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Introduction Cauchy—Davenport—Chowla theorem and Mann’s theorem.

® There are various proofs of these theorems and their many
variations in the literature.

® The purpose here is to give short and simple proofs of
both theorems the core of which are based on a common
and generic idea.

® This is that one or more elements can be removed from
one of the sets and their translates added to the other in
such a way that the original sum set is contained in the
new sum set, and so an induction on the number of
elements of one of the sets can be established.
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Fs/c;buegr;ai' defined by )
p=q "card(A).
The Cauchy— ° Theorem [CaUChy_Davenport_ChOWIa]. Suppose that
Davenport- q is a positive integer, that A and B are sets of residue

Theorem

classes modulo q of local density modulo q, a and 3
respectively, that 0 € B and that every non—zero residue
class in B is a reduced residue class modulo q. Then

p(A+B) > min(l,a+ S —1/q).
® This is best possible, as is seen by the example
A={0,1,...,r—1}, B={0,1,...,s — 1},

A+B={0,1,...,r+s—2}whenr+s—-1<gq.
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® We now proceed by induction on s = g = card(B).
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When s = 1 the conclusion is immediate.
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Proof. If a = 1, then the conclusion is trivial.

Thus we may suppose that r = gqa = card(A) < g.
We now proceed by induction on s = g8 = card(B).
When s = 1 the conclusion is immediate.

Thus it remains to consider the case s > 1 (and o < 1),
and we may assume the conclusion holds for all o when
cardB < s.
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Za—i—brz Za’ (mod q)

acA aeA

whence br =0 (mod g) and then (b, q) > 1.
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whence br =0 (mod g) and then (b, q) > 1.
® Hence there are a9 € A, by € B such that ag + by € A.
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® When b € B\{0} we cannot have a + b € A for every
a € A, for otherwise

Za—l—br—Za (mod q)

acA aeA

whence br =0 (mod g) and then (b, q) > 1.
® Hence there are a9 € A, by € B such that ag + by € A.

o let A/'=AU{ag+b:beB,ag+ b¢ A} and
B ={b:beB,a+be A}
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When b € B\{0} we cannot have a+ b € A for every
a € A, for otherwise

Za—l—br_Za (mod q)

acA aeA

whence br =0 (mod g) and then (b, q) > 1.

Hence there are ag € A, by € B such that ag + by ¢ A.
Let A/ = AU{ag+b:be B,ag+ b ¢ A} and

B ={b:beB,a+ bec A}.

Then card(A’) + card(B') = card(A) + card(B) =r + s
and 1 < card(B’) < s — 1. Hence, by the inductive
hypothesis p(A" + B') >

min (1, p(A') + p(B') — 1/q) = min(1,a + 3 —1/q).
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When b € B\{0} we cannot have a+ b € A for every
a € A, for otherwise

Za—l—br_Za (mod q)

acA aeA

whence br =0 (mod g) and then (b, q) > 1.

Hence there are ag € A, by € B such that ag + by ¢ A.
Let A/ = AU{ag+b:be B,ag+ b ¢ A} and

B ={b:beB,ag+be A}.

Then card(A’) + card(B') = card(A) + card(B) =r + s
and 1 < card(B’) < s — 1. Hence, by the inductive
hypothesis p(A" + B') >

min (1, p(A') + p(B') — 1/q) = min(1,a + 3 —1/q).
Suppose that &’ € A’ and b’ € B’. When a’ € A we have
a+b €A+ B. When & & A thereis a b’ € B such that
ad=a+b' andsoad +b =ag+b"+b =ayg+b +b".
Moreover ag + b’ € A, so a’ + b’ € A+ B in this case
also. Hence A’ + B’ € A + B and the theorem follows.



® For convenience, given A C Z we define
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A(n) =cardfae A:1<a< n}.
Then the Schnirel’'man density o(.A) of a set of integers A
is given by o(A) = inf,>1 n~1A(n).
Theorem [Mann]. Suppose that A and B are sets of

integers of Schnirel’'man density o and (3 respectively and
that 0 € ANB. Then

o(A+ B) > min(l,a + f).

Proof. The case a+ 8 > 1 can be disposed of by a box
argument.
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A(n) =cardfae A:1<a< n}.

Then the Schnirel’'man density o(.A) of a set of integers A
is given by o(A) = inf,>1 n~1A(n).

Theorem [Mann]. Suppose that A and B are sets of
integers of Schnirel’'man density o and (3 respectively and
that 0 € AN B. Then

o(A+ B) > min(l,a + f).

Proof. The case a+ 8 > 1 can be disposed of by a box
argument.

For a given n € N consider the A(n) + B(n) + 2 numbers
(objects) a with 0 < a<nand a€ A and n— b with
0<b<nand bekB.
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For convenience, given A C Z we define
A(n) =cardfae A:1<a< n}.

Then the Schnirel’'man density o(.A) of a set of integers A
is given by o(A) = inf,>1 n~1A(n).

Theorem [Mann]. Suppose that A and B are sets of
integers of Schnirel’'man density o and (3 respectively and
that 0 € AN B. Then

o(A+ B) > min(l,a + f).

Proof. The case a+ 8 > 1 can be disposed of by a box
argument.

For a given n € N consider the A(n) + B(n) + 2 numbers
(objects) a with 0 < a<nand a€ A and n— b with
0<b<nand bekB.

Since A(n) + B(n) +2> an+ fn+2> n+2, one of the
n—+ 1 numbers m with 0 < m < n must be both an a and
an n—b.
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For convenience, given A C Z we define
A(n) =cardfae A:1<a< n}.

Then the Schnirel’'man density o(.A) of a set of integers A
is given by o(A) = inf,>1 n~1A(n).

Theorem [Mann]. Suppose that A and B are sets of
integers of Schnirel’'man density o and (3 respectively and
that 0 € AN B. Then

o(A+ B) > min(l,a + f).

Proof. The case a+ 8 > 1 can be disposed of by a box
argument.

For a given n € N consider the A(n) + B(n) + 2 numbers
(objects) a with 0 < a<nand a€ A and n— b with
0<b<nand bekB.

Since A(n) + B(n) +2> an+ fn+2> n+2, one of the
n—+ 1 numbers m with 0 < m < n must be both an a and
an n—b.

Hence n=a+ b, N C A+ B and the theorem follows.
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«O> «Fr «=>»

«E)»

ae



Math 571,

%;r;ijgﬁ ® Henceforward we suppose that o+ 3 < 1
Sum Sets e If o = 0, then the conclusion follows from the
Ff/c;buegr;ai' observation that AC A+ B and BC A+ B.

Mann’s
Theorem



Math 571,

Spring 2025,

Density and
Sum Sets

Robert C.
Vaughan

Mann’s
Theorem

® Henceforward we suppose that o+ 3 < 1

e If aff =0, then the conclusion follows from the
observation that A C A+ B and B C A+ B.

® Hence we may suppose that a5 > 0 and therefore

le ANB.
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Henceforward we suppose that o + 3 < 1

If a8 = 0, then the conclusion follows from the
observation that A C A+ B and BC A+ B.

Hence we may suppose that a8 > 0 and therefore
le ANB. (1)

It suffices now to prove that for n € N we have
card{m:1<m<nme A+ B} > A(n)+ B(n).
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Henceforward we suppose that o + 3 < 1

If a8 = 0, then the conclusion follows from the
observation that A C A+ B and BC A+ B.

Hence we may suppose that a8 > 0 and therefore
le ANB. (1)

It suffices now to prove that for n € N we have
card{m:1<m<nme A+ B} > A(n)+ B(n).
Suppose first that a+ b € A whenever ac€ A, b€ B and
a+b<n.
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Henceforward we suppose that o + 3 < 1

If a8 = 0, then the conclusion follows from the
observation that A C A+ B and BC A+ B.

Hence we may suppose that a8 > 0 and therefore
le ANB. (1)

It suffices now to prove that for n € N we have
card{m:1<m<nme A+ B} > A(n)+ B(n).
Suppose first that a+ b € A whenever ac€ A, b€ B and
a+b<n.

Then for m=1,2,...,.n—1we have 1 € A and, if m € A,
then m+1 € A.
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Henceforward we suppose that o + 3 < 1

If a8 = 0, then the conclusion follows from the
observation that A C A+ B and BC A+ B.

Hence we may suppose that a8 > 0 and therefore
le ANB. (1)

It suffices now to prove that for n € N we have
card{m:1<m<nme A+ B} > A(n)+ B(n).
Suppose first that a+ b € A whenever ac€ A, b€ B and
a+b<n.

Then for m=1,2,...,.n—1we have 1 € A and, if m € A,
then m+1€e A

Hence A(n) = n and since A C A+ B the desired result
follows.
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Henceforward we suppose that o + 3 < 1

If a8 = 0, then the conclusion follows from the
observation that A C A+ B and BC A+ B.

Hence we may suppose that a8 > 0 and therefore
le ANB. (1)

It suffices now to prove that for n € N we have
card{m:1<m<nme A+ B} > A(n)+ B(n).
Suppose first that a+ b € A whenever ac€ A, b€ B and
a+b<n.

Then for m=1,2,...,.n—1we have 1 € A and, if m € A,
then m+1€e A

Hence A(n) = n and since A C A+ B the desired result
follows.

Thus we may suppose that there are ag € A, by € B such
that ag > 1, by > 1, a9 + by < n and ag + by ¢ A.
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We are supposing (1) 1 € AN B and that there are
ao € A, bg € Bsuchthat ag > 1, bg > 1, ag + bg < n and
ag+ by ¢ A.

Let s = B(n).

Then by (1) we may assume that s > 1. We proceed by
inductionons=1,...,n.

Let A/ =A+{ag+b:beBag+b<nya+b¢gA}
and B'=B\{beB:ag+b<nanday+ b ¢ A}
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We are supposing (1) 1 € AN B and that there are
ao € A, bg € Bsuchthat ag > 1, bg > 1, ag + bg < n and
ag+ by ¢ A.

Let s = B(n).

Then by (1) we may assume that s > 1. We proceed by
inductionons=1,...,n.

Let /' =A+{ap+b:beB,ag+b<na+beg A}
and B'=B\{beB:ag+b<nanday+ b ¢ A}
Suppose that &’ € A" and b’ € B'.
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We are supposing (1) 1 € AN B and that there are
ao € A, bg € Bsuchthat ag > 1, bg > 1, ag + bg < n and
ag+ by ¢ A.

Let s = B(n).

Then by (1) we may assume that s > 1. We proceed by
inductionons=1,...,n.

Let /' =A+{ap+b:beB,ag+b<na+beg A}
and B'=B\{beB:ag+b<nanday+ b ¢ A}
Suppose that &’ € A" and b’ € B'.

When &’ € A we have & + b’ € A+ B.
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We are supposing (1) 1 € AN B and that there are
ao € A, bg € Bsuchthat ag > 1, bg > 1, ag + bg < n and
ag+ by ¢ A.

Let s = B(n).

Then by (1) we may assume that s > 1. We proceed by
inductionons=1,...,n.

Let /' =A+{ap+b:beB,ag+b<na+beg A}
and B'=B\{beB:ag+b<nanday+ b ¢ A}
Suppose that &’ € A" and b’ € B'.

When 2’ € A we have &' + b € A+ B.

When a' € A there is a b" € B such that & = ag + b" and
soa +b=ag+b"+b =ag+b +b".
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We are supposing (1) 1 € AN B and that there are
ao € A, bg € Bsuchthat ag > 1, bg > 1, ag + bg < n and
ag+ by ¢ A.

Let s = B(n).

Then by (1) we may assume that s > 1. We proceed by
inductionons=1,...,n.

Let /' =A+{ap+b:beB,ag+b<na+beg A}
and B/ =B\{beB:ay+b<nanday+ b ¢ A}
Suppose that &’ € A" and b’ € B'.

When &’ € A we have a’ + b € A+ B.

When a' € A there is a b" € B such that & = ag + b" and
sod +b =a+b" +b =a+b+b".

Moreover ag + b’ € A, so & + b’ € A+ B in this case also.
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We are supposing (1) 1 € AN B and that there are
ao € A, bg € Bsuchthat ag > 1, bg > 1, ag + bg < n and
ag+ by ¢ A.
Let s = B(n).
Then by (1) we may assume that s > 1. We proceed by
inductionons=1,...,n.
Let /' =A+{ap+b:beB,ag+b<na+beg A}
and B/ =B\{beB:ay+b<nanday+ b ¢ A}
Suppose that &’ € A" and b’ € B'.
When &’ € A we have a’ + b € A+ B.
When a' € A there is a b" € B such that & = ag + b" and
sod +b =a+b" +b =a+b+b".
Moreover ag + b’ € A, so & + b’ € A+ B in this case also.
Hence

Al'(n) + B'(n) = A(n) + B(n), (2)

A+B CcA+Bandcard{m:1<m<nme A+ B} >
card{m:1<m<nmeA + B'}.
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S A+B cA+Bandcard{m:1<m<nmeA+ B} >
card{m:1<m<nmeA + B}
e We also have B'(n) < s—1.
e If B'(n) = 0 (and this includes the case s = 1, the initial
case of the inductive argument), then
Theoer card{m:1<m<nme A + B’}
=card{m:1<m<nmeA}
> Al(n)

= A'(n) + B'(n)

and with (2) completes the proof in this case.
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® \We have

A'(n)+ B'(n) = A(n) + B(n),  (2)

A+B cA+Bandcard{m:1<m<nmeA+ B} >

card{m:1<m<nmeA + B}

We also have B'(n) <s— 1.

If B’(n) = 0 (and this includes the case s = 1, the initial

case of the inductive argument), then

card{m:1<m<nme A + B}

=card{m:1<m<nmeA}
> A(n)
= A'(n) + B'(n)

and with (2) completes the proof in this case.

If B’(n) > 1, then on the inductive hypothesis for s we

have

card{m:1<m<nme A+ B} > A(n)+ B'(n)

once more and again with (2) this completes the proof.
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