AN UPPER BOUND FOR G(k)

sec:intro

1. Introduction

Our aim here is to give a relatively simple proof of the following theorem.

thm:Gubound

Theorem 1.1. There is a constant C such that whenever $k \geq 3$ we have

$$G(k) < 3k \log k + Ck.$$

The best general upper bound we have for large k,

$$G(k) < \lfloor k(\log k + 4.20032) \rfloor,$$

due to Brüdern and Wooley [2023], uses much more sophisticated methods.

sec:Dim

2. Diminishing ranges

Given a $t \in \mathbb{N}$ and a real X which can be supposed to be sufficiently large where necessary we define a finite sequence $P_j = P_j(X)$ by

$$P_1 = X^{1/k}, P_j = \frac{1}{2} P_{j-1}^{1-1/k} (2 \le j \le t-1), P_t = P_{t-1}.$$

Then we have the fundamental lemma of diminishing ranges.

lem:fund

Lemma 2.1. Suppose that $t \geq 2$ and a(m) = a(m; X) denotes the number of solutions of

$$x_1^k + \dots x_t^k = m$$

with $P_j < x_j \le 2P_j$. Then

$$\sum_{m} a(m)^{2} \ll P_{1} \dots P_{t} X^{\varepsilon} \ll \sum_{m} a(m) X^{\varepsilon} \ll \left(\sum_{m} a(m)\right)^{2} X^{-1+\Delta_{t}+\varepsilon}$$

where

$$\Delta_t = \left(1 - \frac{2}{k}\right) \left(1 - \frac{1}{k}\right)^{t-2}.$$

Proof. We show that if $P_j < x_j, y_j \le P_j$ and

$$x_1^k + \cdots x_t^k = y_1^k + \cdots y_t^k,$$

then

$$x_j = y_j \text{ for } 1 \le j \le t - 2.$$
 (2.1) [eq:diag

Thus the equation reduces to

$$x_{t-1}^k - y_{t-1}^k = y_t^k - x_t^k$$

and the number of solutions of this is $\ll P_t^2 X^{\varepsilon} = P_{t-1} P_t X^{\varepsilon}$. Hence it suffices to prove (2.1).

We argue by induction. Suppose that $x_r = y_r$ for $r \leq j - 1$ (this includes the case j = 1) and $x_j \neq y_j$. Then

$$|x_j^k - y_j^k| = |x_j - y_j|(x_j^{k-1} + \dots + y_j^{k-1}) \ge kP_j^{k-1} = k2^kP_j^k.$$

We have $x_{j+1}^k + \cdots + x_t^k \leq 2^{k+1} P_{j+1}^k + (t-j-2) 2^k P_{j+1}^{k-1}$ and likewise for $y_{j+1}^k + \cdots + y_t^k$. Therefore

$$|x_j^k - y_j^k| > |x_{j+1}^k + \dots + x_t^k - y_{j+1}^k - \dots - y_t^k|,$$

which is impossible.

We apply this construction in two different ways, namely to get much improved versions of both Hua's Lemma and Weyl's inequality.

Let

$$\mathcal{A}(\alpha) = \mathcal{A}(\alpha; X, t) = \sum_{m} a(m)e(\alpha m) \tag{2.2}$$

and

$$\mathcal{B}(\alpha) = \mathcal{B}(\alpha; Y, u)) = \sum_{Y^{1/k}$$

We define the coefficients b(m) by

$$\mathcal{B}(\alpha) = \sum_{m} b(m)e(\alpha m) \tag{2.4}$$

so that b(m) is the number of solutions of

$$p^k w_1^k + \cdots p^k w_n^k = m$$

with $Y^{1/k} and <math>P_j(Y) < w_j \le 2P_j(Y)$.

The following is a good substitute for Hua's Lemma.

lem:Huasub

Lemma 2.2. We have

$$\int_0^1 |\mathcal{A}(\alpha)|^2 d\alpha \ll \mathcal{A}(0)^2 X^{-1+\Delta_t+\varepsilon}$$

Proof. This is immediate by Lemma 2.1

A more surprising result is the next lemma.

lem:Weylsub

Lemma 2.3. Suppose that $\alpha \in \mathbb{R}$, $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $q \leq 2^{k+1}Y$, (a,q) = 1 and $|\alpha - a/q| \leq 1/(2^{k+1}qY)$. If $q \geq Y^{1/k}$, then

$$B(\alpha) \ll Y^{\varepsilon + \Delta_u/2 - 1/(2k)} B(0),$$
 (2.5) [eq:Weylminor]

and if $q \leq Y^{1/k}$ and $\alpha \neq a/q$, then

$$B(\alpha) \ll Y^{\varepsilon + \Delta_u/2 - 1/(2k)} \left(1 + \frac{Y^{1/(2k)}}{Y|q\alpha - a|^{1/2}} \right) B(0) \tag{2.6} \quad \text{eq:Weylmajor}$$

Proof. We first eliminate the primes p dividing q. These contribute at most

$$\ll Y^{\varepsilon/2}\mathcal{A}(0;Y,u) \ll Y^{\varepsilon-1/k}B(0)$$

by Chebyshev's inequality. Thus we may suppose that $p \nmid q$. When (m,q)=1 the number of solutions of $x^k \equiv m \pmod{q}$ is $\ll q^{\varepsilon}$. Thus we can partition the set \mathcal{P} of primes p with $Y and <math>p \nmid q$ into $\ll Y^{\varepsilon}$ subsets \mathcal{P}_r which have the property that if $p_1, p_2 \in \mathcal{P}_r$ and $p_1^k \equiv p_2^k \pmod{q}$, then $p_1 \equiv p_2 \pmod{q}$. Hence it suffices to consider

$$\mathcal{B}_r(\alpha) = \sum_{p \in \mathcal{P}_r} \mathcal{A}(\alpha p^k; Y, u).$$

By Cauchy's inequality

$$B_r(\alpha)^2 \ll Y^{1/k} \sum_{p \in \mathcal{P}_r} |\mathcal{A}(\alpha p^k; Y, u)|^2.$$

We now consider the spacing of the αp^k modulo 1. We have

$$|\alpha - a/q||p_1^k - p_2^k| \le 2^k Y/(2^{k+1}qY) \le \frac{1}{2q}.$$

If $p_1 \not\equiv p_2 \pmod{q}$, so that $p_1^k \not\equiv p_2^k \pmod{q}$, then

$$\|\alpha p_1^k - \alpha p_2^k\| \ge \|a(p_1^k - p_2^k)/q\| - \frac{1}{2q} \ge \frac{1}{2q}.$$
 (2.7) [eq:spacing]

Moreover if $q > Y^{1/k}$, so that $q > |p_1 - p_2|$ then we do have $p_1 \not\equiv p_2$. Hence, by the large sieve,

$$B_r(\alpha)^2 \ll Y^{1/k}(Y+q) \sum_n |a(n;Y)|^2 \ll Y^{1+1/k} \sum_n |a(n;Y)|^2.$$

Hence, by Lemma $\overset{\texttt{lem:fund}}{2.1}$,

$$B_r(\alpha)^2 \ll B(0)^2 Y^{-\frac{1}{k} + \Delta_u + \varepsilon}$$

Now suppose that $q \leq Y_1^{1/k}$ and $\alpha \neq a/q$. We have already seen that if $p_1 \not\equiv p_2 \pmod{q}$, then (2.7) holds. Now suppose that $p_1 \equiv p_2 \pmod{q}$, but $p_1 \neq p_2$. Then

$$\|\alpha p_1^k - \alpha p_2^k\| = \|(\alpha - a/q)(p_1^k - p_2^k)\|.$$

Since

$$|(\alpha - a/q)(p_1^k - p_2^k)| \le (2^{k+1}qY)^{-1}2^kY \le \frac{1}{2}$$

we have

$$\|\alpha p_1^k - \alpha p_2^k\| = |\alpha - a/q||p_1^k - p_2^k|.$$

Moreover

$$|p_1^k - p_2^k| = |p_1 - p_2|(p_1^{k-1} + \dots + p_2^{k-1}) \ge qY^{1-1/k}.$$

Thus

$$\|\alpha p_1^k - \alpha p_2^k\| \ge |q\alpha - a|Y^{1-1/k}.$$

Therefore

$$\min_{p_1 \neq p_2} \|\alpha p_1^k - \alpha p_2^k\| \ge \min\left(q^{-1}, |q\alpha - a|Y^{1-1/k}\right).$$

Hence, by the large sieve once more,

$$B_r(\alpha)^2 \ll Y^{1/k} \left(Y + q + \frac{Y^{1/k}}{Y|q\alpha - a|} \right) \sum_n |a(n;Y)|^2$$

$$\ll Y^{1/k} \left(Y + \frac{Y^{1/k}}{Y|q\alpha - a|} \right) \sum_n |a(n;Y)|^2.$$

Therefore, by Lemma 2.1

$$B_r(\alpha) \ll Y^{\varepsilon + \Delta_u/2 - 1/(2k)} \left(1 + \frac{Y^{1/2k}}{Y|q\alpha - a|^{1/2}} \right) B_r(0)$$

cor:Weylsuba

Corollary 2.4. Suppose that $\alpha \in \mathbb{R}$, $a \in \mathbb{Z}$ and $q \in \mathbb{N}$ satisfy $q \leq 2^{k+1}Y$, (a,q) = 1 and $|\alpha - a/q| \leq 1/(2^{k+1}qY)$. If $q > Y^{1/k}$ or if $q \leq Y^{1/k}$ but $|q\alpha - a|Y^2 \gg Y^{1/k}$, then

$$B(\alpha) \ll Y^{\varepsilon + \Delta_u/2 - 1/(2k)} B(0),$$

3. Minor Arcs

Let n be a large positive integer, define

$$f(\alpha) = \sum_{x \le n^{1/k}} e(\alpha x^k),$$

and let $X = \delta n$ and $Y = \delta n^{1/2}$ where δ is a small positive constant. Then we now focus on

$$R(n) = \int_{\mathbb{T}} f(\alpha)^{4k} \mathcal{A}(\alpha)^2 \mathcal{B}(\alpha) e(-\alpha n) d\alpha$$

so that R(n) is the number of solutions of

$$x_1^k + \dots + x_{4k}^k + y_1^k + \dots + y_t^k + z_1^k + \dots + z_t^k + p^k w_1^k + \dots + p^k w_u^k = n$$

with $x_j \leq n^{1/k}$, $P_j(X) < y_j, z_j \leq 2P_j(X)$, $Y^{1/k} and <math>P_j(Y) < w_j \leq 2P_j(Y)$. The variables y_j, z_j, pw_j with $j \geq 2$ are all $o(n^{1/k})$ and $x_1^k, y_1^k \leq 2^k \delta n$ and $p^k w_1^k \leq 4^k \delta^2 n$, so

$$y_1^k + \dots + y_t^k + z_1^k + \dots + z_t^k + p^k w_1^k + \dots + p^k w_u^k \le ((2^{k+1} + 1)\delta + 4^k \delta^2)n$$

and

$$y_1^k + \dots + y_t^k + z_1^k + \dots + z_t^k + p^k w_1^k + \dots + p^k w_u^k < \frac{1}{2}n$$
 (3.1) [eq:support]

on choosing δ suitably small.

Let $\tau = Y^{1/k-2}$ and define the minor arcs \mathfrak{m} to be the set of $\alpha \in (\tau, 1+\tau]$ such that if $|q\alpha-a| \leq Y^{-1}2^{-k-1}$, then $q > Y^{1/k}$ or $|q\alpha-a| > Y^{1/k-2}$. By Dirichlet's theorem on diophantine approximation, given any α , there are always q and a with (a,q)=1 such that $q \leq 2^{k+1}Y^2$

and $|q\alpha - a| \le 2^{-k-1}Y^{-2}$. Moreover, if $q > Y^{1/k}$ or $|q\alpha - a| > Y^{1/k-2}$, then by Lemma 2.6 and Corollary 2.4 we have

$$\int_{\mathfrak{m}} |f(\alpha)^{4k} \mathcal{A}(\alpha)^2 \mathcal{B}(\alpha)| d\alpha \ll n^3 \mathcal{A}(0)^2 \mathcal{B}(0) n^{\Delta_t + \Delta_u/4 - 1/(4k) + \varepsilon}.$$

For convenience we take

$$t = u \text{ and } u = 1 + |k \log(16k/3)|.$$
 (3.2) [eq:tandu]

Then

$$u \log \frac{1}{1 - \frac{1}{k}} > k^{-1}u > \log(16k/3)$$

so that

$$(1-1/k)^{-u} > 16k/3 > k\frac{16k(k-2)}{3(k-1)^2} = \frac{16}{3}k(1-2/k)(1-1/k)^{-2}.$$

Hence

$$(1 - 2/k)(1 - 1/k)^{u-2} < \frac{3}{16k}$$

and

$$\Delta_t + \Delta_u/4 - 1/(16k/3) = \frac{5}{4}\Delta_u - \frac{1}{4k} < -\frac{1}{64k}.$$

Thus

$$\int_{\mathfrak{m}} |f(\alpha)^{4k} \mathcal{A}(\alpha)^2 \mathcal{B}(\alpha)| d\alpha \ll n^3 \mathcal{A}(0)^2 \mathcal{B}(0) n^{-\frac{1}{64k}}. \tag{3.3}$$
 [eq:allminor]

4. The Major Arcs

We are left with the complement of \mathfrak{m} . We define for $1 \leq a \leq q \leq Y^{1/k}$ and (a,q)=1

$$\mathfrak{M}(q, a) = \{ \alpha \in (\tau, 1 + \tau] : |q\alpha - a| \le Y^{1/k - 2} \}$$

and let \mathfrak{M} denote their union with $1 \leq a \leq q \leq Y^{1/k}$ and (a,q) = 1. It is clear from Dirichlet's theorem that \mathfrak{m} and \mathfrak{M} partition $(\tau, 1 + \tau]$.

In the notation used in class, for $\alpha \in \mathfrak{M}(q, a)$ we have

$$f(\alpha) = q^{-1}S(q, a)v(\beta) + O(q + qn|\beta|)$$

where $\beta = \alpha - a/q$. We also know that

$$S(q,a) \ll q^{1-1/k} \quad (q,a) = 1$$
 (4.1) [eq:Sqabound

and

$$v(\beta) \ll \frac{n^{1/k}}{(1+n|\beta|)^{1/k}}.$$

Now on $\mathfrak{M}(q,a)$ we have

$$f(\alpha)^{4k} - q^{-4k}S(q, a)^{4k}v(\beta)^{4k} \ll \frac{n^{4-\frac{1}{k}}}{(q+qn|\beta|)^3} + (q+qn|\beta|)^{4k}$$

and so

$$\int_{\mathfrak{M}(q,a)} |f(\alpha)^{4k} - q^{-4k} S(q,a)^{4k} v(\beta)^{4k} | d\alpha$$

$$\ll q^{-3} n^{3 - \frac{1}{k}} + (q + nY^{1/k - 2})^{4k} q^{-1} Y^{1/k - 2}.$$

Recalling that $Y = \delta n^{1/2}$, this is

$$\ll q^{-3}n^{3-\frac{1}{k}} + (n^{1/(2k)})^{4k}q^{-1}n^{1/(2k)-1} \ll q^{-3}n^{3-\frac{1}{k}} + nq^{-1}$$

Summing this over the major arcs gives, for an arbitrary m

$$\int_{\mathfrak{M}} f(\alpha)^{4k} e(-\alpha m) d\alpha - \sum_{q \le Y^{1/k}} \sum_{\substack{a=1 \ (a,q)=1}}^{q} \frac{S(q,a)^{4k}}{q^{4k}} e\left(-\frac{am}{q}\right) \int_{-\frac{Y^{1/k}}{qY^2}}^{\frac{Y^{1/k}}{qY^2}} v(\beta)^{4k} e(-\beta m) d\beta \ll n^{3-\frac{1}{k}}.$$

We can complete the analysis of the major arcs much as in class, but we can use the better bound (4.1). We do need $m \gg n$ in order to get decent asymptotics for J(m). Thus, when $\frac{1}{2}n \leq m \leq n$ we have

$$\int_{\mathfrak{M}} f(\alpha)^{4k} e(-\alpha m) d\alpha = \frac{1}{6} \Gamma \left(1 + \frac{1}{k} \right)^{4k} m^3 \mathfrak{S}(m) + O(n^{3-1/k}).$$

We write

$$\mathcal{A}(\alpha)^{2}\mathcal{B}(\alpha) = \sum_{m} c(m)e(\alpha m)$$

where, by $(\stackrel{\text{eq:support}}{3.1}, \stackrel{\text{m}}{c(m)})$ is the number of solutions of

$$y_1^k + \cdots + y_t^k + z_1^k + z_t^k + p^k w_1^k + \cdots + p^k w_u^k = m$$

with $P_j(X) < y_j, z_j \le 2P_j(X), Y^{1/k} < p \le 2Y^{1/k} \text{ and } P_j(Y) < w_j \le$ $2P_i(Y)$ and the support of c(m) lies in

$$[1, ((2^{k+1}+1)\delta + 4^k\delta^2)n] \subset [1, n/2).$$

Thus

$$\begin{split} \int_{\mathfrak{M}} f(\alpha)^{4k} \mathcal{A}(\alpha)^2 \mathcal{B}(\alpha) e(-\alpha n) d\alpha = \\ \frac{1}{6} \Gamma \left(1 + \frac{1}{k} \right)^{4k} \sum_{m} c(m) (n-m)^3 \mathfrak{S}(n-m) \\ &+ O \Big(n^{3-1/k} \mathcal{A}(0)^2 \mathcal{B}(0) \Big). \quad (4.2) \quad \text{[eq:allmajor]} \end{split}$$

5. The Endgame

By combining (3.3) and (4.2) we obtain

$$\begin{split} \int_0^1 f(\alpha)^{4k} \mathcal{A}(\alpha)^2 \mathcal{B}(\alpha) e(-\alpha n) d\alpha &= \\ \frac{1}{6} \Gamma \left(1 + \frac{1}{k}\right)^{4k} \sum_m c(m) (n-m)^3 \mathfrak{S}(n-m) \\ &+ O\left(n^{3-\frac{1}{64k}} \mathcal{A}(0)^2 \mathcal{B}(0)\right). \quad (5.1) \quad \text{[eq:all]} \end{split}$$

The c(m) are non-negative and have their support in [1, n/2), and we know from class (for sums of 4k k-th powers) that $\mathfrak{S}(n-m)\gg 1$. Hence the main term here, and so the integral on the left, is

$$\gg n^3 \mathcal{A}(0)^2 \mathcal{B}(0)$$

Hence every large n is the sum of at 4k+2t+u=4k+3u k-th powers, and by (3.2) this is

$$4k + t + u = 4k + 3 + 3\lfloor k \log(16k/3) \rfloor$$

 $4k+t+u=4k+3+3\lfloor k\log(16k/3)\rfloor.$ This proves Theorem I.1 with Ck replaced by $3+4k+3k\log 4$.

References

[2023] J. Brüdern & T. D. Wooley, On Waring's problem for larger powers, J. reine angew. Math. $805 (2023),\, 115-142.\,\, \mathtt{https://doi.org/10.1515/crelle-2023-0072}$