldsymbol{h})$ is the sum of those $B(p, \boldsymbol{g})$ with $g_j \equiv h_j \pmod{p^j}$ and $1 \leq g_j \leq p^k$ for $1 \leq j \leq k$.
- The total number of possible choices for g is $p^{\frac{1}{2}k(k-1)}$.
- Thus it suffices to show that $B(p, \mathbf{g}) \leq k!$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \boldsymbol{g})$ is the number of distinct $m_r \leq p^k$ with $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k} \qquad (1 \leq j \leq k).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

It suffices to show that $B(p, g) \leq k!$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \boldsymbol{g})$ is the number of distinct $m_r \leq p^k$ with

$$\sum_{r=1}^{k} m_r^j \equiv g_j \pmod{p^k} \qquad (1 \le j \le k).$$

イロト 不得 トイヨト イヨト ニヨー

Sac

It suffices to show that $B(p, g) \leq k!$.

• For a given **g** let **m** be such a solution. modulo p.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \mathbf{g})$ is the number of distinct $m_r \leq p^k$ with

 $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$ $(1 \le j \le k).$

・ロット (雪) (キョット (日)) ヨー

Sac

It suffices to show that $B(p, g) \leq k!$.

- For a given **g** let **m** be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \mathbf{g})$ is the number of distinct $m_r \leq p^k$ with

 $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k} \qquad (1 \le j \le k).$

It suffices to show that $B(p, \mathbf{g}) \leq k!$.

- For a given g let m be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.
- Then,

$$Q(z; \boldsymbol{m}) \equiv Q(z; \boldsymbol{n}) \pmod{p^k}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \mathbf{g})$ is the number of distinct $m_r \leq p^k$ with

 $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$ $(1 \le j \le k).$

It suffices to show that $B(p, \mathbf{g}) \leq k!$.

- For a given g let m be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.
- Then,

$$Q(z; \boldsymbol{m}) \equiv Q(z; \boldsymbol{n}) \pmod{p^k}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• so
$$Q(n_s; \boldsymbol{m}) \equiv Q(n_s; \boldsymbol{n}) \equiv 0 \pmod{p^k} \ (1 \leq s \leq k).$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \mathbf{g})$ is the number of distinct $m_r \leq p^k$ with

$$\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$$
 $(1 \le j \le k).$

It suffices to show that $B(p, \mathbf{g}) \leq k!$.

- For a given g let m be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.
- Then,

$$Q(z; \boldsymbol{m}) \equiv Q(z; \boldsymbol{n}) \pmod{p^k}$$

・ロット (雪) (キョット (日)) ヨー

Sac

- so $Q(n_s; \boldsymbol{m}) \equiv Q(n_s; \boldsymbol{n}) \equiv 0 \pmod{p^k} (1 \le s \le k).$
- Since $Q(z; \mathbf{m}) = \prod_{r=1}^{r} (z m_r)$, for each s there is an r such that $n_s \equiv m_r \pmod{p}$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \mathbf{g})$ is the number of distinct $m_r \leq p^k$ with

$$\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$$
 $(1 \le j \le k).$

It suffices to show that $B(p, \mathbf{g}) \leq k!$.

- For a given g let m be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.
- Then,

$$Q(z; \boldsymbol{m}) \equiv Q(z; \boldsymbol{n}) \pmod{p^k}$$

- so $Q(n_s; \boldsymbol{m}) \equiv Q(n_s; \boldsymbol{n}) \equiv 0 \pmod{p^k} (1 \le s \le k).$
- Since $Q(z; \mathbf{m}) = \prod_{r=1}^{r} (z m_r)$, for each s there is an r such that $n_s \equiv m_r \pmod{p}$.
- Also, since the m_r are distinct modulo p it follows that m_r is unique, and so n_s ≡ m_r (mod p^k).

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \mathbf{g})$ is the number of distinct $m_r \leq p^k$ with

 $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$ $(1 \le j \le k).$

It suffices to show that $B(p, g) \leq k!$.

- For a given **g** let **m** be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.
- Then,

$$Q(z; \boldsymbol{m}) \equiv Q(z; \boldsymbol{n}) \pmod{p^k}$$

• so
$$Q(n_s; \boldsymbol{m}) \equiv Q(n_s; \boldsymbol{n}) \equiv 0 \pmod{p^k} (1 \le s \le k).$$

- Since $Q(z; \mathbf{m}) = \prod_{r=1}^{r} (z m_r)$, for each s there is an r such that $n_s \equiv m_r \pmod{p}$.
- Also, since the m_r are distinct modulo p it follows that m_r is unique, and so n_s ≡ m_r (mod p^k).

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Thus $n_s = m_r$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • $B(p, \boldsymbol{g})$ is the number of distinct $m_r \leq p^k$ with

 $\sum_{r=1}^k m_r^j \equiv g_j \pmod{p^k}$ $(1 \le j \le k).$

It suffices to show that $B(p, g) \leq k!$.

- For a given **g** let **m** be such a solution. modulo p.
- Suppose that n_1, \ldots, n_k is another such solution.
- Then,

$$Q(z; \boldsymbol{m}) \equiv Q(z; \boldsymbol{n}) \pmod{p^k}$$

• so
$$Q(n_s; \boldsymbol{m}) \equiv Q(n_s; \boldsymbol{n}) \equiv 0 \pmod{p^k} (1 \le s \le k).$$

- Since $Q(z; \mathbf{m}) = \prod_{r=1}^{r} (z m_r)$, for each s there is an r such that $n_s \equiv m_r \pmod{p}$.
- Also, since the m_r are distinct modulo p it follows that m_r is unique, and so n_s ≡ m_r (mod p^k).
- Thus $n_s = m_r$.
- Since the *n_s* are distinct modulo *p*, and so are distinct, it follows that the *n* are a permutation of the *m*.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We now have all the machinery we need to establish the classical version of the Vinogradov Mean Value Theorem.
 Theorem 5. For each k, r ∈ N with k ≥ 2 There is a positive number C(k, r) such that foe every real number X ≥ 1 we have

$$J_k(X,kr) \leq C(k,r) X^{2rk-\frac{1}{2}k(k+1)+\eta(k,r)}$$

where

$$\eta(k,r) = \frac{1}{2}k^2\left(1-\frac{1}{k}\right)^r.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We now have all the machinery we need to establish the classical version of the Vinogradov Mean Value Theorem.
 Theorem 5. For each k, r ∈ N with k ≥ 2 There is a positive number C(k, r) such that foe every real number X ≥ 1 we have

$$J_k(X,kr) \leq C(k,r) X^{2rk-\frac{1}{2}k(k+1)+\eta(k,r)}$$

where

$$\eta(k,r) = \frac{1}{2}k^2\left(1-\frac{1}{k}\right)^r.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The proof is inductive on *r*. More precisely we establish a reduction formula.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Theorem 5. For each $k, r \in \mathbb{N}$ with $k \ge 2$ There is a positive number C(k, r) such that foe every real number $X \ge 1$ we have $J_k(X, kr) \le C(k, r)X^{2rk - \frac{1}{2}k(k+1) + \eta(k, r)}$ where $\eta(k, r) = \frac{1}{2}k^2\left(1 - \frac{1}{k}\right)^r$.

・ロット (雪) (キョット (日)) ヨー

Sar

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Theorem 5. For each $k, r \in \mathbb{N}$ with $k \ge 2$ There is a positive number C(k, r) such that foe every real number $X \ge 1$ we have $J_k(X, kr) \le C(k, r)X^{2rk - \frac{1}{2}k(k+1) + \eta(k, r)}$ where $\eta(k, r) = \frac{1}{2}k^2\left(1 - \frac{1}{k}\right)^r$.

• **Proof.** In the case r = 1 we have by Lemma 3(a) that $J_k(X, k) \le k! X^k$, and we also have $2k - \frac{1}{2}k(k+1) + \eta(k, 1) = k$ and $k! \le k^k = \exp(k \log k)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- Theorem 5. For each $k, r \in \mathbb{N}$ with $k \ge 2$ There is a positive number C(k, r) such that foe every real number $X \ge 1$ we have $J_k(X, kr) \le C(k, r)X^{2rk \frac{1}{2}k(k+1) + \eta(k, r)}$ where $\eta(k, r) = \frac{1}{2}k^2\left(1 \frac{1}{k}\right)^r$.
- **Proof.** In the case r = 1 we have by Lemma 3(a) that $J_k(X, k) \le k! X^k$, and we also have $2k \frac{1}{2}k(k+1) + \eta(k, 1) = k$ and $k! \le k^k = \exp(k \log k)$.
- Suppose $r \ge 2$ and result holds with r replaced by r 1.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Introduction

General Inequalities

Symmetrie Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Theorem 5. For each $k, r \in \mathbb{N}$ with $k \ge 2$ There is a positive number C(k, r) such that foe every real number $X \ge 1$ we have $J_k(X, kr) \le C(k, r)X^{2rk - \frac{1}{2}k(k+1) + \eta(k, r)}$ where $\eta(k, r) = \frac{1}{2}k^2\left(1 - \frac{1}{k}\right)^r$.

- **Proof.** In the case r = 1 we have by Lemma 3(a) that $J_k(X, k) \le k! X^k$, and we also have $2k \frac{1}{2}k(k+1) + \eta(k, 1) = k$ and $k! \le k^k = \exp(k \log k)$.
- Suppose $r \ge 2$ and result holds with r replaced by r 1.
- Let $R_1(h)$ denote the number of solutions to the system

$$\sum_{r=1}^{kr} m_r^j = h_j \qquad (1 \le j \le k)$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

with $m_r \leq X$ and m_1, \ldots, m_k distinct, and let $R_2(h)$ denote the number with m_1, \ldots, m_k not distinct.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetrie Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Theorem 5. For each $k, r \in \mathbb{N}$ with $k \ge 2$ There is a positive number C(k, r) such that foe every real number $X \ge 1$ we have $J_k(X, kr) \le C(k, r)X^{2rk - \frac{1}{2}k(k+1) + \eta(k, r)}$ where $\eta(k, r) = \frac{1}{2}k^2\left(1 - \frac{1}{k}\right)^r$.

- **Proof.** In the case r = 1 we have by Lemma 3(a) that $J_k(X, k) \le k! X^k$, and we also have $2k \frac{1}{2}k(k+1) + \eta(k, 1) = k$ and $k! \le k^k = \exp(k \log k)$.
- Suppose $r \ge 2$ and result holds with r replaced by r 1.
- Let $R_1(h)$ denote the number of solutions to the system

$$\sum_{r=1}^{kr} m_r^j = h_j \qquad (1 \le j \le k)$$

with $m_r \leq X$ and m_1, \ldots, m_k distinct, and let $R_2(h)$ denote the number with m_1, \ldots, m_k not distinct.

• Then $J_k(X, kr) = \sum_{\boldsymbol{h}} (R_1(\boldsymbol{h}) + R_2(\boldsymbol{h}))^2 \le 2(S_1 + S_2)$ where $S_i = \sum_{\boldsymbol{h}} R_i(\boldsymbol{h})^2$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We can quickly deal with S₂. One each side of the equations there are two variables the same, and ^k₂ choices for the matching pair.

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We can quickly deal with S₂. One each side of the equations there are two variables the same, and ^k₂ choices for the matching pair.

・ロット (雪) (キョット (日)) ヨー

Sac

• Thus
$$S_2 \leq {k \choose 2}^2 \int_{\mathbb{T}^k} |f(2\alpha)|^2 |f(\alpha)|^{2kr-4} dlpha.$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We can quickly deal with S₂. One each side of the equations there are two variables the same, and ^k₂ choices for the matching pair.

• Thus
$$S_2 \leq {\binom{k}{2}}^2 \int_{\mathbb{T}^k} |f(2\alpha)|^2 |f(\alpha)|^{2kr-4} d\alpha.$$

• By Hölder's inequality this is

$$\leq {\binom{k}{2}}^2 \left(\int_{\mathbb{T}^k} |f(2\alpha)|^{2kr} d\alpha\right)^{\frac{1}{kr}} \left(\int_{\mathbb{T}^k} |f(\alpha)|^{2kr} d\alpha\right)^{\frac{kr-2}{kr}} \\ = {\binom{k}{2}}^2 J_k(X, kr)^{1-1/kr}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We can quickly deal with S₂. One each side of the equations there are two variables the same, and ^k₂ choices for the matching pair.

• Thus
$$S_2 \leq {\binom{k}{2}}^2 \int_{\mathbb{T}^k} |f(2\alpha)|^2 |f(\alpha)|^{2kr-4} d\alpha.$$

• By Hölder's inequality this is

$$\leq {\binom{k}{2}}^2 \left(\int_{\mathbb{T}^k} |f(2\alpha)|^{2kr} d\alpha\right)^{\frac{1}{kr}} \left(\int_{\mathbb{T}^k} |f(\alpha)|^{2kr} d\alpha\right)^{\frac{kr-2}{kr}} \\ = {\binom{k}{2}}^2 J_k(X, kr)^{1-1/kr}.$$

• Thus

$$J_k(X, kr) \leq 2S_1 + 2\binom{k}{2}^2 J_k(X, kr)^{1-1/kr}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem We can quickly deal with S₂. One each side of the equations there are two variables the same, and ^k₂ choices for the matching pair.

• Thus
$$S_2 \leq {\binom{k}{2}}^2 \int_{\mathbb{T}^k} |f(2\alpha)|^2 |f(\alpha)|^{2kr-4} d\alpha.$$

• By Hölder's inequality this is

$$\leq {\binom{k}{2}}^2 \left(\int_{\mathbb{T}^k} |f(2\alpha)|^{2kr} d\alpha\right)^{\frac{1}{kr}} \left(\int_{\mathbb{T}^k} |f(\alpha)|^{2kr} d\alpha\right)^{\frac{kr-2}{kr}} \\ = {\binom{k}{2}}^2 J_k(X, kr)^{1-1/kr}.$$

• Thus

$$J_k(X, kr) \leq 2S_1 + 2\binom{k}{2}^2 J_k(X, kr)^{1-1/kr}.$$

• And so

$$J_{s}(X,kr) \leq \left(4\binom{k}{2}^{2}\right)^{kr} + 4S_{1}.$$

900

э

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem It remains to treat S₁. We are concerned with solutions in which m₁,..., m_k are distinct and n₁,..., n_k are distinct.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • It remains to treat S₁. We are concerned with solutions in which m_1, \ldots, m_k are distinct and n_1, \ldots, n_k are distinct.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Let $P(\mathbf{m}) = \prod_{q=1}^{k-1} \prod_{r=q+1}^{k} (m_q - m_r)$ where $m_j \leq X$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • It remains to treat S₁. We are concerned with solutions in which m_1, \ldots, m_k are distinct and n_1, \ldots, n_k are distinct.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Let $P(\mathbf{m}) = \prod_{q=1}^{k-1} \prod_{r=q+1}^{k} (m_q m_r)$ where $m_j \leq X$.
- The number of possible primes p with $p > X^{1/k}$ and $p|P(\mathbf{m})P(\mathbf{n})$ is at most $\frac{k \log |P(\mathbf{m})P(\mathbf{n})|}{\log X} < k^2(k-1)$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- It remains to treat S_1 . We are concerned with solutions in which m_1, \ldots, m_k are distinct and n_1, \ldots, n_k are distinct.
- Let $P(\mathbf{m}) = \prod_{q=1}^{k-1} \prod_{r=q+1}^{k} (m_q m_r)$ where $m_j \leq X$.
- The number of possible primes p with $p > X^{1/k}$ and $p|P(\mathbf{m})P(\mathbf{n})$ is at most $\frac{k \log |P(\mathbf{m})P(\mathbf{n})|}{\log X} < k^2(k-1)$.
- Thus if P is a set of ≥ k²(k − 1) primes p with p > X^{1/k}, then for each set of distinct m₁,..., m_k and n₁,..., n_k there will always be a prime p ∈ P such that p ∤ P(**m**)P(**n**).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- It remains to treat S_1 . We are concerned with solutions in which m_1, \ldots, m_k are distinct and n_1, \ldots, n_k are distinct.
- Let $P(\mathbf{m}) = \prod_{q=1}^{k-1} \prod_{r=q+1}^{k} (m_q m_r)$ where $m_j \leq X$.
- The number of possible primes p with $p > X^{1/k}$ and $p|P(\mathbf{m})P(\mathbf{n})$ is at most $\frac{k \log |P(\mathbf{m})P(\mathbf{n})|}{\log X} < k^2(k-1)$.
- Thus if P is a set of ≥ k²(k 1) primes p with p > X^{1/k}, then for each set of distinct m₁,..., m_k and n₁,..., n_k there will always be a prime p ∈ P such that p ∤ P(**m**)P(**n**).
- We can also assume that $X > C_1 e^k$, for otherwise trivially $J_k(X; lk) \le X^{2lk} \le C(k, l)$, and p > k.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

- It remains to treat S₁. We are concerned with solutions in which m_1, \ldots, m_k are distinct and n_1, \ldots, n_k are distinct.
- Let $P(\mathbf{m}) = \prod_{q=1}^{k-1} \prod_{r=q+1}^{k} (m_q m_r)$ where $m_j \leq X$.
- The number of possible primes p with $p > X^{1/k}$ and $p|P(\mathbf{m})P(\mathbf{n})$ is at most $\frac{k \log |P(\mathbf{m})P(\mathbf{n})|}{\log X} < k^2(k-1)$.
- Thus if P is a set of ≥ k²(k 1) primes p with p > X^{1/k}, then for each set of distinct m₁,..., m_k and n₁,..., n_k there will always be a prime p ∈ P such that p ∤ P(**m**)P(**n**).
- We can also assume that $X > C_1 e^k$, for otherwise trivially $J_k(X; lk) \le X^{2lk} \le C(k, l)$, and p > k.
- Furthermore we can suppose by a standard form of the prime number theorem that the set \mathcal{P} of primes p can be chosen so that $p \leq C_2 k^2 X^{1/k}$ for some absolute constant C_2 (and probably better than that).

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Recall that $S_1 = \sum_{\mathbf{h}} R_1(\mathbf{h})^2$ where $R_1(\mathbf{h})$ is the number of solutions to the system $\sum_{r=1}^{kr} m_r^j = h_j$ $(1 \le j \le k)$ with $m_r \le X$ and m_1, \ldots, m_k distinct.

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem Recall that S₁ = ∑_h R₁(h)² where R₁(h) is the number of solutions to the system ∑_{r=1}^{kr} m_r^j = h_j (1 ≤ j ≤ k) with m_r ≤ X and m₁,..., m_k distinct.
We have R₁(h) ≤ ∑_{p∈P} R₃(h, p) where R₃(h, p) is the no. of solutions with m_r ≤ X & m₁,..., m_k distinct (mod p).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Recall that $S_1 = \sum_{i} R_1(\mathbf{h})^2$ where $R_1(\mathbf{h})$ is the number of solutions to the system $\sum m_r^j = h_j$ $(1 \leq j \leq k)$ with $m_r < X$ and m_1, \ldots, m_k distinct. • We have $R_1(\boldsymbol{h}) \leq \sum R_3(\boldsymbol{h},p)$ where $R_3(\boldsymbol{h},p)$ is the no. p∈P of solutions with $m_r \leq X \& m_1, \ldots, m_k$ distinct (mod p). • Let $I(p) = \sum_{n} R_3(h, p)^2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Recall that $S_1 = \sum_{i} R_1(\mathbf{h})^2$ where $R_1(\mathbf{h})$ is the number of solutions to the system $\sum m_r^j = h_j$ $(1 \le j \le k)$ with $m_r < X$ and m_1, \ldots, m_k distinct. • We have $R_1(\boldsymbol{h}) \leq \sum R_3(\boldsymbol{h},p)$ where $R_3(\boldsymbol{h},p)$ is the no. p∈P of solutions with $m_r \leq X \& m_1, \ldots, m_k$ distinct (mod p). • Let $I(p) = \sum R_3(h, p)^2$. • Then I(p) is the no. of solns. of $s_i(m) = s_i(n)$ $(1 \le j \le k)$ with $m_1, \ldots, m_b, n_1, \ldots, n_b$ in (0, x],

 m_1, \ldots, m_k distinct modulo p and likewise n_1, \ldots, n_k .

イロト イボト イヨト イヨト 三日

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • Recall that $S_1 = \sum R_1(\mathbf{h})^2$ where $R_1(\mathbf{h})$ is the number of solutions to the system $\sum m_r^j = h_j$ $(1 \le j \le k)$ with $m_r \leq X$ and m_1, \ldots, m_k distinct. • We have $R_1(\boldsymbol{h}) \leq \sum R_3(\boldsymbol{h}, p)$ where $R_3(\boldsymbol{h}, p)$ is the no. p∈P of solutions with $m_r \leq X \& m_1, \ldots, m_k$ distinct (mod p). • Let $I(p) = \sum R_3(h, p)^2$. • Then I(p) is the no. of solns. of $s_i(m) = s_i(n)$ $(1 \le j \le k)$ with $m_1, \ldots, m_b, n_1, \ldots, n_b$ in (0, x], m_1, \ldots, m_k distinct modulo p and likewise n_1, \ldots, n_k . • Thus $J_k(X, rk) \le 4 \sum_{i} R_1(h))^2 \le 4 \sum_{i} \left(\sum_{i} R_3(h, p) \right)^2$ $\leq 4\sum_{\boldsymbol{h}} \frac{1}{2}k^3 \sum_{\boldsymbol{p} \in \mathcal{P}} R_3(\boldsymbol{h}, \boldsymbol{p})^2 \leq 2k^3 \sum_{\boldsymbol{p} \in \mathcal{P}} I(\boldsymbol{p}) \leq k^6 \max_{\substack{\boldsymbol{p} \\ \boldsymbol{p} \in \mathcal{P}}} I(\boldsymbol{p}).$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • I(p) is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_k, n_1, \ldots, n_k$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$

イロト 不得 トイヨト イヨト ニヨー

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • I(p) is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_k, n_1, \ldots, n_k$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$

イロト 不得 トイヨト イヨト ニヨー

• Let
$$g(\alpha, a) = \sum_{\substack{n \leq X \\ n \equiv a \ (modp)}} e(\alpha.\nu(m))$$
, and

> Robert C. Vaughan

Introduction

General Inequalitie

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • I(p) is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_k, n_1, \ldots, n_k$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$

• Let
$$g(\alpha, a) = \sum_{\substack{n \leq X \\ n \equiv a \, (modp)}} e(\alpha.\nu(m))$$
, and

• \mathcal{A} be the **a** with $0 \leq a_r < p$ and a_r distinct. Then I(p) =

$$\int_{\mathbb{T}^k} \Big| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\boldsymbol{\alpha}, \boldsymbol{a}_1) \cdots g(\boldsymbol{\alpha}, \boldsymbol{a}_k) \Big|^2 \Big| \sum_{\boldsymbol{a}=0}^{p-1} g(\boldsymbol{\alpha}, \boldsymbol{a}) \Big|^{2b-2k} \, \boldsymbol{d}\boldsymbol{\alpha}$$

イロト 不得 トイヨト イヨト ニヨー

> Robert C. Vaughan

Introduction

General Inequalitie

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • I(p) is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_k, n_1, \ldots, n_k$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$

• Let
$$g(\alpha, a) = \sum_{\substack{n \leq X \\ n \equiv a \, (modp)}} e(\alpha. \nu(m))$$
, and

• \mathcal{A} be the **a** with $0 \leq a_r < p$ and a_r distinct. Then I(p) =

$$\int_{\mathbb{T}^k} \Big| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\boldsymbol{\alpha}, \boldsymbol{a}_1) \cdots g(\boldsymbol{\alpha}, \boldsymbol{a}_k) \Big|^2 \Big| \sum_{\boldsymbol{a} = 0}^{p-1} g(\boldsymbol{\alpha}, \boldsymbol{a}) \Big|^{2b-2k} \, \boldsymbol{d}\boldsymbol{\alpha}$$

$$\Big|\sum_{a=0}^{p-1}g(\boldsymbol{\alpha},a)\Big|^{2rk-2k}\leq p^{2rk-2k-1}\sum_{a=0}^{p-1}|g(\boldsymbol{\alpha},a)|^{2rk-2k},$$

イロト 不得 トイヨト イヨト ニヨー

> Robert C. Vaughan

Introduction

General Inequalitie

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem

•
$$I(p)$$
 is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_k, n_1, \ldots, n_k$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$

• Let
$$g(\alpha, a) = \sum_{\substack{n \leq X \\ n \equiv a \, (modp)}} e(\alpha. \nu(m))$$
, and

• \mathcal{A} be the **a** with $0 \leq a_r < p$ and a_r distinct. Then I(p) =

$$\int_{\mathbb{T}^k} \Big| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\boldsymbol{\alpha}, \boldsymbol{a}_1) \cdots g(\boldsymbol{\alpha}, \boldsymbol{a}_k) \Big|^2 \Big| \sum_{\boldsymbol{a}=0}^{p-1} g(\boldsymbol{\alpha}, \boldsymbol{a}) \Big|^{2b-2k} \, \boldsymbol{d}\boldsymbol{\alpha}$$

• By Hölder's inequality

$$\Big|\sum_{a=0}^{p-1}g(\alpha,a)\Big|^{2rk-2k}\leq p^{2rk-2k-1}\sum_{a=0}^{p-1}|g(\alpha,a)|^{2rk-2k},$$

• and so $I(p) \leq p^{2b-2k} \max_{0 \leq a < p} I_1(p,a)$ where $I_1(p,a) =$

$$\int_{\mathbb{T}^k} \Big| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\alpha, a_1) \cdots g(\alpha, a_k) \Big|^2 |g(\alpha, a)|^{2rk - 2k} \, \boldsymbol{d}\alpha.$$

ŀ

Robert C. Vaughan

The Vinogradov Mean Value Theorem

$$\begin{split} I(p) \text{ is the no. of solns. of } s_j(\boldsymbol{m}) &= s_j(\boldsymbol{n}) \ (1 \leq j \leq k) \text{ with} \\ m_1, \dots, m_b, n_1, \dots, n_{rk} \text{ in } (0, x], \ m_1, \dots, m_k \text{ distinct mod} \\ p \& \text{ likewise } n_1, \dots, n_k \text{ and } J_k(X, rk) \leq k^6 \max_{p \in \mathcal{P}} I(p), \\ I(p) &\leq p^{2rk-2k} \max_{0 \leq a < p} I_1(p, a) \text{ where } I_1(p, a) = \\ \int_{\mathbb{T}^k} \Big| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\alpha, a_1) \cdots g(\alpha, a_k) \Big|^2 |g(\alpha, a)|^{2rk-2k} \, \boldsymbol{d}\alpha, \\ \text{and } g(\alpha, a) = \sum e(\alpha.\nu(m)). \end{split}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

 $n \leq X, n \equiv a \pmod{p}$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • I(p) is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_b, n_1, \ldots, n_{rk}$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$, $I(p) \le p^{2rk-2k} \max_{0 \le a < p} I_1(p, a)$ where $I_1(p, a) = \int_{\mathbb{T}^k} \left| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\alpha, a_1) \cdots g(\alpha, a_k) \right|^2 |g(\alpha, a)|^{2rk-2k} \boldsymbol{d}\alpha$,

and
$$g(\alpha, a) = \sum_{n \leq X, n \equiv a \pmod{p}} e(\alpha.\nu(m)).$$

This is the number of solutions of

 $\sum_{i=1}^{k} \left(m_{i}^{j} - n_{i}^{j} \right) = \sum_{r=1}^{rk-k} \left((pu_{r} + a)^{j} - (pv_{r} + a)^{j} \right) \quad (1 \le j \le k)$

with $m_i, n_i \leq X, -a/p < u_r, v_r \leq (X-a)/p, m_1, \ldots, m_k$ distinct mod p and n_1, \ldots, n_k likewise.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem • I(p) is the no. of solns. of $s_j(\boldsymbol{m}) = s_j(\boldsymbol{n})$ $(1 \le j \le k)$ with $m_1, \ldots, m_b, n_1, \ldots, n_{rk}$ in $(0, x], m_1, \ldots, m_k$ distinct mod p & likewise n_1, \ldots, n_k and $J_k(X, rk) \le k^6 \max_{p \in \mathcal{P}} I(p)$, $I(p) \le p^{2rk-2k} \max_{0 \le a < p} I_1(p, a)$ where $I_1(p, a) = \int_{\mathbb{T}^k} \left| \sum_{\boldsymbol{a} \in \mathcal{A}} g(\alpha, a_1) \cdots g(\alpha, a_k) \right|^2 |g(\alpha, a)|^{2rk-2k} \boldsymbol{d}\alpha$,

and
$$g(\alpha, a) = \sum_{\substack{n \leq X, n \equiv a \pmod{p}}} e(\alpha.\nu(m)).$$

This is the number of solutions of

 $\sum_{i=1}^{k} \left(m_{i}^{j} - n_{i}^{j} \right) = \sum_{r=1}^{rk-k} \left((pu_{r} + a)^{j} - (pv_{r} + a)^{j} \right) \quad (1 \le j \le k)$

with $m_i, n_i \leq X$, $-a/p < u_r, v_r \leq (X - a)/p$, m_1, \ldots, m_k distinct mod p and n_1, \ldots, n_k likewise.

This system is TDI so under the same conditions

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{r=1}^{rk-k} p^j \left(u_r^j - v_r^j \right) \qquad (1 \le j \le k)$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

• We can sort the solutions as follows.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetrie Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j (u_h^j - v_h^j) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

- We can sort the solutions as follows.
- Pick $n_1, ..., n_k$.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetrie Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- We can sort the solutions as follows.
- Pick $n_1, ..., n_k$.
- Then choose m_1, \ldots, m_k modulo p^k so that $(m_i a)^j \equiv (n_i a)^j \pmod{p^j} (1 \le j \le k).$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

- We can sort the solutions as follows.
- Pick $n_1, ..., n_k$.
- Then choose m_1, \ldots, m_k modulo p^k so that $(m_i a)^j \equiv (n_i a)^j \pmod{p^j} (1 \le j \le k).$
- Use Linnik's lemma: There are ≤ k!p^{k(k-1)/2} choices modulo p^k.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Introduction

General Inequalities

Symmetrie Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈*P*} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

- We can sort the solutions as follows.
- Pick $n_1, ..., n_k$.
- Then choose m_1, \ldots, m_k modulo p^k so that $(m_i a)^j \equiv (n_i a)^j \pmod{p^j} (1 \le j \le k).$
- Use Linnik's lemma: There are ≤ k!p^{k(k-1)/2} choices modulo p^k.
- Since $p > X^{1/k}$ the m_i are uniquely determined modulo p^k , i.e. there are at most $k!p^{k(k-1)/2}$ choices in all.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

- We can sort the solutions as follows.
- Pick $n_1, ..., n_k$.
- Then choose m_1, \ldots, m_k modulo p^k so that $(m_i a)^j \equiv (n_i a)^j \pmod{p^j} (1 \le j \le k).$
- Use Linnik's lemma: There are ≤ k!p^{k(k-1)/2} choices modulo p^k.
- Since $p > X^{1/k}$ the m_i are uniquely determined modulo p^k , i.e. there are at most $k!p^{k(k-1)/2}$ choices in all.
- Now given the m_i and n_i the number of choices for u_h, v_h is at most J_k((−a/p, (X − a)/p], rk − k).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

- We can sort the solutions as follows.
- Pick $n_1, ..., n_k$.
- Then choose m_1, \ldots, m_k modulo p^k so that $(m_i a)^j \equiv (n_i a)^j \pmod{p^j} (1 \le j \le k).$
- Use Linnik's lemma: There are ≤ k!p^{k(k-1)/2} choices modulo p^k.
- Since $p > X^{1/k}$ the m_i are uniquely determined modulo p^k , i.e. there are at most $k!p^{k(k-1)/2}$ choices in all.
- Now given the m_i and n_i the number of choices for u_h, v_h is at most J_k((−a/p, (X − a)/p], rk − k).

• Apply the inductive hypothesis.

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j (u_h^j - v_h^j) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j (u_h^j - v_h^j) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

• The total number of solutions is at most the maximum over $p \in \mathcal{P}$ of

$$k^{6}k!X^{k}p^{\frac{k(k-1)}{2}+2rk-2k}C(k,r-1)(1+\frac{X}{p})^{2rk-2k-\frac{k(k+1)}{2}+\eta_{r-1}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j (u_h^j - v_h^j) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \dots, m_k$ distinct mod p and n_1, \dots, n_k likewise.

• The total number of solutions is at most the maximum over $p \in \mathcal{P}$ of

$$k^{6}k!X^{k}p^{\frac{k(k-1)}{2}+2rk-2k}C(k,r-1)(1+\frac{X}{p})^{2rk-2k-\frac{k(k+1)}{2}+\eta_{r-1}}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

•
$$\leq k^{6}k!C(k,r-1)p^{k^{2}-\eta_{r-1}}2^{2rk}X^{2rk-k-\frac{k(k+1)}{2}+\eta_{r-1}}$$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j \left(u_h^j - v_h^j \right) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \ldots, m_k$ distinct mod p and n_1, \ldots, n_k likewise.

• The total number of solutions is at most the maximum over $p \in \mathcal{P}$ of

$$k^{6}k!X^{k}p^{\frac{k(k-1)}{2}+2rk-2k}C(k,r-1)(1+\frac{X}{p})^{2rk-2k-\frac{k(k+1)}{2}+\eta_{r-1}}$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

- $\leq k^{6}k!C(k,r-1)p^{k^{2}-\eta_{r-1}}2^{2rk}X^{2rk-k-\frac{k(k+1)}{2}+\eta_{r-1}}$
- Recall \mathcal{P} is a set of $k^2(k-1)$ primes p with $X^{1/k} .$

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j (u_h^j - v_h^j) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \ldots, m_k$ distinct mod p and n_1, \ldots, n_k likewise.

• The total number of solutions is at most the maximum over $p \in \mathcal{P}$ of

$$k^{6}k!X^{k}p^{\frac{k(k-1)}{2}+2rk-2k}C(k,r-1)(1+\frac{X}{p})^{2rk-2k-\frac{k(k+1)}{2}+\eta_{r-1}}$$

- $\leq k^{6}k!C(k,r-1)p^{k^{2}-\eta_{r-1}}2^{2rk}X^{2rk-k-\frac{k(k+1)}{2}+\eta_{r-1}}$.
- Recall \mathcal{P} is a set of $k^2(k-1)$ primes p with $X^{1/k} .$
- Thus the above is $\leq C(k,r)X^{k-\eta_{r-1}/k+2rk-k-rac{k(k+1)}{2}+\eta_{r-1}}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Introduction

General Inequalities

Symmetric Functions

Linnnik's Lemma

The Vinogradov Mean Value Theorem *J_k(X, rk)* ≤ *k*⁶ max_{*p*∈P} *p*^{2*rk*-2*k*} max_{*a*} *l*₁(*p*, *a*) where *l*₁(*p*, *a*) is no. solns.

$$\sum_{i=1}^{k} \left((m_i - a)^j - (n_i - a)^j \right) = \sum_{h=1}^{rk-k} p^j (u_h^j - v_h^j) \qquad (1 \le j \le k)$$

with $m_i, n_i \leq X, -a/p < u_h, v_h \leq (X - a)/p, m_1, \ldots, m_k$ distinct mod p and n_1, \ldots, n_k likewise.

• The total number of solutions is at most the maximum over $p \in \mathcal{P}$ of

$$k^{6}k!X^{k}p^{\frac{k(k-1)}{2}+2rk-2k}C(k,r-1)(1+\frac{X}{p})^{2rk-2k-\frac{k(k+1)}{2}+\eta_{r-1}}$$

- $\leq k^{6}k!C(k,r-1)p^{k^{2}-\eta_{r-1}}2^{2rk}X^{2rk-k-\frac{k(k+1)}{2}+\eta_{r-1}}$.
- Recall \mathcal{P} is a set of $k^2(k-1)$ primes p with $X^{1/k} .$
- Thus the above is $\leq C(k,r)X^{k-\eta_{r-1}/k+2rk-k-rac{k(k+1)}{2}+\eta_{r-1}}$.
- The exponent here is $2rk \frac{k(k+1)}{2} + \eta_r$