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AN UPPER BOUND FOR G(k)

1. INTRODUCTION

Our aim here is to give a relatively simple proof of the following theo-
rem.

Theorem 1.1. There is a constant C' such that whenever k > 3 we
have
G(k) < 3klogk + Ck.

The best general upper bound we have for large k,
G(k) < |k(log k +4.20032) |,

1123
due to Briidern and Wooley EZUQB], uses much more sophisticated meth-
ods.

2. DIMINISHING RANGES
Given a t € N and a real X which can be supposed to be sufficiently
large where necessary we define a finite sequence P; = P;(X) by
L 11k .
P =XV P = §Pj_1/ 2<j<t—1), P =P
Then we have the fundamental lemma of diminishing ranges.

Lemma 2.1. Suppose that t > 2 and a(m) = a(m; X) denotes the
number of solutions of

x’f + - a:f =m
with P; < x; < 2P;. Then

Z a(m)Q < P ... PtAX6 < Z a(m)XE < (Z a(m))zX—l—i-Aﬁ—s

m m

where
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Proof. We show that if P; < z;,y; < P; and

k k k k
xl_i_...:[;t :yl_i_...yt’

then
rj=y;for1 <j<t—2. (2.1)
Thus the equation reduces to

k E ok k
Ty 1 = Y1 =Y — Xy

and the number of s()iléltions of this is < PtZX = P_1P.X*c. Hence it
suffices to prove

We argue by induction. Suppose that z, = y, for r < j — 1 (this
includes the case j = 1) and z; # y;. Then

k_ .k k— k- k- k pk
o5 = yi| = laj —yl(25 " + -y ) = kP = k2° P
We have o, + - af <281 PF 4 (t — j — 2)2"5Pﬁ:11 and likewise for
yfﬂ + -+ yF. Therefore
k_ ok k k_ k k
’wj _yjl > |xj+1‘|'""|‘xt — Y1~ — Y,
which is impossible. ]

We apply this construction in two different ways, namely to get much
improved versions of both Hua’s Lemma and Weyl’s inequality:.

Let
Ala) = Ao; X, t) = > a(m)e(am) (2.2)
and
Bla) =Bla;Yu)= >  AlapYu). (2.3)
YU/k<p<2Y1l/k

We define the coefficients b(m) by
B(a) =) b(m)e(am) (2.4)

so that b(m) is the number of solutions of

k, k k, k
pwy +---pw, =m

with YV* < p < 2YV* and P;(Y) < w; < 2P;(Y).
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The following is a good substitute for Hua’s Lemma.

Lemma 2.2. We have
1
/ A(0)Pda < A(0) X e
0

Proof. This is immediate by Lemma ﬁ i'fund ]

A more surprising result is the next lemma.

Lemma 2.3. Suppose that « € R, a € Z and q € N satisfy ¢ < 2F1Y,
(a,q) =1 and | — a/q| < 1/(2F2qY). If ¢ > YVE, then

B(a) < YeHa/271/ZR B (), (2.5)
and if ¢ < YY* and o # a/q, then
y1/2h)
Viga— a1

B(a) < YErBu/21/(2k) (1 + ) B(0) (2.6)

Proof. We first eliminate the primes p dividing q. These contribute at
most

<L Y2AW0:Y,u) < YVFB(0)

by Chebyshev’s inequality. Thus we may suppose that p 1 ¢. When
(m,q) = 1 the number of solutions of #¥ = m (mod ¢) is < ¢°. Thus
we can partition the set P of primes p with Y < p < 2Y and p 1 ¢
into < Y*© subsets P, which have the property that if p;,p, € P, and
pi = p5 (mod ¢), then p; = ps (mod ¢). Hence it suffices to consider

Bi(a) = Alap"; Y, u).
pEPr
By Cauchy’s inequality
Bi(0)? < YV 37 [ A(rh )P
peP;

We now consider the spacing of the ap® modulo 1. We have
1

o —a/q||p} — p5| < 2FY/(2"HqY) < 50

’eq:Weylminor‘

’eq:Weylmajor‘
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If p1 # p2 (mod q), so that p} # p§ (mod g¢), then
11

lopt —apy || 2 lla(pi —p5)/all - 5. = 5. (2.7) [eq:spacing]

Moreover if ¢ > Y% so that ¢ > |p1 — p2| then we do have p; # po.
Hence, by the large sieve,

By(a)? < YVHY +0) 3 la(ms V)P < YIVEST Ja(s V)P

Hence, by Lemma FZ i',fund
B( )2 < B(0)2Y_%+A“+E

Now suppose that ¢ < Yl/ K chllgl a # a/q. We have already seen that if
p1 Z p2 (mod gq), then holds. Now suppose that p; = py (mod q),
but p; # ps. Then

ot — aph|| = |[(o — a/q)(p} — p5)]|.

Since
(v —a/q)(ph —p5)| < (2" 1qY) 12"y < %
we have
lapy — aps|| = |a — a/qllpy — p5].
Moreover
5 —phl = 1 — pol (P 4+ P > gy YR,
Thus
laph — aph]| > |go — a|Y1E,

Therefore

mm”%ﬁ-a@Hme(fﬂm&_myknﬁ.
P1#D2

Hence, by the large sieve once more,

Yl/k
B.(a)? < Yk (Y +q+ m) > la(n; Y)P?

<Yy 4+ — v Z\anY
Yl]ga — qf
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Therefore, by Lemma & i'fund
}/1/2k

Br YE+AU/2—1/(2/€) 1 Br 0
(a) < + Y|ga — a|'/? (0)

]

Corollary 2.4. Suppose that « € R, a € Z and q € N satisfy q <
MY (a,q) = 1 and |o — a/q] < 1/(2¥qY). If ¢ > YV* or if
q < YYE but |go — a|Y? > YVE then

B(Oé) < Y€+Au/2_1/(2k)B(0),

3. MINOR ARCS

Let n be a large positive integer, define

fla)="3" e(azh),

xgnl/k

and let X = én and Y = én'/? where § is a small positive constant.
Then we now focus on

R(n) = /T F(@)* A(a)B(a)e(—an)da

so that R(n) is the number of solutions of

with x; < nY* P(X) < y;,2 < 2P)(X), Y% < p < 2YV* and

P;(Y) < w; < 2P;(Y). The variables y;, z;, pw; with 7 > 2 are all

o(n'/*) and x¥, y¥ < 26n and pFuwl < 4%6%n, so

ity A e P Pl < (27T 4 1)6 + 4767 n

and {
y]f+--~yf+zf+---+Zf+pkwlf+--~pkw§<§n (3.1)

on choosing ¢ suitably small.

Let 7 = Y/*=2 and define the minor arcs m to be the set of o €
(7,14 7] such that if |go — a| < Y™'27%7! then ¢ > YV* or |qa — a| >
Y1/k=2 By Dirichlet’s theorem on diophantine approximation, given
any «, there are always ¢ and a with (a,q) = 1 such that ¢ < 2¢*1y?
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and |go —a| < 2. F 1Y 2. Moreover, if ﬁbg/l/k or [ga — a| > YV/k-2,
then by Lemma i é and Corollary we have

/ £ (@)™ A(a)*B(a)|da < n® A(0)*B(0)nteae/4=1/ k) +e

For convenience we take

t=wand u=1+4 |klog(16k/3)]. (3.2)
Then |
ulog1 - >k~ 'u > log(16k/3)
Tk
so that
_ 16k(k—2) 16
1—-1/k)">16k/3 > k—————F = —k(1 —2/k)(1 — 1/Kk
(L= /0 > 168/3 > ka0 = k(1= 2/)(1— 1/k)
Hence 5
1—=2/k)(1=1/k)" 2% < —
(1= 2/R)(1— 1R <
and
A+ Ay /A —1/(16k)3) = 20y — — <« =1
L 4T 4k 64k
Thus

/ £ ()™ A()*B(a)|dor < n® A(0)*B(0)n 5. (3.3)

m
4. THE MAJOR ARCS
We are left with the complement of m. We define for 1 < a < ¢ < y1/k
and (a,’ Q) — 1
m(Qva’) = {O{ c (T, 1+ 7'] : |q04 — (Z‘ < Yl/k—Z}

and let 9 denote their union with 1 < a < ¢ < YY* and (a,q) = 1. It
is clear from Dirichlet’s theorem that m and 901 partition (7,1 + 7].
In the notation used in class, for o € M(q, a) we have

f(a) =q7'S(g,a)v(B) + O(q + qnl|B|)
where = o — a/q. We also know that

S(g,a) < ¢ (g,a) =1 (4.1)
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and

Lk
v < T

Now on MM(q, a) we have

1

Ak —Ak " Ak n'"x Ak
f(a)™ = q"5(q,a)"v(B)™ < CETEIE + (g + qn|p])
and so

/ F(@)™ — ¢ %5 (g, a)*v(8)™|da
M(q,a)

< q’3n3’% + (q + nyl/k72>4kqflyl/k72.
Recalling that Y = dn'/2, this is

< gt E 4 (n @RI V@R 33t e

Summing this over the major arcs gives, for an arbitrary m
/ f(a)*e(—am)da—
m

q

g 4k };;/Qk
> 3 SR (=) [T ooyl pm)as
g<Ylk a=1 -

v2
a,q)=1 !

< n3_%.
We can complete the analysis of tggo uII%ajOI" arcs much as in class, but
we can use the better bound

. We do need m > n in order to get
decent asymptotics for J(m). Thus, when %n < m < n we have

1 1\ 4
/ f(a)4ke(—am)da =T (14+-] m’&(m)+ O(n3_1/k),
m 6 k
We write
A()’B(a) = Z c(m)e(am)
where, by (ﬁu, el 7;01) is the number of solutions of

y]f+~--yf+zf+-zf+pkwlf+--~pkw5:m
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with Pj(X) < y;,2; < 2P;(X), YVF < p < 2YY*¥ and Pj(Y) < w; <
2P;(Y) and the support of ¢(m) lies in
[1, (2" +1)6 4+ 4"6%)n] C [1,n/2).
Thus

/zm fa)* A(a)*B(a)e(—an)da =
4k
" (1 ! %) 2, clm)(n = m)'S(n = m)
+0(n*V*A(0)2B(0)). (4.2)

5. THE ENDGAME
]l 1lminor leq:allmajor

By combining @ and ({.2]) we obtain

/0 f(a)* A(a)*B(a)e(—an)do =
éF <1 + %) ; c(m)(n —m)*&(n —m)
+O(n* 75 A(0)2B(0)). (5.1)

The ¢(m) are non-negative and have their support in [1,n/2), and we
know from class (for sums of 4k k-th powers) that &(n — m) > 1.
Hence the main term here, and so the integral on the left, is

> n3A(0)2B(0)

Hence ever _aln%lrlge n is the sum of at 4k + 2t +u = 4k + 3u k-th powers,
and by (3. th"His is

4k + 1t +u =4k + 3+ 3| klog(16k/3)].
This proves Theorem %k replaced by 3 + 4k + 3k log 4.
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