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• We want to count Rs(n), the number of solutions of

xk1 + · · · xks = n

in positive integers x1, . . . , xs .

• Clearly we need only consider xj ≤ n1/k , and for brevity we
write

N = ⌊n1/k⌋.
• Then following the pattern established in studying the
Goldbach problems we put

f (α) =
N∑

x=1

e(αxk)

so that by the orthogonality of the additive characters
e(αn) we have

Rs(n) =

∫ 1

0
f (α)se(−αn)dα.

• Thus we would like to understand the behaviour of f when
α is close to a rational number a/q.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• We want to count Rs(n), the number of solutions of

xk1 + · · · xks = n

in positive integers x1, . . . , xs .
• Clearly we need only consider xj ≤ n1/k , and for brevity we
write

N = ⌊n1/k⌋.

• Then following the pattern established in studying the
Goldbach problems we put

f (α) =
N∑

x=1

e(αxk)

so that by the orthogonality of the additive characters
e(αn) we have

Rs(n) =

∫ 1

0
f (α)se(−αn)dα.

• Thus we would like to understand the behaviour of f when
α is close to a rational number a/q.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• We want to count Rs(n), the number of solutions of

xk1 + · · · xks = n

in positive integers x1, . . . , xs .
• Clearly we need only consider xj ≤ n1/k , and for brevity we
write

N = ⌊n1/k⌋.
• Then following the pattern established in studying the
Goldbach problems we put

f (α) =
N∑

x=1

e(αxk)

so that by the orthogonality of the additive characters
e(αn) we have

Rs(n) =

∫ 1

0
f (α)se(−αn)dα.

• Thus we would like to understand the behaviour of f when
α is close to a rational number a/q.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• We want to count Rs(n), the number of solutions of

xk1 + · · · xks = n

in positive integers x1, . . . , xs .
• Clearly we need only consider xj ≤ n1/k , and for brevity we
write

N = ⌊n1/k⌋.
• Then following the pattern established in studying the
Goldbach problems we put

f (α) =
N∑

x=1

e(αxk)

so that by the orthogonality of the additive characters
e(αn) we have

Rs(n) =

∫ 1

0
f (α)se(−αn)dα.

• Thus we would like to understand the behaviour of f when
α is close to a rational number a/q.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• For smaller q there is a simple elementary result.
Theorem 8.1 Suppose that q ∈ N, a ∈ Z, (a, q) = 1 and
β = α− a/q. Then

f (a) = q−1S(q, a)v(β) + O(q + qn|β|)

where

S(q, a) =

q∑
r=1

e(ark/q)

and

v(β) =
n∑

y=1

k−1y
1
k
−1e(βy)

• There are a variety of possible choices for v(β). An
examination of the proof reveals that

v(β) =

∫ n

0
k−1y

1
k
−1e(βy)dy =

∫ n1/k

0
e(βxk)dx

are possible choices.
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• Another is Estermann’s
n∑

h=0

Γ(h + 1/k)

h!k
e(βh).

• I should also point out that by working a lot harder the
error term can be replaced by q1/2+ε(1 + n|β|)1/2

• and if one supposes further that |β| ≤ (2kq)n1/k−1 even
by q1/2+ε and this can be very useful in some applications.

• Note that if we use Dirichlet’s theorem to approximate a
general α so that for some Q we have q ≤ Q,
|β| = |α− a/q| ≤ q−1Q−1, then

q1/2+ε(1 + n|β|)1/2 ≪ q1/2+ε + n1/2qεQ−1/2

≪ Q1/2+ε + n1/2Qε−1/2

• We want this to be smaller than n1/k and this will be so
when n1−2/k−δ < Q < n2/k−δ and this will work when
k < 4.

• Thus we can actually give a major arcs only treatment to
sums of cubes.

• This was first observed in RCV[1977] and lead to some
substantial developments for cubic problems.
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S(q, a) =
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r=1

e(ark/q)

and

v(β) =
n∑

y=1

k−1y
1
k
−1e(βy)

• As it stands for the error to be smaller than n1/k we need
q ≤ n1/k−δ and |β| ≤ q−1n1/k−δ−1 and the total measure
of all such α ∈ [0, 1] which satisfy this is

≪
∑

q≤n1/k−δ

ϕ(q)q−1n1/k−δ−1 ≪ n2/k−2δ−1

and this will certainly be small when k ≥ 3.
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1
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• Proof. We start in the usual way by splitting the sum over
x according to the residue class of x modulo q. Thus

f (α) =

q∑
r=1

e(ark/q)
N∑

x=1
x≡r (mod q)

e(βxk).

• When β is small we can expect that the sum would
behave like the corresponding integral, so partial
summation/integration is suggested.
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• Thus

f (α) =

q∑
r=1

e(ark/q)
N∑

x=1
x≡r (mod q)

e(βxk).

• The inner sum here is

∑
x≤n1/k

x≡r mod q

(
e(βn)−

∫ n1/k

x
2πiβku

1
k
−1e(βuk)du

)

=
∑

x≤n1/k

x≡r mod q

e(βn)−

∫ n1/k

0
2πiβkuk−1

∑
x≤u

x≡r mod q

e(βuk)du



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Thus

f (α) =

q∑
r=1

e(ark/q)
N∑

x=1
x≡r (mod q)

e(βxk).

• The inner sum here is

∑
x≤n1/k

x≡r mod q

(
e(βn)−

∫ n1/k

x
2πiβku

1
k
−1e(βuk)du

)

=
∑

x≤n1/k

x≡r mod q

e(βn)−

∫ n1/k

0
2πiβkuk−1

∑
x≤u

x≡r mod q

e(βuk)du



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• The inner sum here is∑
x≤n1/k

x≡r mod q

e(βn)−
∫ n1/k

0
2πiβkuk−1

∑
x≤u

x≡r mod q

e(βuk)du

• We have ∑
x≤u

x≡r mod q

1 =
u

q
+ O(1).

• Inserting this gives an error term ≪ 1 + |β|n and a main

term n1/kq−1e(βn)−
∫ n1/k

0
2πiβkukq−1e(βuk)du

• and by integration by parts this is q−1

∫ n1/k

0
e(βuk)du.

• Thus we find that

f (α) = q−1S(q, a)

∫ n1/k

0
e(βuk)du + O(q + qn|β|)

which gives the theorem with one of the alternative
choices for v .
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• The change of variable t = uk gives another form∫ n

0
k−1t1/k−1e(βt)dt.

• The sum of a monotonic sequence equals the
corresponding integral with an error largest. Thus∑
y≤x

k−1y1/k−1 =

∫ x

1
k−1t1/k−1dt + O(1) = x1/k + O(1).

• Hence by the same process as before
∑
y≤n

k−1y1/k−1e(βy)

=
∑
y≤n

k−1y1/k−1e(βn)−
∫ n

1
2πiβe(βt)

∑
y≤t

k−1y1/k−1dv

= n1/ke(βn)−
∫ n

0
2πiβe(βt)t1/kdt + O(1 + n|β|).
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• We have

= n1/ke(βn)−
∫ n

0
2πiβe(βt)t1/kdt + O(1 + n|β|)

• Therefore by integration by parts once more this is∫ n

0
k−1t1/k−1e(βt)dt.

• Thus we can replace the integral version of v(β) in our
approximation by the sum version with a total error
≪ 1 + n|β|.

• This completes the proof of the theorem
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• We have already seen that the above theorem cannot be
used to cover a unit interval when k > 2 so we are forced
to divide into major and minor arcs.

• We used the following in connection with primes.
• Lemma 8.2. Suppose that X , Y , α are real numbers with
X ≥ 1, Y ≥ 1 and that q ∈ R, a ∈ Z, |α− a/q| ≤ q−2

with (a, q) = 1. Then∑
x≤X

min
(
XYx−1, ∥αx∥−1

)
≪ XY

(
1

q
+

1

Y
+

q

XY

)
log(2XYq).

• Recall we basically used this to treat sums of the kind∑
m,n

e(αmn)

after performing the summation over n.
• This we knew how to do since the exponent is linear in n.
• But now our exponent is of higher degree.
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• Herman Weyl makes the brilliant observation that if we
have a polynomial Ψ of degree k , then Ψ(x + h)−Ψ(x) is
of degree k − 1 in x and we can combine this with the
Cauchy-Schwarz inequality to make progress.

• Thus central to his idea is the use of the forward difference
operator which we define iteratively by

∆1

(
Ψ(α);β

)
= Ψ(α+ β)−Ψ(α)

∆j+1

(
Ψ(α);β1, . . . , βj+1

)
=

∆1

(
∆j

(
Ψ(α);β1, . . . , βj

)
;βj+1

)
• For example

∆1(α
3;β1) = (α+ β1)

3 − α3 = 3α2β1 + 3αβ2
1 + β3

1

• and
∆2(α

3;β1, β2) = β1β2(6α+ 3β1 + 3β2)
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• Generally one has

∆j(α
k ;β1, . . . , βj)

=
1∑

θ1=0

. . .

1∑
θj=1

(−1)j−θ1−···−θj (α+ θ1β1 + · · ·+ θjβj)
k .

• By the multinomial theorem here the k-th power is∑
ℓ0+ℓ1+···+ℓj=k

ℓi≥0

k!αℓ0(θ1β1)
ℓ1 . . . (θjβj)

ℓj

ℓ0! . . . ℓj !

• In formal power series there is a convention that 00 = 1.

• Thus if ℓi = 0 then
1∑

θi=0

(−1)1−θi θℓii = 1− 1 = 0

• so we only get a non-zero term when each ℓi ≥ 1.
• Thus ∆j(α

k ;β1, . . . , βj) has β1 . . . βj as a factor, is of

degree k − j and has leading coefficient
k!

(k − j)!
β1 . . . βj .
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• The following theorem encapsulates Weyl differencing.
Theorem 8.3. Let

T (Ψ) =
Q∑

x=1

e
(
Ψ(x)

)
where Ψ(x) is an arbitrary arithmetical function. Then

|T (Ψ)|2j ≤ (2Q)2
j−j−1

∑
|h1|<Q

. . .
∑

|hj |<Q

Tj

where
Tj =

∑
x∈Ij

e
(
∆j

(
Ψ(x); h1, . . . hj

))
and the intervals Ij(h1, . . . hj) satisfy

I1(h1) ⊂ [1,Q], Ij(h1, . . . hj) ⊂ Ij−1(h1, . . . , hj−1)
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• Proof. This is by induction on j .

• The case j = 1 follows by writing

|T (Ψ)|2 =
Q∑

x=1

e
(
−Ψ(x)

) Q∑
y=1

e
(
Ψ(y)

)
and then letting y = x + h.

• Then −x < h ≤ Q − x and 1 ≤ x ≤ Q, so that
1− Q ≤ h ≤ Q − 1 and −h < x ≤ Q − h.

• We now interchange the order of summation so that

|T (Ψ)|2 =
∑

1−Q≤h≤Q−1

∑
1≤x≤Q

−h<x≤Q−h

e
(
Ψ(x + h)−Ψ(x)

)
• Thus the x in the inner sum are precisely the x in the
intersection of [1,Q] and [1− h,Q − h] which is an
interval I1(h) of the required kind.
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• For the inductive step we begin by applying Cauchy. Thus

|T (Ψ)|2j+1 ≤ (2Q)2
j+1−2j−2

 ∑
|h1|<Q

. . .
∑

|hj |<Q

Tj

2

≤ (2Q)2
j+1−j−2

∑
|h1|<Q

. . .
∑

|hj |<Q

|Tj |2.

• Now we treat |Tj |2 as T in the initial case. Thus |Tj |2

=
∑

1−Q≤h≤Q−1

∑
x∈Ij

x+h∈Ij

e
(
∆1

(
∆j

(
Ψ(x); h1, . . . hj

)
; h
))
.

• and the conclusion follows on taking Ij+1 = Ij ∩ (h + Ij).
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• We now come to one of the more famous results of
analytic number theory.

• Theorem 8.4. [Weyl’s inequality] Suppose that q ∈ N,
a ∈ Z, (a, q) = 1, α ∈ R, |α− a/q| ≤ q−2,

Ψ(x) = αxk + α1x
k−1 + · · ·αk−1x + αk

and T (Ψ) =
Q∑

x=1

e
(
Ψ(x)

)
. Then

T (Ψ) ≪ Q1+ε(q−1 + Q−1 + qQ−k)2
1−k

.

• Proof. We use the case j = k − 1 of the previous
theorem. From the comments surrounding ∆j we have

∆k−1

(
Ψ(x); h1, . . . , hk−1

)
= αk!h1 . . . hk−1x

+ α
k!

2
h1 . . . hk−1(h1 + · · · hk−1)

+ α1h1 . . . hk−1.
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• We have

∆k−1

(
Ψ(x); h1, . . . , hk−1

)
= αk!h1 . . . hk−1x

+ α
k!

2
h1 . . . hk−1(h1 + · · · hk−1)

+ α1h1 . . . hk−1.

• Thus Tk−1 ≪ min(Q, ∥αk!h1 . . . hk−1∥−1).

• We apply this to the previous theorem and separate out
the ≪ Qk−2 terms for which h1 . . . hk−1 = 0.

• Thus |T (Ψ)|2k−1

≪ Q2k−1−1 + Q2k−1−k+ε
∑

1≤h≤k!Qk−1

min(Q, ∥αh∥−1)

• The result now follows from Lemma 8.2.
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• OK, so we have a bound for the sup norm on the minor
arcs, but the best that we can get is

≪ Q1−21−k+ε.

• and for k of any size this is not very good.

• Typically we will have Q = ⌊n1/k⌋ and we will be trying to
save n = Qk .

• With only this available one can see why Hardy and
Littlewood could only obtain

G (k) ≤ (k − 2)2k−1 + 5.

• We need a strong mean value theorem.

• Strangely it took more than 20 years before Hua came up
with another application of Weyl differencing which is a
bit better.

• By then Vinogradov had come up with something better
for large k , but for k = 3 or 4 it is still close to the best
that we know.
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• Theorem 8.5 [Hua’s Lemma, 1938] Suppose that

1 ≤ j ≤ k. Then

∫ 1

0
|f (α)|2jdα ≪ N2j−j+ε.

• Proof. This is also by induction on j .
• The case j = 1 is immediate from Parseval’s identity.
• Now assume the j-th case. By Theorem 8.3, |f (α)|2j

≤ (2N)2
j−j−1

∑
h∈[1−N,N−1]j

∑
x∈Ij

e
(
αh1 . . . hjpj(x ;h)

)
where pj is of degree k − j with integer coefficients and
leading coefficient k!

(k−j)! .

• We collect together the terms with h1 . . . hjpj(x ;h) = g
and let c(g) be the number of such h1, . . . , hj , x .

• Then |f (α)|2j ≤ (2N)2
j−j−1

∑
g≪Nk

c(g)e(αg) and

c(g) ≪ Nε (g ̸= 0), c(0) ≪ N j .

• We also have
∑
g

c(g) ≪ N j+1.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Theorem 8.5 [Hua’s Lemma, 1938] Suppose that

1 ≤ j ≤ k. Then

∫ 1

0
|f (α)|2jdα ≪ N2j−j+ε.

• Proof. This is also by induction on j .

• The case j = 1 is immediate from Parseval’s identity.
• Now assume the j-th case. By Theorem 8.3, |f (α)|2j

≤ (2N)2
j−j−1

∑
h∈[1−N,N−1]j

∑
x∈Ij

e
(
αh1 . . . hjpj(x ;h)

)
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• Also |f (α)|2j = f (α)2
j−1

f (−α)2
j−1

=
∑
g

b(g)e(−αg)

where b(g) is the number of solutions of

xk1 + · · · xkJ = yk1 + · · · ykJ (xj , yj ≤ N, J = 2j−1)

• Then
∑
g

b(g) = f (O)2
j
= N2j and on the inductive

hypothesis b(0) =

∫ 1

0
|f (α)|2jdα ≪ N2j−j+ε.

• We have∫ 1

0
|f (α)|2j+1

dα ≪ N2j−j−1

∫ 1

0
|f (α)|2j

∑
g

c(g)e(αg)dα

• and so by Parseval∫ 1

0
|f (α)|2j+1

dα ≪ N2j−j−1
∑
g

b(g)c(g).

• The term g = 0 is ≪ N2j−j−1N2j−j+εN j = N2j+1−j−1+ε

• and those g ̸= 0 ≪ N2j−j−1
∑

g b(g)N
ε ≪ N2j+1−j−1+ε

which completes the proof.
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• Recall we are counting the number of solutions of

xk1 + · · · xks = n.

• For the major arcs we will need to have q somewhat
smaller than n1/k , so we define

P = nν/k

for some smallish ν which could be

ν =
1

100
.

• Now we define a typical major arc to be an interval

M = {α : |α− a/q| ≤ P/n}.
• If a/q ̸= a′/q′, then

|a/q − a′/q′| = |aq′ − a′q|/(qq′) ≥ 1/(qq′).
• Thus certainly the major arcs will be disjoint when q ≤ P.
• Hence we define M to be their union with 1 ≤ a ≤ q ≤ P

and (a, q) = 1.
• Then M ⊂ U = [τ, 1 + τ ] where τ = P/N
• and we define the minor arcs by m = U \M.
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• Theorem 8.6. There is a positive number δ such that if

s > 2k , then

∫
m
|f (α)|sdα ≪ n

s
k
−1−δ.

• Proof. By Dirichlet’s theorem on diophantine
approximation given α ∈ m there are a, q with (a, q) = 1,
q ≤ n/P and |α− a/q| ≤ 1

q(1+⌊n/P⌋ < P/(qn).
• If q ≤ P, then we cannot have a > q, for then

α > a
q − P

qn ≥ 1 + 1
q − P

qn > 1 + P
n contradicting α ∈ U, so

a ≤ q.
• Also α ∈ U implies that P/n ≤ α so a ≥ 1.
• Therefore q ≤ P would imply that α ∈ M.
• Hence we have P < q ≤ n/P.
• Thus, Weyl’s inequality f (α) ≪ n1/k−δ for a suitable small
δ = δ(k).

• Therefore, by Hua’s Lemma with j = k we have for any
s > k ∫

m
|f (α)|sdα ≪ n2

k/k−1+ε(n1/k−δ)s−2k .
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• Now we are in the endgame.

• But as usual this will be the longest part.

• On each major arc we will use the approximation

f (α) = q−1S(q, a)v(β) + O(q + qn|β|)

• and so we need to understand the properties of S(q, a)
and v(β).

• The latter of these is the easiest to deal with.

• It is periodic with period 1, so we can concentrate on the
interval [−1/2, 1/2].
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• Lemma 8.7. Suppose that |β| ≤ 1
2 . Then

v(β) ≪ min(n1/k , |β|−1/k).

• Proof. We already saw in the proof of Theorem 8.1 that∑
y≤x

k−1y1/k−1 = x1/k + O(1).
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• We can suppose that |β| > n−1.

• Let x = ⌊|β|−1⌋. Then
∑
y≤x

k−1y1/k−1 ≪ |β|1/k

• and
∑

x+1≤y≤n

k−1y1/k−1e(βy) = k−1n
1
k
−1

∑
x+1≤y≤n

e(βy)

−
∫ n

x+1

( 1

k2
− 1

k

)
u

1
k
−2

∑
x+1≤y≤u

e(βy)du

≪ k−1n1/k−1|β|−1 +

∫ n

x+1
k−1(1− k−1)u1/k−2|β|−1du

≪ (x + 1)1/k−1|β|−1 ≪ |β|−1/k .
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• The Gauss sum

S(q, a) =

q∑
x=1

e(axk/q)

is more interesting.

• There is a crude, but adequate for our purposes, bound for
this.

• Lemma 8.8. Suppose that a ∈ Z,q ∈ N and (a, q) = 1.
Then

S(q, a) ≪ q1−21−k+ε

• Proof. This follows immediately by Weyl’s inequality, with
Q = q, α = a/q, Ψ = aq−1xk .

• It is possible to do much better than this, and we may
examine this later.
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• Importantly S(q, a) has a multiplicative property which we
will use later.

• Lemma 8.9. Suppose that a, b ∈ Z, q, r ∈ N and
(a, q) = (bmr) = (q, r) = 1. Then

S(qr , ar + bq) = S(q, a)S(r , b).

• Proof. tr + uq runs over a complete set of residues
modulo qr and t and u do modulo q and r respectively.

• Thus

S(qr , ar + bq) =

q∑
t=1

r∑
u=1

e(arktk/q + bqkuk/r)

• and tr and uq run over complete sets of residues modulo q
and r as t and u do respectively.

• Thus it suffices to understand S(q, a) when q is a power
of a prime. It turns out that S(q, a) ≪ q1−1/k and that
sometimes the sum is this large, although often it is
smaller, as we saw in homework 4 in the prime case.
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• Recall that P = nν/k for some smallish ν and we defined
the major arcs by M = {α : |α− a/q| ≤ P/n} and took
M to be their union with 1 ≤ a ≤ q ≤ P and (a, q) = 1.

• Now write β = α− a/q and E = f (α)− q−1S(q, a)v(β)
so that E ≪ q + qn|β| ≪ P.

• Then f (α)s =
(
q−1S(q, a)v(β) + E

)s
so that, when

(a, q) = 1,

f (α)s − q−sS(q, a)sv(β)s

≪ (q−1|S(q, a)v(β)|)s−1|E |+ |E |s

≪ n
s−1
k P + Ps ≪ n

s−1
k P.

• Now integrating over M(q, a) we obtain∫
M(q,a)

(
f (α)s − q−sS(q, a)sv(β)s

)
e(−αn)dα

≪ q−1n
s−1
k

−1P2.
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•
∫
M(q,a)

(
f (α)s − q−sS(q, a)sv(β)s

)
e(−αn)dα ≪

n
s−1
k

−1P2/q

• Let K = 21−k . Then

q−s |S(q, a)|s
∫

P
qn
≤|β|≤ 1

2

|v(β)|sdβ ≪ q−sK+ε

∫ ∞

P
qn

β−s/kdβ

≪ q−sK+ε(qn/P)
s
k
−1.

• Thus∫
M
f (α)se(−αn)dα−S(n;P)

∫ 1/2

−1/2
v(β)se(−nβ)dβ ≪ ∆

where S(n;Q) =
∑
q≤Q

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q) and

∆ =
∑
q≤P

(
n

s−1
k

−1P2 + q
s
k
−sK+ε(n/P)

s
k
−1
)
.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

•
∫
M(q,a)

(
f (α)s − q−sS(q, a)sv(β)s

)
e(−αn)dα ≪

n
s−1
k

−1P2/q
• Let K = 21−k . Then

q−s |S(q, a)|s
∫

P
qn
≤|β|≤ 1

2

|v(β)|sdβ ≪ q−sK+ε

∫ ∞

P
qn

β−s/kdβ

≪ q−sK+ε(qn/P)
s
k
−1.

• Thus∫
M
f (α)se(−αn)dα−S(n;P)

∫ 1/2

−1/2
v(β)se(−nβ)dβ ≪ ∆

where S(n;Q) =
∑
q≤Q

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q) and

∆ =
∑
q≤P

(
n

s−1
k

−1P2 + q
s
k
−sK+ε(n/P)

s
k
−1
)
.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

•
∫
M(q,a)

(
f (α)s − q−sS(q, a)sv(β)s

)
e(−αn)dα ≪

n
s−1
k

−1P2/q
• Let K = 21−k . Then

q−s |S(q, a)|s
∫

P
qn
≤|β|≤ 1

2

|v(β)|sdβ ≪ q−sK+ε

∫ ∞

P
qn

β−s/kdβ

≪ q−sK+ε(qn/P)
s
k
−1.

• Thus∫
M
f (α)se(−αn)dα−S(n;P)

∫ 1/2

−1/2
v(β)se(−nβ)dβ ≪ ∆

where S(n;Q) =
∑
q≤Q

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q) and

∆ =
∑
q≤P

(
n

s−1
k

−1P2 + q
s
k
−sK+ε(n/P)

s
k
−1
)
.



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Thus∫
M
f (α)se(−αn)dα−S(n;P)

∫ 1/2

−1/2
v(β)se(−nβ)dβ ≪ ∆

where S(n;Q) =
∑
q≤Q

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q) and

∆ =
∑
q≤P

(
n

s−1
k

−1P2 + q
s
k
−sK+ε(n/P)

s
k
−1
)
.

• Thus ∆ ≪ n
s−1
k

−1P3 + n
s
k
−1P1−sK+ε ≪ n

s
k
−1P−1

provided that sK > 2, i.e. s > 2k .

• We also have

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q) ≪ q1−sK+ε and

so
∑
q>P

∣∣∣∣∣
q∑

a=1
(a,q)=1

q−sS(q, a)se(−an/q)

∣∣∣∣∣≪ P2−sK+ε ≪ n−δ

for some δ > 0 provided that s > 2k .
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• Finally

∫ 1/2

−1/2
v(β)se(−βn)dβ ≪

∫ 1/2

−1/2

(
n

1 + n|β|

)s/k

dβ ≪ n
s
k
−1.

• Thus we have shown that for some δ > 0∫
M
f (α)se(−αn)dα−S(n)J(n) ≪ n

s
k
−1−δ

where S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q) and

J(n) =

∫ 1/2

−1/2
v(β)se(−nβ)dβ

• Combining this with Theorem 8.6 we have
Theorem 8.10. Suppose that s > 2k . Then there is a
δ > 0 such that for every large n we have

rs(n) = S(n)J(n) + O(n
s
k
−1−δ).
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• There are now two further tasks to perform.

• What is the size of J(n)?

• Hopefully bigger than n
s
k
−1.

• And do we always have S(n) ≫ 1?

• The first holds when s > k, but the second can fail for
quite big s.

• For example k = 4 and s = 15.

• Fortunately it does hold when s > 2k .
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• To see that there is a problem when k = 4 and s = 15,
observe first that if x is odd, say x = 2y + 1, then
x4 = (2y + 1)4 ≡ 1 + 4(2y) + 6(2y)2 = 1 + 8x(1 + 3x)
(mod 16).

• Now x(1 + 3x) is always even, so any fourth power is
always ≡ 0 or 1 (mod 16).

• Now consider n = 24k × 31.

• If n is the sum of 15 fourth powers, then they must all be
even, so n2−4 is also the sum of 15 fourth powers, and so
on.

• Hence 31 would have to be the sum of 15 fourth powers.

• But it isn’t!. You have 31 < 34 so you can only use 14 and
24, and then you can only use at most one 24 and there
are not enough 14 to add up to 31.
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• If n is the sum of 15 fourth powers, then they must all be
even, so n2−4 is also the sum of 15 fourth powers, and so
on.

• Hence 31 would have to be the sum of 15 fourth powers.

• But it isn’t!. You have 31 < 34 so you can only use 14 and
24, and then you can only use at most one 24 and there
are not enough 14 to add up to 31.
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• The function J(n) is easy to bound. By orthogonality we
have

J(n) =
∑

x1,...,xs
x1+···+xs=n

k−s(x1 . . . xs)
1/k−1

• Consider x1, . . . xs−1 with n(s−1 − δ) ≥ xj ≤ n(s−1 + δ).
• When δ < 1

s(s−1) we would have

n
(
s−1−δ(s−1)

)
≤ n−(x1+· · ·+xs−1) ≤ n

(
s−1+δ(s−1)

)
• and so there is an xs with

n
(
s−1 − δ(s − 1)

)
≤ xs ≤ n

(
s−1 + δ(s − 1)

)
and x1 + · · ·+ xs = n.

• Thus these xj contribute

≫ ns−1(ns)1/k−1 = ns/k−1.

• Hence
ns/k−1 ≪ J(n) ≪ ns/k−1,

the upper bound coming from our bound for the integral.
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• The above is a method which works in most
circumstances. Here we can do better.

• Theorem 8.11. Suppose that s ≥ 2. Then

J(n) =
Γ
(
1 + 1

k

)s
Γ
(
s
k

) n
s
k
−1 + O

(
n

s
k
−1− 1

k

)
.

• Proof. This is by induction on s. Both the initial case
s = 2 and the inductive step depend on the following
lemma.

• Lemma 8.12. Suppose that α, β are real numbers with
α ≥ β > 0 and β ≤ 1. Then

n−1∑
m=1

mβ−1(n −m)α−1 =
Γ(α)Γ(β)

Γ(α+ β)
nα+β−1 + O

(
nα−1

)
.
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α ≥ β > 0 and β ≤ 1. Then

n−1∑
m=1

mβ−1(n −m)α−1 =
Γ(α)Γ(β)

Γ(α+ β)
nα+β−1 + O

(
nα−1

)
.

• Proof. If α+ β = 2 and α = 1, then the sum in the
lemma is trivial.

• When α+ β ̸= 2, consider g(x) = xβ−1(n − x)α−1.
• If α+ β = 2 and α ̸= 1, g(x) = (n/x − 1)α−1 which is
monotonic.

• Then the interval (0, n) this has at most one stationary
point given by (α+ β − 2)x = (β − 1)n.

• Thus this interval can be divided into two (or one if X = 0
or n) intervals (0,X ), (X , n) such that g is monotonic on
each interval.

• Thus our sum is∫ n−1

1
g(x)dx + O(nα−1 + nβ+α−2).
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• g(x) = xβ−1(n − x)α−1∫ n−1

1
g(x)dx + O(nα−1 + nβ+α−2).

• Also ∫ 1

0
g(x)dx ≪ nα−1,

∫ n

n−1
g(x)dx ≪ nβ−1.

• Hence the sum is ∫ n

0
g(x)dx + O(nα−1).

• By a change of variable x = yn the integral here is

nβ+α−1

∫ 1

0
yβ−1(1− y)α−1dy

• and the new integral is the beta function which is well
known to be

Γ(α)Γ(β)

Γ(α+ β)
.
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yβ−1(1− y)α−1dy

• and the new integral is the beta function which is well
known to be

Γ(α)Γ(β)

Γ(α+ β)
.
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• The lemma establishes the case s = 2 of the theorem.

• For s ≥ 2 we have

Js+1(n) =
n−1∑
m=1

k−1m
1
k
−1Js(n −m)

• and so the general result follows by an easy induction.

• Thus we can summarize everything so far by a theorem.

• Theorem 8.13. Let rs(n) denote the number of
representations of n as the sum of s k-th powers of
positive integers. Suppose that s > 2k . Then there is a
δ > 0 such that for every large n we have

rs(n) =
Γ
(
1 + 1

k

)s
Γ
(
s
k

) S(n)n
s
k
−1 + O(n

s
k
−1−δ).
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• If s > 2k , then we have absolute convergence of

S(n) =
∞∑
q=1

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q).

• For a, b ∈ Z, q, r ∈ N, (a, q) = (bmr) = (q, r) = 1,
S(qr , ar + bq) = S(q, a)S(r , b).

• Let B(q) =

q∑
a=1

(a,q)=1

q−sS(q, a)se(−an/q).

• Then, when (q, r) = 1, we have B(qr) =

q∑
a=1

(a,q)=1

r∑
b=1

(b,r)=1

S(qr , ar + bq)s

(qr)s
e(−an

q − bn
r ) = B(q)B(r).

• Hence the terms in the series S(n) are multiplicative.
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• Theorem 8.14. Suppose that s > 2k . Then for each
prime p

T(p) = 1 +
∞∑
j=1

B(pj)

converges absolutely and so does

S(n) =
∏
p

T(p).

• The absolute convergence, and in particular the bound

B(q) ≪ q1 + ε− sK ≪ q−1−δ

tells us that for some constant C

1 ≪
∏
p>C

T(p) ≪ 1.

• Thus our main concern now is what happens with the
small primes.

• To this end we now begin to explore the local properties of
S(n).
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• Lemma 8.15. Let M(q; n) denote the number of
solutions of xk1 + · · · xks ≡ n (mod q). Then∑

d |q

B(d) = q1−sM(q; n).

• Thus we have

T(p) = lim
j→∞

pj(1−s)M(pj ; n).

• This is usually interpreted as the density of the p-adic
solutions of

xk1 + · · ·+ xks = n.

• Proof. We start from the orthogonality relation

1

q

q∑
r=1

e(hr/q) =

{
1 q|h,
0 q ∤ h.

• Thus

M(q; n) =
1

q

q∑
r=1

q∑
x1

. . .

q∑
xs=1

e
(
r(xk1 + · · · xks − n)/q

)
.
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• Thus

M(q; n) =
1

q

q∑
r=1

q∑
x1

. . .

q∑
xs=1

e
(
r(xk1 + · · · xks − n)/q

)
.

• We now sort the r according to the value q/(r , q) = d .
• Thus M(q; n) =

1

q

∑
d |q

d∑
a=1

(a,d)=1

q∑
x1

. . .

q∑
xs=1

e
(
a
d (x

k
1 + · · · xks − n)

)
• Each xj ranges q/d times over a set of residues modulo d .
• Therefor M(q; n) =

1

q

∑
d |q

d∑
a=1

(a,d)=1

(q/d)s
d∑
x1

. . .

d∑
xs=1

e
(
a(xk1 + · · · xks − n)/d

)
=qs−1

∑
d |q

B(d)

as required.
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• Each xj ranges q/d times over a set of residues modulo d .
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• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).
• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).
• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).
• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).

• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).
• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).
• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• Given p choose τ = τ(p) so that pτ is the exact power of
p dividing k , pτ∥k .

• Now suppose that (a, p) = 1 and t ≥ τ + 1, and there is
an x such that xk ≡ a (mod pt).

• For the time being suppose p is odd and g be a primitive
root modulo pt+1. Note that it is also one modulo pt .

• Choose u, v so gu ≡ a (mod pt+1) & x ≡ g v (mod pt).
• Then kv ≡ u (mod pt−1(p − 1)), & pτ (k , p − 1)|u and

k

pτ (k , p − 1)
v ≡ u

pτ (k , p − 1)
(mod pt−1−τ p − 1

(k, p − 1)
)

• Hence

(
k

pτ (k , p − 1)
, pt−τ p − 1

(k , p − 1)

)
= 1 and so there

is a v ′ such that
k

pτ (k , p − 1)
v ′ ≡ u

pτ (k, p − 1)
(mod pt−τ p − 1

(k, p − 1)
).

• Thus kv ′ ≡ u (mod ϕ(pt+1)) is soluble, whence so is

xk ≡ a (mod pt+1).



Math 571,
Spring 2025,
Waring’s
Problem:
Simplest

Upper Bound

Robert C.
Vaughan

The
generating
function

Weyl
differencing

The Minor
Arcs

The major
arcs

The Singular
Series

• When p = 2 things are more complicated since the
multiplicative group of reduced residues modulo 2t is no
longer cyclic when t ≥ 3.

• However is easily shown that if k is odd, then xk runs over
a set of reduced residues as x does.

• Thus that leaves the case when τ(2) > 0.

• In that case we work with t ≥ τ + 2 as above but with the
generators −1 and 5.

• There are more complications of detail but the conclusion
is the same.

• The argument above also shows that the number of k-th
power residues modulo pγ is

ϕ(pτ+1)(
k , ϕ(pτ+1)

) .
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• Let M∗(q; n) denote the number of solutions of

xk1 + · · · xks ≡ n (mod q)

with (x1, q) = 1.

• Lemma 8.16. Suppose that τ is as above,

γ =

{
τ + 1 when p > 2, or p = 2 and τ = 0,

τ + 2 when p = 2 and τ > 0,

and M∗(pγ ; n) > 0 and t ≥ γ. Then

M(pt ; n) ≥ p(t−γ)(s−1).

• It follows immediately that

T(p) ≥ p−γ(s−1).

• Observe that this lower bound only depends on k and s.
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• So now we only have to find a non-singular solution
modulo pγ .

• There are many ways of doing this.

• For example there is an ad hoc argument of Davenport in
his notes on diophantine equations.

• However I think it is instructive to proceed through a
much more general result which I will prove in a while.

• Given a positive integer q and a collection A of residue
classes modulo q, its local density ρ = ρ(A) modulo q is
defined by ρ = q−1 card(A).

• Theorem 8.17. [Cauchy–Davenport–Chowla] Suppose
that q is a positive integer, that A and B are sets of
residue classes modulo q of local density modulo q, α and
β respectively, that 0 ∈ B and that every non–zero residue
class in B is a reduced residue class modulo q. Then

ρ(A+ B) ≥ min(1, α+ β − 1/q).
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• Lemma 8.18. Suppose that

s ≥


p

p−1(k , p
τ (p − 1)) when γ = τ + 1,

2τ+2 when γ = τ + 2 and k > 2,

5 when p = k = 2.

Then M∗(pγ ; n) > 0.

• Proof. When γ = τ + 1 the number of k-th power

residues modulo pγ is N =
ϕ(pτ+1)(

k , ϕ(pτ + 1)
) =

ϕ(pγ)(
k, ϕ(pγ)

) .
• Let B∗ be the set of k-th power (reduced) residues modulo
pγ and let B = {0} ∪ B∗.

• Then ρ(B∗) = Np−γ and ρ(B) = (N + 1)p−γ .
• Now consider B∗ + (s − 1)B.
• By Cauchy-Davenport-Chowla and induction we have

ρ(B∗ + (s − 1)B) ≥ min(1, sNp−γ).

• We should note also that every element of B∗ + (s − 1)B
is a sum of s k-th powers modulo pγ and that at least one
of them is reduced.
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• ρ(B∗ + (s − 1)B) ≥ min(1, sNp−γ).

• When sNp−γ ≥ 1 we are home and dry.

• In other words when s satisfies the hypothesis

s ≥ pγ
(
k,pτ (p−1)

)
ϕ(pγ) .

• In the case p = 2 and k > 2 we are supposing s ≥ 2γ and
we can solve

xk1 + · · · xks ≡ n (mod 2γ)

be taking each xj to be 1 or 0 and at least one of them 1.

• The third case has k = 2, so that s ≥ 5 and 2γ = 8, and is
likewise trivially soluble with 2 ∤ x1 since x2j ≡ 0, 1 or 4
(mod 8).
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• Bringing it all together we have
Theorem 8.19. Suppose that s > 2k . Then S(n) ≫ 1.

• Proof. There are various cases to check.

• When k ≥ 2 we have 2k ≥ 2k ≥ pk
p−1 , so the first

condition of the previous lemma will hold.

• If k = 2, then s ≥ 5 so the last condition also holds.

• When γ = τ + 2, so p = 2, but k > 2 there are several
possibilities.

• If τ ≥ 2, then k ≥ 2τ ≥ τ + 2, so that 2k ≥ 2τ+2 = 2γ .

• If τ = 1, then k = 2k0 with k0 ≥ 3, but γ = τ + 2 = 3, so
that 2k ≥ 26 > 2γ .

• The above argument can be refined to show that
S(n) ≫ 1 when s ≥ 2k and k is not power of 2 and
s ≥ 4k when k = 2j with j ≥ 2. However this requires
better knowledge of the convergence of S(n).
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