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• This is an exposition of two of the standard theorems on
density and sum sets, namely the
Cauchy–Davenport–Chowla theorem and Mann’s theorem.

• There are various proofs of these theorems and their many
variations in the literature.

• The purpose here is to give short and simple proofs of
both theorems the core of which are based on a common
and generic idea.

• This is that one or more elements can be removed from
one of the sets and their translates added to the other in
such a way that the original sum set is contained in the
new sum set, and so an induction on the number of
elements of one of the sets can be established.
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• Given a positive integer q and a collection A of residue
classes modulo q, its local density ρ = ρ(A) modulo q is
defined by

ρ = q−1 card(A).

• Theorem [Cauchy–Davenport–Chowla]. Suppose that
q is a positive integer, that A and B are sets of residue
classes modulo q of local density modulo q, α and β
respectively, that 0 ∈ B and that every non–zero residue
class in B is a reduced residue class modulo q. Then

ρ(A+ B) ≥ min(1, α+ β − 1/q).

• This is best possible, as is seen by the example

A = {0, 1, . . . , r − 1}, B = {0, 1, . . . , s − 1},

A+ B = {0, 1, . . . , r + s − 2} when r + s − 1 ≤ q.
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• Proof. If α = 1, then the conclusion is trivial.

• Thus we may suppose that r = qα = card(A) < q.

• We now proceed by induction on s = qβ = card(B).
• When s = 1 the conclusion is immediate.

• Thus it remains to consider the case s > 1 (and α < 1),
and we may assume the conclusion holds for all α when
cardB < s.
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• When b ∈ B\{0} we cannot have a+ b ∈ A for every
a ∈ A, for otherwise∑

a∈A
a+ br ≡

∑
a′∈A

a′ (mod q)

whence br ≡ 0 (mod q) and then (b, q) > 1.

• Hence there are a0 ∈ A, b0 ∈ B such that a0 + b0 ̸∈ A.

• Let A′ = A ∪ {a0 + b : b ∈ B, a0 + b ̸∈ A} and
B′ = {b : b ∈ B, a0 + b ∈ A}.

• Then card(A′) + card(B′) = card(A) + card(B) = r + s
and 1 ≤ card(B′) ≤ s − 1. Hence, by the inductive
hypothesis ρ(A′ + B′) ≥
min

(
1, ρ(A′) + ρ(B′)− 1/q

)
= min(1, α+ β − 1/q).

• Suppose that a′ ∈ A′ and b′ ∈ B′. When a′ ∈ A we have
a′ + b′ ∈ A+ B. When a′ ̸∈ A there is a b′′ ∈ B such that
a′ = a0 + b′′ and so a′ + b′ = a0 + b′′ + b′ = a0 + b′ + b′′.
Moreover a0 + b′ ∈ A, so a′ + b′ ∈ A+ B in this case
also. Hence A′ + B′ ⊂ A+ B and the theorem follows.
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• For convenience, given A ⊂ Z we define

A(n) = card{a ∈ A : 1 ≤ a ≤ n}.

• Then the Schnirel’man density σ(A) of a set of integers A
is given by σ(A) = infn≥1 n

−1A(n).
• Theorem [Mann]. Suppose that A and B are sets of
integers of Schnirel’man density α and β respectively and
that 0 ∈ A ∩ B. Then

σ(A+ B) ≥ min(1, α+ β).

• Proof. The case α+ β ≥ 1 can be disposed of by a box
argument.

• For a given n ∈ N consider the A(n) + B(n) + 2 numbers
(objects) a with 0 ≤ a ≤ n and a ∈ A and n − b with
0 ≤ b ≤ n and b ∈ B.

• Since A(n) + B(n) + 2 ≥ αn + βn + 2 ≥ n + 2, one of the
n + 1 numbers m with 0 ≤ m ≤ n must be both an a and
an n − b.

• Hence n = a+ b, N ⊂ A+ B and the theorem follows.
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• Henceforward we suppose that α+ β < 1

• If αβ = 0, then the conclusion follows from the
observation that A ⊂ A+ B and B ⊂ A+ B.

• Hence we may suppose that αβ > 0 and therefore

1 ∈ A ∩ B. (1)

• It suffices now to prove that for n ∈ N we have
card{m : 1 ≤ m ≤ n,m ∈ A+ B} ≥ A(n) + B(n).

• Suppose first that a+ b ∈ A whenever a ∈ A, b ∈ B and
a+ b ≤ n.

• Then for m = 1, 2, ..., n − 1 we have 1 ∈ A and, if m ∈ A,
then m + 1 ∈ A.

• Hence A(n) = n and since A ⊂ A+ B the desired result
follows.

• Thus we may suppose that there are a0 ∈ A, b0 ∈ B such
that a0 ≥ 1, b0 ≥ 1, a0 + b0 ≤ n and a0 + b0 ̸∈ A.



Math 571,
Spring 2025,
Density and
Sum Sets

Robert C.
Vaughan

Introduction

The Cauchy–
Davenport–
Chowla
Theorem

Mann’s
Theorem

• Henceforward we suppose that α+ β < 1

• If αβ = 0, then the conclusion follows from the
observation that A ⊂ A+ B and B ⊂ A+ B.

• Hence we may suppose that αβ > 0 and therefore

1 ∈ A ∩ B. (1)

• It suffices now to prove that for n ∈ N we have
card{m : 1 ≤ m ≤ n,m ∈ A+ B} ≥ A(n) + B(n).

• Suppose first that a+ b ∈ A whenever a ∈ A, b ∈ B and
a+ b ≤ n.

• Then for m = 1, 2, ..., n − 1 we have 1 ∈ A and, if m ∈ A,
then m + 1 ∈ A.

• Hence A(n) = n and since A ⊂ A+ B the desired result
follows.

• Thus we may suppose that there are a0 ∈ A, b0 ∈ B such
that a0 ≥ 1, b0 ≥ 1, a0 + b0 ≤ n and a0 + b0 ̸∈ A.



Math 571,
Spring 2025,
Density and
Sum Sets

Robert C.
Vaughan

Introduction

The Cauchy–
Davenport–
Chowla
Theorem

Mann’s
Theorem

• Henceforward we suppose that α+ β < 1

• If αβ = 0, then the conclusion follows from the
observation that A ⊂ A+ B and B ⊂ A+ B.

• Hence we may suppose that αβ > 0 and therefore

1 ∈ A ∩ B. (1)

• It suffices now to prove that for n ∈ N we have
card{m : 1 ≤ m ≤ n,m ∈ A+ B} ≥ A(n) + B(n).

• Suppose first that a+ b ∈ A whenever a ∈ A, b ∈ B and
a+ b ≤ n.

• Then for m = 1, 2, ..., n − 1 we have 1 ∈ A and, if m ∈ A,
then m + 1 ∈ A.

• Hence A(n) = n and since A ⊂ A+ B the desired result
follows.

• Thus we may suppose that there are a0 ∈ A, b0 ∈ B such
that a0 ≥ 1, b0 ≥ 1, a0 + b0 ≤ n and a0 + b0 ̸∈ A.
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• We are supposing (1) 1 ∈ A ∩ B and that there are
a0 ∈ A, b0 ∈ B such that a0 ≥ 1, b0 ≥ 1, a0 + b0 ≤ n and
a0 + b0 ̸∈ A.

• Let s = B(n).

• Then by (1) we may assume that s ≥ 1. We proceed by
induction on s = 1, . . . , n.

• Let A′ = A+ {a0 + b : b ∈ B, a0 + b ≤ n, a0 + b ̸∈ A}
and B′ = B\{b ∈ B : a0 + b ≤ n and a0 + b ̸∈ A}.

• Suppose that a′ ∈ A′ and b′ ∈ B′.

• When a′ ∈ A we have a′ + b′ ∈ A+ B.
• When a′ ̸∈ A there is a b” ∈ B such that a′ = a0 + b” and
so a′ + b′ = a0 + b” + b′ = a0 + b′ + b”.

• Moreover a0 + b′ ∈ A, so a′ + b′ ∈ A+B in this case also.

• Hence
A′(n) + B ′(n) = A(n) + B(n), (2)

A′ + B′ ⊂ A+ B and card{m : 1 ≤ m ≤ n,m ∈ A+ B} ≥
card{m : 1 ≤ m ≤ n,m ∈ A′ + B′}.
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• We have

A′(n) + B ′(n) = A(n) + B(n), (2)

A′ + B′ ⊂ A+ B and card{m : 1 ≤ m ≤ n,m ∈ A+ B} ≥
card{m : 1 ≤ m ≤ n,m ∈ A′ + B′}

• We also have B ′(n) ≤ s − 1.
• If B ′(n) = 0 (and this includes the case s = 1, the initial

case of the inductive argument), then

card{m : 1 ≤ m ≤ n,m ∈ A′ + B′}
= card{m : 1 ≤ m ≤ n,m ∈ A′}
≥ A′(n)

= A′(n) + B ′(n)

and with (2) completes the proof in this case.
• If B ′(n) ≥ 1, then on the inductive hypothesis for s we
have

card{m : 1 ≤ m ≤ n,m ∈ A′ + B ′} ≥ A′(n) + B ′(n)

once more and again with (2) this completes the proof.
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